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ABSTRACT

Tandem repeats occur frequently in biological se-
quences. They are important for studying genome
evolution and human disease. A number of
methods have been designed to detect a single
tandem repeat in a sliding window. In this article,
we focus on the case that an unknown number of
tandem repeat segments of the same pattern are
dispersively distributed in a sequence. We construct
a probabilistic generative model for the tandem
repeats, where the sequence pattern is represented
by a motif matrix. A Bayesian approach is adopted
to compute this model. Markov chain Monte Carlo
(MCMC) algorithms are used to explore the poster-
ior distribution as an effort to infer both the motif
matrix of tandem repeats and the location of
repeat segments. Reversible jump Markov chain
Monte Carlo (RJMCMC) algorithms are used to
address the transdimensional model selection
problem raised by the variable number of repeat
segments. Experiments on both synthetic data and
real data show that this new approach is powerful in
detecting dispersed short tandem repeats. As far as
we know, it is the first work to adopt RJMCMC
algorithms in the detection of tandem repeats.

INTRODUCTION

A tandem repeat is a stretch of sequence composed of
multiple adjacent approximate copies of a particular
substring. Tandem repeats have been found abundant in
both DNA (1) and protein sequences (2) of most species.
They have played critical roles in genome evolution
because of frequent recombination or slippage events
(3). There is also an increasing amount of researches
showing that tandem repeats are related to many human
diseases (4), such as Huntington’s disease (5) and cancer
(6). On the positive side, tandem repeats can also benefit
by generating functional variability and allowing swift

adaptive evolution of certain traits (7,8). As a powerful
tool, tandem repeats are frequently used for genetic
mapping (9), genotyping (10) and forensics studies (11).
Tandem repeats differ in the conservation of their

pattern. They can be strongly conservative as in
::::gtATCC|fflfflffl{zfflfflffl}ATCC|fflfflffl{zfflfflffl}ATCC|fflfflffl{zfflfflffl} cg::::, where the repeat unit
ATCC occurs three times consecutively. They can also
be divergent as in ::::gtATCA|fflfflffl{zfflfflffl}ATAC|fflfflffl{zfflfflffl}ATCC|fflfflffl{zfflfflffl} cg:::, which
allows some mismatches between the repeat units. The
two versions are called exact and approximate tandem
repeats, respectively. In the remainder of this article, we
focus on the latter case, which is more general and harder
to detect. There are mainly two ways to represent a
sequence pattern (i.e. a motif): motif consensus and
motif matrix (12). Using the previous approximate
tandem repeat as an example, the pattern can be repre-
sented by the motif consensus as ‘ATCC’ or by the motif
matrix

1
CCA

0
BB@
1 2 3 4

A 1 0 1=3 1=3
T 0 1 0 0
C 0 0 2=3 2=3
G 0 0 0 0

;

where each column of the matrix denotes the relative
frequencies of the four nucleotides (A, T, C, G) showing
at the corresponding position.
Over the past decade, a number of softwares have been

developed to detect approximate tandem repeats.
Generally speaking, current repeat detection methods
can be roughly classified as either a string matching
approach or a signal processing approach. The string
matching approach detects repeats by scoring the
sequence alignment between the input sequence and a
library of curated repeat consensus, k-mers (a segment
composed of k nucleotides or amino acids) or itself.
RepeatMasker (Smit, AFA, Hubley, R and Green, P.
RepeatMasker Open-3.0.), RECON (13), REPuter (14),
mreps (15), Tallymer (16) and TRF (17) are some repre-
sentative softwares in this class. The signal processing
approach is mainly based on periodicity in the sequence.
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It uses techniques such as discrete Fourier transform,
short-time periodicity transform, exact periodic subspace
decomposition and autoregressive modeling to perform
spectral analysis (18–21). A more comprehensive review
and a performance comparison of existing softwares can
be found in (22,23).
A consecutive block composed of repeat units is called a

tandem repeat segment. Multiple tandem repeat segments
sharing a same pattern may be dispersively distributed in a
sequence. Current methods are largely based on the motif
consensus representation and a sliding-window technique.
Our work concentrates on the situation where multiple
tandem repeat segments composed of instances of the
same short motif pattern are dispersively distributed in a
sequence. We name the repeats in this scenario as the
Dispersed Short Approximate Tandem Repeats
(DSATRs). In this article, the pattern of DSATR is
described by a motif matrix and will be inferred through
a Bayesian approach. Markov chain Monte Carlo
(MCMC) algorithms are used to explore the complex pos-
terior distribution of interested parameters. Bayesian in-
ference by iterative sampling has been hastily developed in
the past decades (24,25). It has been used to detect the
binding sites in DNA and protein sequences, such as the
Gibbs Motif Sampler (GMS) (26,27). Other popular algo-
rithms for binding motif detection include AlignACE (28)
and MEME (29). Jensen et al. (30) provided a review of
algorithms for binding motifs. In the binding sites
problem, the motif instances are dispersedly distributed
in multiple input sequences or multiple dispersed locations
in a sequence. Although for tandem repeats, the motif
instances (i.e. repeat units) are also locally grouped
together. Based on Gibbs sampler, Li et al. (31) dealt
with the case where each of the multiple input sequences
contains a gapped repeat segments of the same repeat
pattern.
Different from classical motif discovery problems, the

unknown number of repeat segments in the target
sequence leads to a transdimensional model selection
problem. One possible solution for this problem is to use
the reversible jump Markov chain Monte Carlo
(RJMCMC) algorithm introduced by Green (32).
Brooks et al. (33) investigated on the efficient construction
of RJMCMC algorithms. Al-Awadhi et al. (34) also dis-
cussed how to improve the acceptance rate of RJMCMC.
However, although RJMCMC is theoretically capable in
solving transdimensional problems, its slow convergence
limited its application to simple model selection problems.
Successful applications of RJMCMC in real problems are
rarely seen in the literature. As an alternative solution for
transdimensional model selection, the birth-and-death
approach is introduced in (35). A comparison between
RJMCMC and the birth-and-death approach is provided
by Cappe et al. (36). A geometric approach is presented in
(37) for transdimensional MCMC. The method of (38),
relying on the asymptotic behaviors of different risk func-
tions and abstract semi-parametric bootstrap principles,
targeted at the model selection problem for variable
length Markov chain.
In this article, a Bayesian approach is developed to

detect DSATR in a de novo fashion. We detect the motif

matrix and locate the motif instances simultaneously
through their joint posterior distribution, which assesses
the fitness of all points in the parameter space to the data
in a probabilistic view. RJMCMC algorithms are adapted
to tackle the problem that the number of segments
dispersed on the whole sequence is unknown. Extra
effort is devoted to speeding up the convergence of
RJMCMC.

MATERIALS AND METHODS

A generative model for a sequence with DSATR

A schematic view of a sequence with DSATR is shown in
Figure 1. The input sequence is denoted as
R=(r1, r2, . . . , rL), where the nucleotide at the l-th
location, rl, takes a value from the alphabet fA,T,C,G},
and L denotes the length of the sequence. The input
sequence consists of two parts, namely the tandem
repeat region and the background region (i.e. the
non-tandem repeat region). The tandem repeat region is
composed of one or multiple separated repeat segments.
We define a repeat segment with k repeat units as k
adjacent instances of the same motif, i.e. a contiguous
block with kw nucleotides in the sequence, where w
denotes the width of the motif. Notice that the number
of repeat segments is unknown in advance. Given the
sequence R, our goal is to infer the motif matrix of the
tandem repeats and the locations of repeat segments. We
model every nucleotide rl in the sequence as a multinomial
random variable. More specifically, for the nucleotides
inside the repeat unit, we model them using a product
multinomial (PM) distribution parameterized by a 4-by-
wmatrix? (27). We call the repeat pattern, represented by
?, the sequence motif of the tandem repeats, where
?=[�1, �2, . . . , �w] and �i=(yi,1,yi,2,yi,3,yi,4)

T representing
the proportion of the four nucleotides fA,T,C,G} at the
i-th position of the repeat unit. These parameters satisfy
that

P
j �i;j ¼ 1 and yi,j� 0 for all i, j. The nucleotides in

the background region are modeled as independent
samples from the multinomial distribution parameterized
by �0, where �0= (y0,1,y0,2,y0,3,y0,4)

T representing the pro-
portion of the four nucleotides fA,T,C,G} at the positions
outside the repeat region.

As shown in Figure 1, we assume that the input
sequence is generated in three steps. We first use �0 to
generate a background sequence, i.e. the non-repeat
region with length Lb. In the second step, we sample the
number of repeat segments G from a random distribution
and then construct the G repeat segments. To model the
repeat segments, we introduce a vector
K=(k1, k2, . . . , kG)

T, where kg is a random variable
indicating the number of repeat units in the g-th
segment. Each repeat unit in the repeat segments is inde-
pendently sampled from the PM distribution
parameterized by ?. Finally, we randomly choose G dif-
ferent positions from the background sequence and insert
the G repeat segments into it. We denote the final loca-
tions of the G repeat segments in the final sequence R of
length L ¼ Lb þ

P
g kgw as A=(a1, a2, . . . , aG)

T, where
1� ag�L�w+1.
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This generating procedure avoids the overlapping and
adjacency between different repeat segments. The output
of this three-step procedure is a sequence R of length L,
which includes G tandem repeat segments composed of
instances of the same motif matrix ?.

Statistical inference

For the input sequence R, which is the only observed data,
we are interested in estimating all parameters
f�0,?,A,K,G}. At this stage, we assume that the width
of repeat unit w is given in advance. We use a Bayesian
method to detect the tandem repeat segments modeled in
the previous section. The joint posterior distribution of all
parameters p(�0,?,A,K,GjR) will be used to make statis-
tical inference.

Likelihood and prior distributions
For each tandem repeat segment, the starting position
and the number of repeat units are used to characterize
it. We denote the g-th segment as S(ag, kg), where
Sðag; kgÞ ¼ fragþj : 0 � j � kgw� 1g. Let RTR(i) denote the
set of the i-th nucleotides of all repeat units and RTR
denote the set of nucleotides in the non-repeat region.
For convenience, we define the following indicator
function I: I(r,*)=1 if r is equal to *; otherwise,
I(r,*)=0. Here * takes a value from fA,T,C,G}. We intro-
duce a counting function H such that
H(F)= (hA,F, hT,F, hC,F, hG,F)

T, where F is any set of nu-
cleotides and h�;F ¼

P
r2F Iðr; �Þ. For any vectors

l=(m1, . . . , md)
T and l=(n1, . . . , nd)

T, we define that
l+l=(m1+n1, . . . ,md+nd)

T, ll=(m1
n1, . . . , md

nd)T, and
j��j ¼

Qd
i¼1 �i

�i . With these notations, the complete like-
lihood can be factorized into a product of probabilities for
the repeat region and the non-repeat region as follows:

�ðRj�0;?;A;K;GÞ ¼ j�
HðR

TR
Þ

0 j
Yw
i¼1

j�
HðRTRðiÞÞ

i j:

Let p(�) denote the prior distribution of a parameter. We
specify the prior for ? and �0 independent of other par-
ameters. Thus, we can decompose the prior for
f�0,?,A,K,G} as

pð�0;?;A;K;GÞ ¼ pð�0Þpð?ÞpðGÞpðKjGÞpðAjK;GÞ:

For computational convenience, we use conjugate
priors for �i, i.e. a Dirichlet (Dir) distribution with param-
eter �i. We denote B=[�1,�2, . . . ,�w], where each �i is
associated with an 4-by-1 vector �i. The parameter ?
therefore follows a product Dirichlet (PD) distribution
parameterized by the matrix B, i.e. ?�PD (B).

Similarly we assume �0�Dir (�0). We further assume G
takes integer values from Gmin to Gmax with equal prob-
ability. That is, G follows a discrete uniform (DU) distri-
bution, which is denoted as G�DU [Gmin,Gmax].
Similarly we assume kg�DU [kmin, kmax].
To avoid the overlap and adjacency between the

different tandem repeat segments and guarantee the
identifiability, we require that maxf1; ag�1 þ kg�1wþ 1g
� ag � minfagþ1 � kgw� 1;L� kGwþ 1g. In practice,
there is little prior knowledge about A. Given K and G,
we assume that A is evenly distributed on all possible

choices. Thus we have pðAjK;GÞ ¼
L�
PG

g¼1
kgwþ1

G

� ��1
.

Given G, we assume that the elements of K are mutually
independent, i.e. pðKjGÞ ¼

QG
g¼1 pðkgÞ, where p(kg)=1/

(kmax� kmin+1). Thus, we get the prior for all interested
parameters as

pð�0;?;A;K;GÞ

¼ pð�0Þpð?ÞpðGÞ
L�

PG
g¼1 kgwþ 1

G

 !�1YG
g¼1

pðkgÞ:

The formula implies that the prior p(�0,?,A,K,G) varies
with �0, ?, kg and G, but not with the specific values in A.
We can now write down the full posterior probability as

�ð�0;?;A;K;GjRÞ / pð�0;?;A;K;GÞ�ðRj�0;?;A;K;GÞ

¼

Qw
i¼0 Dirð�iÞ�ðGþ 1Þ�ðL�

PG
g¼1 kgwþ 2� GÞ

ðGmax � Gmin þ 1Þ�ðL�
PG

g¼1 kgwþ 2Þ

�
j�

HðR
TR
Þ

0 j
Qw

i¼1 j�
HðRTRðiÞÞ

i j

ðkmax � kmin þ 1ÞG
:

ð1Þ

Sampling from posterior distribution
Our MCMC algorithm is composed of three steps. We
first use a Gibbs sampling algorithm to explore the pos-
terior distribution when G is given. Then, we use
RJMCMC to update G. Two versions of RJMCMC are
designed and compared. Finally, we will discuss extra
moves to further improve the efficiency of the sampling
algorithm.

Gibbs sampling when G is given. The joint posterior distri-
bution of �0, ?, A and K, while R and G are given, can be
explored by a Gibbs sampling algorithm. We iteratively
sample all our interested parameters except G via corres-
ponding conditional posterior probability as follows.

Figure 1. A schematic view of a sequence with DSATR. A background sequence and multiple repeat segments are generated independently.
All repeat units in these repeat segments are random instances of a common motif ‘b’ of width w. The input sequence is generated by randomly
inserting the repeat segments into separated locations in the background sequence.
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We can obtain the conditional posterior distribution of ?
from the full posterior probability as follows

�ð?jR; �0;K;A;GÞ /
Yw
i¼1

j�
HðRTRðiÞÞþ�i
i j: ð2Þ

Here a conjugate prior ?�PD (B) leads to the condi-
tional posterior distribution ?jR, �0, K, A,G�PD
(Q+B), where Q=[H(RTR(1)), H(RTR(2)), . . . ,H(RTR(w))].
Similarly, we derive the conditional posterior distribution
of �0

�ð�0jR;?;A;K;GÞ / j�
HðR

TR
Þþ�0

0 j: ð3Þ

Let A[�g] and K[�g] denote all elements of A excluding ag
and all elements of K excluding kg, respectively. As
pointed out previously, the prior p(�0,?,A,K,G) keeps
invariant as we update ag. Thus, we obtain the following
conditional posterior distribution for ag

�ðagjR; �0;?;K;A½�g	;GÞ

¼
�ðRj�0;?;A½�g	; ag;K;GÞPminfagþ1�kgw�1;L�kGwþ1g

b¼maxf1;ag�1þkg�1wþ1g
�ðRj�0;?;A½�g	; b;K;GÞ

;

ð4Þ

where maxf1; ag�1 þ kg�1wþ 1g � ag � minfagþ1
�kgw� 1;L� kGwþ 1g. It is important to note that the
conditional prior p(AjK,G) may change as we update kg.
Thus we obtain the conditional posterior distribution
for kg

�ðkgjR; �0;?;K½�g	;A;GÞ

/ �ðRj�0;?;K½�g	; kg;A;GÞpðAjK;GÞ;
ð5Þ

where kg takes value from [kmin, kmax].

RJMCMC for updating G. In contrast to other param-
eters, the updating procedure for G will give rise to the
change of the dimensions of A and K, which leads to a
Bayesian model selection problem. Let MG= fA,K}
indicate that both A and K contain G elements. We
present a RJMCMC algorithm which aims to sample G
and MG from the conditional posterior distribution
p(G,MGj�0,?,R). To impose the dimension matching,
auxiliary random variables are introduced to propose
new repeat segments in the jumping process. The main
difficulty in RJMCMC algorithm is how to effectively
propose the new segments, i.e. auxiliary variables. Two
different versions, namely vanilla and piloted, of the
proposal distribution for auxiliary variables are
proposed in Section 1 of Supplementary Materials. Since
the vanilla RJMCMC has the drawback of slow conver-
gence, we introduce a so-called piloted RJMCMC by con-
structing the transdimensional move based on
one-step-ahead prediction. More specifically, the piloted
version takes advantage of the relationship between the
input sequence and the current motif model ? to
propose auxiliary variables. We conclude theoretically
that the acceptance rate (i.e. the expected acceptance prob-
ability) of the piloted version is larger than that of the
vanilla version. Since the major hindrance of RJMCMC

from wide applications is its rather slow move around the
state space, the increased acceptance rate will then gener-
ally improve the convergence rate of the RJMCMC chain.
An experimental verification of this point will be given
later. The details of RJMCMC are given in Section 1 of
Supplementary Materials.

The Gibbs sampling procedure for updating (�0,?,A,K)
and the RJMCMC step for updating G compose the basic
MCMC algorithm for computing our DSATR model.
Many factors can affect the efficiency of a MCMC algo-
rithm, such as the high correlation between parameters.
We design three extra MCMC moves, namely a local
group move, a global group move and a phase-shift
move, to improve the mixing of the Markov chain. The
details of these moves are given in Section 2 of the
Supplementary Materials. A summary of the complete
algorithm is provided in Section 3 of the Supplementary
Materials. It clearly listed all inputs, outputs, tuning par-
ameters and the detailed procedure of the algorithm.

RESULTS

We have implemented two versions of our complete algo-
rithm in Matlab. The only difference between these two
versions is the RJMCMC step, namely the vanilla and
piloted versions. To evaluate the model and the algorithm,
we apply the proposed algorithm to both synthetic and
real data. We will discuss our experiment results and
evaluate the performance of our algorithm in terms of
convergence and accuracy.

Evaluation and comparison of the two RJMCMC versions
using synthetic data

The synthetic sequence with DSATR, which is generated
according to the generative model introduced in previous
section, is used to compare the performance of two
versions in Section 4 of Supplementary Materials. In
summary, the piloted version outperforms the vanilla
version in terms of convergence speed, the acceptance
rate for the RJMCMC moves and the effective sample
size within the same number of iterations. But for the
accuracy of the statistical inference, they show a similar
performance after a sufficient number of iterations.

Comparison with existing methods using synthetic data

Some existing methods can be used to detect DSATR
although not specifically designed for this purpose. For
a comparison with our algorithm, we tested three widely
used methods using synthetic data, including TRF, GMS
and RepeatMasker. As non-probabilistic algorithms, both
TRF and RepeatMasker construct an explicit alignment
score to evaluate a sequence segment and use the score to
decide whether to report it as a repeat segment. We
explain their scoring functions in Section 4.2.1 of
Supplementary Materials.

Synthetic data from the generative model
We begin by defining the signal strength of repeat
segments. Here, the signal strength is measured by the
degree of conservation of the motif matrix ?. According
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to the probability of the dominant nucleotide (39), we
define the degree of conservation as high, median or
low. Nine data sets of inputs data are generated according
to different width (3,6,9) and different signal strength
(High, Median and Low) to compare these methods
more comprehensively. Here, each data set contains 100
independent synthetic sequences with 5000 nucleotides.

We run our algorithm and the three other programs
once on each of the 900 synthetic sequences. To favor
the three other programs, we set them as follows. For
RepeatMasker, since it needs a repeat library in order to
detect corresponding repeats, the dominant nucleotides in
each column of motif matrix are selected to build the sole
consensus pattern for its repeat library. In other words,
RepeatMasker is favored by knowing the true consensus
pattern in the input data. This guarantees the high speci-
ficity for RepeatMasker. Meanwhile, we set the minimum
report score for TRF as 20 (the default value is 50) and the
cutoff of RepeatMasker as 100 (the default value is 225) to
increase their sensitivities. To favor these three existing
methods, we compare the results from all the methods at
the nucleotide level. Each nucleotide in the given sequence
is labeled as either in repeat region or in background
region. The sensitivity is defined as the proportion of
true repeat-region nucleotides that are correctly identified,
and the specificity is defined as the proportion of the
reported repeat-region nucleotides that are true
repeat-region nucleotides. More details for the setting of
GMS, RepeatMasker and TRF are listed in Section 4 of
the Supplementary Materials. In addition, the detailed
scoring functions for RepeatMasker and TRF and an

experiment for a single sequence with detailed discussion
on the sequences are also presented in Section 4 of the
Supplementary Materials. For both versions of our
RJMCMC algorithm, we run them separately for 3000
iterations with the same prior setting and tuning
parameters.
The results are reported in Table 1. It summarizes the

sensitivity and specificity of these algorithms on the nine
different motif matrixes. Each cell of the table shows the
corresponding mean and standard deviation (in the
bracket) of the sensitivity or specificity calculated from
the 100 different synthetic sequences. In some cases,
GMS, RepeatMasker and TRF did not report any
repeat elements, therefore the corresponding specificities
are not defined.
Table 1 shows that all our algorithms have better per-

formance than GMS for all signal strength and motif
width. Since GMS does not make use of the local enrich-
ment of repeat units, it often misses some repeat units of a
repeat segment, or even reports only one repeat unit for
one repeat segment. Also, the performance of GMS is
heavily dependent on the motif width and conservation
level. Although our algorithms are able to offset the
short width and low conservation of the motif matrix by
profiting from the local clustering effect of repeat units.
Although RepeatMasker and TRF are favored by

knowing true repeat consensus sequences or high-
sensitivity setting, our algorithms generally outperform
TRF and RepeatMasker by either better sensitivity at
similar specificity, or both better sensitivity and specificity.
The advantage of our algorithms is more obvious for short

Table 1. Performance comparison on synthetic data sets from the generative model

w Conservation GMS (Std.) RepeatMaskera (Std.) TRF (Std.) Vanilla (Std.) Piloted (Std.)

Sensitivity 3 High 0.258(0.379) 0.966(0.041) 0.967(0.061) 0.976(0.028) 0.980(0.028)
Specificity 3 High 0.597(0.048)b 0.931(0.046) 0.896(0.080) 0.967(0.025) 0.969(0.022)
Sensitivity 3 Median 0.000(0.000) 0.724(0.145) 0.662(0.175) 0.918(0.059) 0.920(0.062)
Specificity 3 Median –c 0.936(0.047) 0.932(0.058) 0.937(0.040) 0.944(0.033)
Sensitivity 3 Low 0.000(0.000) 0.232(0.179) 0.241(0.173) 0.771(0.122) 0.782(0.125)
Specificity 3 Low –c 0.952(0.064)d 0.908(0.141)e 0.907(0.061) 0.905(0.061)
Sensitivity 6 High 0.922(0.026) 0.993(0.010) 0.993(0.009) 0.959(0.073) 0.991(0.010)
Specificity 6 High 0.848(0.037) 0.960(0.024) 0.837(0.104) 0.982(0.014) 0.984(0.014)
Sensitivity 6 Median 0.634(0.049) 0.942(0.051) 0.871(0.100) 0.959(0.046) 0.976(0.020)
Specificity 6 Median 0.790(0.050) 0.965(0.025) 0.906(0.074) 0.976(0.019) 0.977(0.019)
Sensitivity 6 Low 0.192(0.106) 0.310(0.176) 0.216(0.125) 0.901(0.063) 0.909(0.054)
Specificity 6 Low 0.603(0.114)f 0.977(0.034)e 0.900(0.121)g 0.948(0.033) 0.952(0.033)
Sensitivity 9 High 0.989(0.010) 0.976(0.015) 0.998(0.002) 0.953(0.069) 0.988(0.011)
Specificity 9 High 0.959(0.024) 0.983(0.012) 0.763(0.126) 0.988(0.010) 0.989(0.010)
Sensitivity 9 Median 0.804(0.039) 0.954(0.026) 0.937(0.080) 0.944(0.079) 0.981(0.023)
Specificity 9 Median 0.883(0.047) 0.981(0.017) 0.882(0.078) 0.984(0.016) 0.984(0.017)
Sensitivity 9 Low 0.399(0.049) 0.456(0.151) 0.302(0.164) 0.944(0.045) 0.944(0.037)
Specificity 9 Low 0.738(0.077) 0.984(0.021) 0.961(0.057)h 0.963(0.022) 0.965(0.024)

Note: Each cell of the table shows the corresponding mean and standard deviation (in the bracket) of the sensitivity or specificity calculated from the
100 different synthetic sequences.
aThe true consensus is given as the sole repeat pattern in RepeatMasker library, so this comparison favors RepeatMasker.
b68 trails did not report any repeat element.
cAll trails did not report any repeat element.
d18 trails did not report any repeat element.
e4 trails did not report any repeat element.
f17 trails did not report any repeat element.
g5 trails did not report any repeat element.
h1 trail did not report any repeat element.
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and divergent repeat segments. This is because both TRF
and RepeatMasker, as window-based local search
methods, cannot integrate the signal from multiple
repeat segments. Therefore, the weak signal in individual
repeat segments, when treated mutually independently, is
likely to be missed by window-based methods. Another
drawback of TRF is its incapability in handling the
phase-shift between different repeat segments. In
addition, we present a synthetic sequence experiment
with detailed repeat units to illustrate that the gained ef-
ficiency of our algorithm is due to the more efficient
modeling and computing, rather than due to different
repeats definitions in algorithms, in Section 4.2.2 of
Supplementary Materials.

Synthetic data from the coalescent model
To evaluate our algorithm on more realistic data instead
of the data purely generated from our generative model,
we also used a coalescent model (40–42) to produce a
second version of the synthetic data for testing. The
details are given in Section 5 of Supplementary
Materials. The coalescent model considers the relations
between different repeat segments and the mutation for
short tandem repeats at both repeat unit and nucleotide
levels. The results (see Table S2 in the Supplementary
Materials) indicate that our algorithm still outperforms
other methods on the data from the coalescent model.

Real data experiment

A real DNA sequence may contain more than one repeat
pattern, which will result in multiple local modes in the

posterior distribution. Thus we run multiple independent
chain from random initial parameter values for real data
and report the overall maximum a posteriori (MAP)
estimate.

Another concern about the real data is the existence of
indels, which has not been directly handled in our algo-
rithm so far because of the lack of experimental know-
ledge support and technical difficulty. However, our
current algorithm can accommodate indels to certain
extent due to two reasons. On one hand, since the indels
rate in repeat segments is much lower than the substitution
rate, the main repeat region and motif matrix can be
identified fairly well by our current algorithm without
handling indels. On the other hand, if a repeat unit with
indels exists in the middle of a repeat segment, our current
algorithm can simply treat this repeat unit as background
nucleotides and detect the remaining part as two repeat
segments. But in case the user prefers reporting the repeat
units with short indels, just like what TRF and
RepeatMasker do using a special indel step, we also
designed a post-processing step to glean repeat units
with short indels. The details of the post-processing step
are given in Section 6 of Supplementary Materials.

For comparison, a list of real genomic segments from
different species are sampled from the Pre-Masked
Genomes in RepeatMasker website (http://www
.repeatmasker.org/cgi-bin/AnnotationRequest, 21 June
2012, date last accessed).

The detailed settings of the programs are given in
Section 6 of Supplementary Materials. The results are
summarized in Table 2. Since no ground truth about the

Table 2. Pairwise comparison of RepeatMasker, TRF and our algorithm on real data

Data and consensus pattern Algorithm A Algorithm B (reference) (%) The percentage of tested
sequence classified as
repeat region (%)

Piloted version TRF RepeatMasker

V1a V2b

Chimp (panTro2) V1 – 90.41 89.43 90.09 1.32
ChrY 1120001- V2 100 – 94.27 99.55 1.46
1140000 TRF 76.89 73.29 – 79.73 1.14
(CA)n RepeatMasker 75.76 75.68 77.97 – 1.11

Dog (Broad/canFan2) V1 – 93.22 91.93 93.69 57.60
Chr1 3160001- V2 100 – 98.70 99.33 61.79
3170000 TRF 98.49 98.58 – 98.54 61.71
(CGAAT)n RepeatMasker 94.57 93.46 92.84 – 58.14

Human (hg19) V1 – 93.33 92.68 89.47 1.26
Chr2 201650001- V2 100 – 97.56 92.11 1.35
201670000 TRF 30.16 29.63 – 19.30 0.41
(CA)n RepeatMasker 80.95 77.78 53.66 – 1.14

Rat (rn3) V1 – 100 99.20 95.51 2.35
Chr17 24340001- V2 100 – 99.20 95.51 2.35
24350000 TRF 52.77 52.77 – 51.02 1.25
(TCCTA)n RepeatMasker 99.57 99.57 100 – 2.45

Zebrafish (danRer6) V1 – 93.88 92.64 89.89 2.05
Chr13 24220001- V2 100 – 95.84 96.02 2.18
24250000 TRF 94.30 91.59 – 92.50 2.08
(TA)n RepeatMasker 95.60 95.87 96.64 – 2.18

aV1: Piloted version.
bV2: Piloted version with post-processing.
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repeat pattern and locations in the real data are known,
the sensitivity and specificity are not well defined here.
Thus this experiment can only provide pairwise coverage
comparisons instead of a systematic performance com-
parison. Each cell in Table 2 represents the proportion
of repeat segments identified by the corresponding
column algorithm (Algorithm B) that are also identified
by the corresponding row algorithm (Algorithm A). Thus,
the paired cells (i,j) and (j,i) can demonstrate the consist-
ency between the i-th and j-th algorithms.

The results showed that the post-processing step
expanded the reported repeat regions and therefore
increased the consistency between our algorithms and
other methods. But generally there is a slight inconsistency
among the results of different algorithms in most of
examples because of the difference in the scoring func-
tions of all three algorithms. RepeatMasker and TRF
may differ significantly, e.g. for Human Chr2
201650001-201670000. Our algorithm agreed well with
either RepeatMasker or TRF on all cases. The missed
repeat units in the results of our algorithm as compared
with other methods are mostly due to the occurrence of
indels. This is an empirical proof that the lack of indel
treatment in our generative model does not seriously
hinder the search of the motif pattern and the main
repeat segments.

Comparing with TRF and RepeatMasker, the main ad-
vantage of our algorithm is that, relying on the motif
matrix, our algorithm will collect the information from
the whole sequence which makes our algorithm to be sen-
sitive to the case where multiple tandem repeat segments
with the same motif pattern are dispersively distributed in
a sequence. A detailed comparison of our algorithm with
TRF and RepeatMasker, in terms of modeling and
computing, is presented in Section 4.2.2 of
Supplementary Materials.

DISCUSSION

Based on a matrix representation of the tandem repeat
pattern, we built a probabilistic model for sequences
with DSATR and introduced a de novo Bayesian
approach to detect both the repeat pattern and the
repeats locations. MCMC algorithms, including Gibbs
sampler, M-H and RJMCMC, are used to estimate all
parameters in the model. As to our knowledge, this
article might be the first to use RJMCMC for repeat de-
tection in biological sequences.

Although MCMC methods are appealing for exploring
complex posterior distributions, it is always a concern that
the MCMC chain will be trapped in some local modes. We
used group moves for highly correlated parameters, such
that the chains move more globally to avoid being trapped
in local modes.

To tackle the unknown number of repeat segments in a
full Bayesian way, we used RJMCMC to jump between
models of different dimensions, which allowed the poster-
ior probability to speak up and search for the number of
repeat segments within one single MCMC chain. Two
versions of our RJMCMC algorithms are introduced.

Both theoretical analysis and computational experiments
showed that the piloted version significantly increased the
efficiency upon the vanilla version. Comparing with
existing methods which can be used for DSATR identifi-
cation, our RJMCMC algorithm outperforms GMS and
TRF in terms of both sensitivity and specificity, and
appears more sensitive than RepeatMasker for the syn-
thetic sequences even if RepeatMasker is given with the
true consensus pattern. Similar to GMS, we did not
consider indels in our main algorithm, but a post-
processing step for indels was applied as an auxiliary
part to detect the possible repeat units with indels. The
real data experiments suggest that our main algorithm is
suitable for searching the main repeat region and the motif
matrix of DSATR, and the post-processing step efficiently
detects the nearly repeat units with indels.
Once we generalized the motif model to detect tandem

repeats, many previous works on motif discovery can be
adapted to address related problems in tandem repeat
studies. For example, Gupta and Liu (43) and Jensen
et al. (30) discussed how to learn the motif width from
the data. One possible extension of our current DSATR
detection algorithm is to relax the fixed motif width by
placing a prior on w and then update w via one more
RJMCMC step. Another natural extension of the
current work would be the application of the algorithm
on multiple input sequences which share the same tandem
repeat pattern. Future studies may also consider indels in
the generative model to improve the performance on this
aspect.
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