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Electrocardiographic Imaging of 
Repolarization Abnormalities
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BACKGROUND: Dispersion and gradients in repolarization have been associated with life- threatening arrhythmias, but are dif-
ficult to quantify precisely from surface electrocardiography. The objective of this study was to evaluate electrocardiographic 
imaging (ECGI) to noninvasively detect repolarization- based abnormalities.

METHODS AND RESULTS: Ex vivo data were obtained from Langendorff- perfused pig hearts (n=8) and a human donor heart. 
Unipolar electrograms were recorded simultaneously during sinus rhythm from an epicardial sock and the torso- shaped tank 
within which the heart was suspended. Regional repolarization heterogeneities were introduced through perfusion of dofeti-
lide and pinacidil into separate perfusion beds. In vivo data included torso and epicardial potentials recorded simultaneously in 
anesthetized, closed- chest pigs (n=5), during sinus rhythm, and ventricular pacing. For both data sets, ECGI accurately recon-
structed T- wave electrogram morphologies when compared with those recorded by the sock (ex vivo: correlation coefficient, 
0.85 [0.52– 0.96], in vivo: correlation coefficient, 0.86 [0.52– 0.96]) and repolarization time maps (ex- vivo: correlation coefficient, 
0.73 [0.63– 0.83], in vivo: correlation coefficient, 0.76 [0.67– 0.82]). ECGI- reconstructed repolarization time distributions were 
strongly correlated to those measured by the sock (both data sets, R2 ≥0.92). Although the position of the gradient was slightly 
shifted by 8.3 (0– 13.9) mm, the mean, max, and SD between ECGI and recorded gradient values were highly correlated 
(R2=0.87, 0.75, and 0.86 respectively). There was no significant difference in ECGI accuracy between ex vivo and in vivo data.

CONCLUSIONS: ECGI reliably and accurately maps potentially critical repolarization abnormalities. This noninvasive approach 
allows imaging and quantifying individual parameters of abnormal repolarization- based substrates in patients with arrhythmo-
genesis, to improve diagnosis and risk stratification.

Key Words: ECG ■ electrocardiographic imaging ■ electrocardiography ■ electrophysiology mapping ■ repolarization

See Editorial by Rudy

Diagnosis, risk stratification, and prevention of life- 
threatening arrhythmias of unknown origin are major 
challenges of present- day cardiology. Repolarization 

heterogeneities likely play an important role in primary 
electrical diseases, although their detection and quantifi-
cation, relying on invasive procedures, are difficult.

Noninvasive electrocardiographic imaging (ECGI) 
is a tool to noninvasively map epicardial electro-
grams and reconstruct activation and repolarization 

maps using high- density body surface potentials 
and 3- dimensional imaging of the heart and torso.1,2 
ECGI has been applied for repolarization mapping in 
patients3– 6 and has demonstrated the presence of 
(1) steep repolarization gradients and (2) abnormally 
prolonged or abbreviated repolarization, compared 
with normal subjects, as well as the dynamic of these 
anomalies under stress. Although these findings are 
highly relevant for identifying the exact mechanisms 
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leading to sustained ventricular arrhythmias in pri-
mary electrical disease, the exact value of ECGI in 
establishing a quantitatively correct representation 
of repolarization heterogeneities is unknown. This 
is particularly important given recent work demon-
strating the large discrepancies between ECGI and 
contact mapping in patients with conduction- based 
abnormalities.7 To date, there has been no experi-
mental or clinical validation of ECGI in the presence 
of repolarization- based abnormalities, nor in the abil-
ity to reconstruct potentially critical repolarization 
gradients.

In this study, we evaluate for the first time the ac-
curacy of ECGI in the presence of steep repolarization 
gradients using a completely experimental approach, 
including human and pig hearts in an ex vivo torso tank 
model. To determine how this accuracy translates to 

clinical application, we have further compared these re-
sults to evaluations of ECGI using data from healthy in 
vivo pigs in sinus rhythm and during ventricular pacing.

METHODS
The experimental data used in this study are available 
from the corresponding author upon reasonable re-
quest. A subset of the data are available through the 
Experimental Data and Geometric Analysis Repository8 
and can be accessed at https://edgar.sci.utah.edu/.

Ex Vivo Tank Data
Ex vivo experiments were carried out in accordance 
with institutional guidelines and the recommenda-
tions of the Directive 2010/63/EU of the European 
Parliament on the protection of animals used for scien-
tific purposes and approved by the local ethical com-
mittee of Bordeaux CEEA50. Procurement and use of 
human donor hearts were approved by the National 
Biomedical Agency and in a manner conforming to the 
Declaration of Helsinki.

Hearts were excised from male pigs (n=8; 30– 40 kg) 
and transported in an ice- cold cardioplegic solution 
to the laboratory. One human donor heart was used 
from a 76- year- old woman who died of ischemic stroke 
with a history of hypertension. Hearts were perfused 
in Langendorff mode with a 1:9 mixture of blood and 
Tyrode’s solution (Tyrode’s solution only for the human 
heart), oxygenated with 95%/5% O2/CO2 (pH 7.4, 37°C). 
The left anterior descending artery (LAD) was cannu-
lated on a separate perfusion from the aorta. An epicar-
dial electrode sock (108 electrodes, 8– 14 mm spacing) 
was attached to the ventricles. After instrumentation, the 
hearts were transferred to a human torso– shaped tank 
fitted with electrodes (256 electrodes, 30– 60 mm spac-
ing) filled with Tyrode’s (Figure 1B). Regional repolariza-
tion heterogeneities were introduced through perfusion 
of dofetilide (250  nmol/L) into the aorta and subse-
quently pinacidil (30 μmol/L) into the LAD. Torso and 
sock potentials were simultaneously recorded (BioSemi, 
Amsterdam, the Netherlands) during sinus rhythm at 
baseline and in each drug state. All signals were sampled 
at 2 kHz, bandlimited (0.05– 1000 Hz), and referenced to 
an electrode on the lower abdomen. Three- dimensional 
rotational fluoroscopy (Artis; Siemens, Munich, Germany) 
was used to obtain subject- specific epicardial surface 
meshes and electrode locations.

In Vivo Data
In vivo data have previously been described,9 
were carried out in accordance with institutional 
guidelines, and were approved by the Animal 
Ethics Committee of the University of Auckland 

CLINICAL PERSPECTIVE

What Is New?
• This study confirms for the first time that elec-

trocardiographic imaging can be used to 
accurately detect repolarization- based abnor-
malities, including global prolongation/abbrevia-
tion and dispersion, as well as local regions of 
abnormal repolarization and gradients though 
with minor spatial inaccuracies.

• The strong correspondence seen between 
electrocardiographic imaging results for ex vivo 
hearts in a drug- free state and the in vivo hearts 
suggest that the results from this study can be 
translated to a clinical setting, allowing repo-
larization time abnormalities to be studied with 
electrocardiographic imaging in patients to help 
understand the mechanisms underlying many 
electrical diseases, though interpretation of the 
results should take into consideration the spatial 
inaccuracies highlighted in this study.

What Are the Clinical Implications?
• Electrocardiographic imaging reconstructions 

are also consistent and stable on a beat- to- beat 
basis, meaning the dynamic of repolarization 
anomalies could be accurately assessed at rest 
and under stress.

Nonstandard Abbreviations and Acronyms

CC correlation coefficient
ECGI electrocardiographic imaging
MAE mean absolute error
RT repolarization times
ΔRT repolarization time gradient

https://edgar.sci.utah.edu/
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and conform to the Guide for the Care and Use of 
Laboratory Animals (National Institutes of Health 
publication no. 85- 23). In brief, a midline ster-
notomy was performed in healthy, anesthetized 
female pigs (n=5; 30– 40  kg). The heart was ex-
posed and supported in a pericardial cradle. An 
electrode sock was placed over the ventricles 
(239 electrodes, 5– 10  mm spacing). The thorax 
was closed and air expelled. Flexible strips (184 
electrodes, 30– 45 mm spacing) were attached to 
the torso (Figure 1A). Epicardial and body- surface 
potentials were recorded simultaneously during (1) 
sinus rhythm and (2) pacing from endocardial leads 
or sock electrodes. All signals were sampled at 
2 kHz, bandlimited (0.05– 1000 Hz), and referenced 
to an electrode on the lower abdomen. Magnetic 
resonance imaging was performed postmortem to 
obtain subject- specific epicardial surface meshes 
and torso electrode locations. Epicardial electrode 
locations were captured from excised hearts with a 
multiaxis digitizing arm (FARO Technologies, Lake 
Mary, FL). Magnetic resonance imaging contrast 
markers placed on the sock were localized and 
used to register sock electrode locations.

Signal Processing and Comparisons
Torso potentials were filtered using a 40- Hz low- pass 
filter, and the isoelectric point before the P- wave was 

set to 0. ECGI unipolar electrograms were recon-
structed from torso potentials to subject- specific epi-
cardial meshes using a homogeneous torso model 
and previously described methods10 for both ex vivo 
and in vivo data. Analysis using alternative methods 
demonstrated that these were the optimal potential- 
based methods to use (Figure S1, Table S1).

Quantitative evaluation of ECGI electrogram T- wave 
morphology was performed using a Pearson’s cor-
relation coefficient (CC) against corresponding sock 
recorded electrograms (gold standard). Repolarization 
times (RTs) were defined from recorded and ECGI 
electrograms as the time of maximum T- wave ups-
lope11 relative to the QRS onset. Repolarization gra-
dients (ΔRTs) were computed as the difference in RT 
between 2 adjacent electrodes divided by the distance 
between them.3– 5 ECGI RTs and ΔRTs were compared 
against sock recordings using CC and the mean abso-
lute error (MAE). In addition, RT and ΔRT distributions 
were compared using a simple linear regression with 
the metrics in Table.

An extra sum- of- squares F- test was used to com-
pare the fit of individual curves with the fit of a single lin-
ear regression model to in vivo and ex vivo data (Prism 
7.04, GraphPad Software, La Jolla, CA). The square of 
the correlation coefficient between observed and pre-
dicted values (R2) and the SD of the residuals were com-
puted. Significance of differences was tested between 
ex vivo and in vivo data using a Student t test, and 

Figure 1. (A) In vivo and (B) ex vivo experimental setups. 
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between human and pig hearts using a 1- way ANOVA 
with a Dunn’s correction. Statistical significance was 
defined as P<0.05. Data are expressed as mean±std 
(SD over all ΔRTs representing the dispersion of local 
ΔRTs) or median [upper quartile– lower quartile].

RESULTS
Ex Vivo ECGI
Local T- Wave Morphology and RTs

Figure  2 presents recorded (top) and ECGI (bot-
tom) epicardial electrograms with RTs (vertical lines) 
at electrodes marked on the recorded RT map for a 

representative experiment in sinus rhythm during dofe-
tilide and pinacidil perfusion. Electrograms are pre-
sented at (1) baseline (blue) with no drug perfusion, (2) 
with dofetilide- only (green) perfusion in non- LAD coro-
naries, and (3) with the additional perfusion of pinacidil 
(red) in the LAD (white dashed line), creating a sharp 
transition from early to late repolarization between the 
perfusion beds.

In this experiment, ECGI accurately captured the 
timing of the T- wave upstroke in the early (electrodes 
3, 4, and 7) and late recovery regions (electrodes 1 and 
9), and their shortening and delay during drug perfu-
sion. Electrograms from the transition regions (bipha-
sic T waves) were accurately captured in a few areas 

Table. Metrics Used to Evaluate RT and ΔRT Distributions

Metric Definition

Mean RT The mean overall RT representing global prolongation/abbreviation in recovery

Std RT The SD over all RT representing the whole- heart dispersion in recovery

Total RT dispersion The RT range representing the whole- heart dispersion in recovery

Peak timings The timing of the peaks of a kernel probability distribution fitted to RT histograms using a bandwidth of 
7 ms, representing the whole- heart dispersion in recovery

MeanΔRT The mean overall ΔRT representing the presence/absence of local ΔRTs

stdΔRT The SD over all ΔRT representing the dispersion of local ΔRTs

MaxΔRT The maximum ΔRT value representing the presence/absence of local ΔRTs

RT indicates repolarization time; and ΔRT, repolarization time gradient.

Figure 2. Recorded (top) and ECGI reconstructed (bottom) epicardial electrograms with repolarization times (vertical lines) 
for a representative case using torso tank data.
Electrograms are presented for electrodes marked on the recorded repolarization map during dofetilide+pinacidil perfusion, at (1) 
baseline (blue) with no drug perfusion; (2) with dofetilide- only (green) perfusion in non- LAD coronaries, which prolongs RT; and (3) 
with the additional perfusion of pinacidil (red) in the LAD (white dashed line) which shortens RT. ECGI indicates electrocardiographic 
imaging; LAD, left anterior descending artery; and RT, repolarization time.
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(eg, electrode 8). However, in general, they showed 
lower morphologic similarity to recorded electrograms. 
For example, the early repolarizing electrode 4 is well 
reconstructed, but at electrodes 5 and 6, near the gra-
dient border, inaccurate T- wave morphology with 2 up-
strokes were reconstructed. This transition could also 
be seen as a flattening of the T wave (eg, electrode 2). 
In these cases, RT estimation may be less reliable.

Recorded RT maps for this experiment (Figure 3A) 
demonstrated early repolarization in the LAD perfu-
sion bed at baseline, and late repolarization elsewhere. 
With dofetilide- only perfusion, RTs were prolonged 
outside the LAD perfusion bed by 55±13  ms. With 
additional pinacidil perfusion, RTs were abbreviated 
in the LAD region by 47±23 ms. ECGI RT maps cor-
responded well to those recorded, capturing the 
general timing and location of the early and late repo-
larization regions (CC, 0.88, 0.79, and 0.86; MAE, 8, 
19, and 22 ms). However, the early repolarizing region 
was slightly overestimated in size. Despite this, the 
gradient from early to late recovery appeared to be 
accurately captured.

Kernel probability distributions fitted to recorded RT 
histograms (Figure 3B) showed a distribution with 2 peaks 
(white squares), reflecting the regions of early and late RT. 
With drug perfusion, the peaks separate (red arrow), re-
flecting the increased global dispersion of repolarization. 
Visually, ECGI distributions closely matched those re-
corded, in terms of number and timings of peaks.

One- to- one comparison of T- wave morphologies and 
RTs across all ex- vivo data in all drug states shows that 
ECGI accurately reconstructed both (CC, 0.85 [0.52– 
0.96] for T- wave morphologies; and CC, 0.73 [0.63– 
0.83] and MAE, 25 [19– 31] ms for RT maps). ECGI 
reconstructed T waves and RTs were less accurate at 
the gradient border than in early or late recovery areas 
(Data  S2). ECGI reconstructions were also consistent 
and stable on a beat- to- beat basis (Figure S3). The dis-
tribution of RTs were also compared using mean RT, std 
of RT, total RT dispersion, and the timings of peaks in 
kernel probability distributions (Figure 4). Linear regres-
sion analysis demonstrated that ECGI accurately recon-
structs RT distributions, with strong correlations and low 
regression error compared with recorded values.

Repolarization Gradients

Figure  5A presents ΔRT maps for the experiment in 
Figures 2 and 3. At baseline, recorded ΔRT demon-
strates a slightly elevated gradient at the border of the 
LAD perfusion bed, with low meanΔRT, stdΔRT, and 
maxΔRT (Figure 5B). This gradient at the LAD perfu-
sion border increased with dofetilide- only perfusion 
along with ΔRT distribution statistics. Further increase 
was seen with dofetilide+pinacidil perfusion.

ECGI accurately captured the presence and in-
crease in ΔRT with drug perfusion, although the high 
gradient at the perfusion border was slightly spatially 

Figure 3. Comparison of recorded and ECGI repolarization times.
A, Recorded and ECGI reconstructed RT maps at baseline (blue) with no drug perfusion, with dofetilide- only (green) perfusion in non- 
LAD coronaries, and with additional perfusion of pinacidil (red) in the LAD (white dashed line). B, “Kernel” probability distributions 
fitted to recorded and ECGI activation (light gray) and RTs (dark gray) for these RT maps with the detected peaks of RT distributions 
(white square). ECGI indicates electrocardiographic imaging; LAD, left anterior descending artery; and RT, repolarization time.
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shifted. The ECGI ΔRT distributions reflected those re-
corded with only small error in the meanΔRT, stdΔRT, 
and maxΔRT (Figure 5B; right- hand values).

To determine degree of spatial shift in the high gra-
dient border, the Euclidean distance was found be-
tween each recorded and ECGI electrode with a ΔRT 
>50 ms/mm (a cutoff enabling automated detection 
of the LAD perfusion border). Overall, the gradient 
was shifted by 8.3 [0– 13.9]) mm, with no significant 
difference between hearts (P=0.10). In most cases, 
this shift was toward the area of late recovery, with 
ECGI tending to overestimate the size of the early re-
covery region and underestimate the late recovery 
region (Figure S4).

Despite this slight spatial mismatch, the distri-
bution statistics for ΔRT (Figure  6) show that ΔRT is 
well reconstructed by ECGI. That is, ECGI accurately 

reconstructs the mean, max, and std of ΔRT, showing 
good correlation and low regression error compared 
with recorded values.

Human Donor Heart

Results for the human donor heart are presented in 
Figure S5. We found no significant difference between 
the accuracy of reconstructed T waves (CC, 0.89 
[0.65– 0.97]) or RT maps (CC, 0.69 [0.55– 0.77]; and 
MAE, 31 [26– 52] ms) with the human heart compared 
with those obtained with any pig heart (P>0.05).

In Vivo ECGI
In vivo sock (top) and ECGI (bottom) electrograms with 
RTs (vertical lines) are presented at electrodes marked 

Figure 4. Linear regression plots of recorded and ECG- derived mean repolarization time (mean RT; top left), std RT (top 
right), total RT dispersion (TRTD; bottom left), and kernel probability distribution peak timings (bottom right) from both in 
vivo (blue) and ex vivo (red) data.
For all plots, there was no significant difference between regression fits for 5 in vivo and 9 ex vivo data sets (P>0.10). Data collected 
from 146 cardiac sequences.
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on RT maps in Figure 7 for a representative in vivo ex-
periment during left ventricular apical pacing. As with 
the ex vivo data, while the magnitudes of ECGI elec-
trogram T waves were smaller than recorded, their 
morphology was generally well captured. The ECGI 
reconstructed RT map also corresponded well to that 
recorded (CC, 0.80), although the early and late repo-
larization regions appeared slightly spatially shifted. In 
these normal hearts, normal RT gradients were present 

in recorded maps, and were correctly represented with 
ECGI (Figure 7C).

One- to- one comparisons between ECGI recon-
structions and recordings across all in vivo data 
demonstrated ECGI accurately reconstructed both 
T- wave morphologies (CC, 0.86 [0.52– 0.96]) and RT 
maps (CC, 0.76 [0.67– 0.82]; and MAE, 10 [8– 13] ms), 
with correlation values not significantly different to 
those seen ex vivo (P=0.08 and 0.76). The smaller MAE 

Figure 5. Evaluation of ECGI reconstructed RT gradients.
A, Recorded and ECGI reconstructed RT gradient maps at baseline (blue) with no drug perfusion, with dofetlide- only (green) perfusion 
in non- LAD coronaries, and with additional perfusion of pinacidil (red) in the LAD (black dashed line). B, Distribution of RT gradients 
with mean, max and SD from recorded/ECGI reconstructions respectively. ECGI indicates electrocardiographic imaging; LAD, left 
anterior descending artery; and RT, repolarization time.
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Figure 6. Linear regression plots of repolarization time gradient (ΔRT) statistics including mean ΔRT (left), max ΔRT (middle) 
and std ΔRT (right) from both in vivo (blue) and ex vivo (red) data sets.
For all plots, there was no significant difference between regression fits for 5 in vivo and 9 ex vivo data sets (P>0.10). Data collected 
from 146 cardiac sequences. ECGI indicates electrocardiographic imaging; LAD, left anterior descending artery; and RT, repolarization 
time.
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for in vivo data compared with ex vivo data reflects the 
shorter total RT dispersion in these hearts without re-
polarization abnormalities (Figure S2).

In Figures  4 and 6, comparison of ECGI and re-
corded RT and ΔRT distribution statistics with in vivo 
data were plotted alongside those for ex vivo data. In 

vivo recorded RT and ΔRT distribution values for these 
normal hearts were in a similar range to ex vivo hearts in 
control. Furthermore, the correspondence between in- 
vivo recorded and ECGI values was similar to that seen 
with ex vivo data. For all metrics, a single regression line 
adequately fit both in vivo and ex vivo data (P>0.06).

Figure 7. Evaluation of ECGI reconstructed electrograms, RT and RT gradients (ΔRT) for a representative in vivo data set 
during left ventricular apical pacing.
A, Recorded (top) and ECGI (bottom) reconstructed epicardial electrograms with RTs (vertical lines). Electrograms are located at 
electrodes marked on the recorded and ECG (B) RT maps with (C) ΔRT maps below. ECGI indicates electrocardiographic imaging; 
and RT, repolarization time.
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DISCUSSION
Our study demonstrates the accuracy of noninva-
sive ECGI for mapping repolarization abnormalities, 
including potentially critical repolarization time gradi-
ents, using comprehensive ex vivo and in vivo experi-
mental data. The results of this study demonstrate 
that ECGI:

1. Accurately reconstructs the topology of electro-
gram T waves and repolarization maps in early 
and late RT regions, but not in the transition 
zones.

2. Detects the abbreviation and prolongation of both 
global and regional RTs.

3. Detects the location of abnormal repolarization 
regions.

4. Detects the presence of global repolarization disper-
sion and local repolarization gradients.

Previously, it was assumed that ECGI can provide ac-
curate reconstructions during the repolarization phase of 
cardiac electrical activity. This has in part been justified 
through hybrid in vivo/in silico validation studies in the 
presence of repolarization abnormalities,3,12 and more 
recently in in vivo and clinical validation studies limited to 
hearts with normal recovery.13,14

Comparison With Previous Validation 
Studies
Two previous hybrid in vivo/in silico studies have evalu-
ated ECGI in the presence of local ΔRTs. Experimental 
data were obtained from an epicardial sock from a 
dog12 and a human heart.3 Sock potentials were used 
in a forward model to simulate torso potentials, with 
gaussian noise and torso electrode location error 
added to simulate measurement noise before the in-
verse problem was solved. Their results demonstrated 
that 90% of reconstructed electrogram T waves had 
CC >0.8, surpassing the accuracy seen here with 
both ex vivo and in vivo data where only 60% of elec-
trograms had a CC >0.8 using the same ECGI meth-
ods (Data S1). We believe this discrepancy in accuracy 
is attributable to 2 sources of error not incorporated 
into the hybrid models: (1) movement of the heart dur-
ing contraction and (2) inaccuracies in segmentation 
of the heart.15 While these hybrid in vivo/in silico stud-
ies evaluated ECGI in the presence of repolarization 
time gradients, direct validation of the ΔRTs was not 
performed. However, ECGI reconstructed activation- 
recovery interval dispersion, as well as local changes 
in activation- recovery interval over the gradient border 
were evaluated and found to very similar to those di-
rectly recorded, consistent with the results presented 
here.

Two previous studies reported validation of 
potential- based ECGI formulations for repolariza-
tion mapping using experimental or clinical data. 
Cluitmans et al13 evaluated ECGI reconstruction of T 
waves and recovery maps during pacing in healthy 
dogs. The results of this study strongly reflect those 
seen here with both ex vivo and in vivo data, with 
a median CC of 0.92 for T wave morphologies, and 
a CC of 0.73 for recovery maps. In a similar study, 
Graham et al14 examined the accuracy of ECGI in 8 
patients during pacing. They found that repolariza-
tion was recovered with a much lower accuracy than 
seen by us or in the dog model with a median CC of 
0.57 [0.35– 0.76] for T waves, and 0.55 [0.41– 0.71] for 
RT maps with root mean square error of 51 [38– 70] 
ms.

The different results are not likely attributable to 
species differences. We show that ECGI using a 
human donor heart showed no difference in accu-
racy to that seen using pig hearts. Rather, the dif-
ference may be attributable to the structural heart 
disease present in these patients, known to reduce 
the accuracy in ECGI reconstructions.16 This differ-
ence may also be attributable to the difficulties in 
obtaining a true gold standard with clinical data. As 
highlighted by Graham and Orini14 in their study, is-
sues with aligning CARTO and ECGI geometries can 
have a drastic impact on the resulting CC and root 
mean square error values.

Our study has gone beyond these previous studies 
by (1) evaluating ECGI in the presence of abnormal re-
polarization gradients and (2) evaluating the accuracy 
of ECGI to reconstruct these gradients using a com-
plete experimental data set.

Clinical Translation of Torso Tank Results
During the torso tank experiments the electrical 
properties of the extracardiac medium were homo-
geneous and lungs, bones, and other tissue inho-
mogeneities were absent. Previous validation studies 
have demonstrated a reduction in accuracy for ECGI 
when mapping epicardial activation in vivo and in 
clinics compared with previous studies in the torso 
tank, potentially attributable to the presence of tis-
sue heterogeneities.7,13,17 However, the strong corre-
spondence seen here between ECGI results for ex 
vivo hearts in a drug- free state and the in vivo hearts 
suggest the presence of inhomogeneous structures 
have little impact on the accuracy of ECGI for repo-
larization mapping. We presume that the impact of 
respiration may be important. By fixing the pericar-
dium to the chest wall with the in vivo pig model, we 
have removed, to some extent, the normal movement 
of the heart during respiration. On the other hand, a 
previous study using ECGI in healthy individuals has 
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demonstrated RT maps to be stable over time,18 sug-
gesting respiration has little impact for repolarization 
mapping. Taking all these considerations together, 
we feel that the results from this study can be trans-
lated to a clinical setting, allowing RT abnormalities 
to be studied with ECGI in patients, though interpre-
tation of the results should take into consideration 
the spatial inaccuracies highlighted in this study.

Sources of Spatial Inaccuracies
This study demonstrated some spatial inaccuracies 
in ECGI repolarization maps, including a slight shift in 
the ΔRT (<1 cm), and an over-  and underestimation 
of early and late repolarization regions. We suspect 
that these spatial inaccuracies are attributable to car-
diac wall motion that is not taken into account by 
the static ECGI model. During systole, the ventricles 
undergo substantial torsional deformation, which is 
reversed in relaxation and early diastole.19 Before 
recovery, therefore, the 3- dimensional locations of 
ventricular epicardial surface landmarks are different 
than those assumed by ECGI (on the basis of heart 
imaging in diastole), potentially causing the shift and 
rotation of ΔRTs. The rapid reversal of torsional de-
formation during recovery may explain why ECGI 
tends to overestimate the size of early repolarization 
regions (and underestimate late repolarization). Using 
a dynamic heart model created through ECG- gated 
magnetic resonance imaging or computed tomogra-
phy images may help to reduce this error.

Clinical Relevance
Initial studies using ECGI have identified the presence 
of repolarization- based abnormalities in various elec-
trical diseases, including prolonged global recovery 
and steep gradients in patients with long QT,5 marked 
abbreviation of global recovery and steep gradients in 
early repolarization syndrome,3 steep ΔRTs in the right 
ventricular outflow tract of patients with Brugada syn-
drome,4 local regions of abnormal repolarization in idi-
opathic ventricular fibrillation survivors that appear with 
exercise.6

Until now, there has been little work to confirm the 
accuracy of ECGI to reconstruct these repolarization- 
based substrates. This is particularly important given 
recent work showing the limitations of ECGI in map-
ping conduction- based abnormalities. ECGI had 
previously been used to detect lines of conduction 
block and abnormal epicardial breakthroughs lo-
cations4,6,20 previously postulated as providing the 
substrate and trigger, respectively, for arrhythmia in 
patients with electrical diseases. However, recent 
experimental and clinical validation studies7,10,21 have 
demonstrated that these conduction- based abnor-
malities often arise as an artefact in ECGI activation 

maps, and their presence should be confirmed 
through contact mapping.

The results of this study confirm that ECGI can 
accurately detect repolarization- based abnormali-
ties previously seen in clinical studies, including pro-
longed or abbreviated global repolarization and its 
dispersion, the location of abnormal regions of re-
polarization (although smaller or larger than reality), 
and the presence and magnitude of local repolariza-
tion gradients (although potentially spatially shifted). 
Furthermore, given that a stable regularization pa-
rameter is chosen, ECGI reconstruction of T- wave 
morphologies and repolarization maps is consistent 
and stable on a beat- to- beat basis and comparable 
to sock recordings (Data S3), meaning the dynamic of 
these anomalies can be accurately assessed at rest 
and under stress.

Limitations
This study assessed a specific potential- based ECGI for-
mulation. In our online supplement, we demonstrate that 
this method reconstructs T waves, RTs and ΔRTs better 
than other common potential- based methods (section 
S1). However, the absolute improvements in all met-
rics were minimal, and we suspect no drastic improve-
ments in accuracy are achievable using other epicardial 
potential- based formulations. Our potential- based ECGI 
methods are also limited to solving the potentials at the 
epicardial surface, while an important contributor to ar-
rhythmogenesis may actually be transmural dispersion 
of repolarization. The accuracy of ECGI for mapping the 
presence of large transmural repolarization dispersion 
remains unclear. Alternative ECGI methods using alter-
native cardiac source models may allow for further im-
provements in accuracy and would allow the mapping of 
transmural gradients.22

The ability of ECGI to reconstruct small, localized 
repolarization abnormalities was not investigated, as 
the model of repolarization abnormalities was limited 
by size of the LAD perfusion bed.

Unlike in humans, the pig T wave is not concordant. 
However, validation using a human donor heart has 
demonstrated that this makes no difference on ECGI 
accuracy.

CONCLUSIONS
We have demonstrated that ECGI is highly appli-
cable for mapping potentially critical repolarization 
abnormalities, including the prolongation/abbrevia-
tion of global repolarization and its dispersion, the 
location of abnormal repolarization regions, and 
the presence of local gradients. This noninvasive 
approach can be applied to quantifying abnor-
mal repolarization- based substrates in patients to 
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help in diagnosis, risk stratification, and therapy 
evaluation.
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SUPPLEMENTAL MATERIAL



Supplemental Methods and Results 

Data S1. Alternative Potential-Based Inverse Methods 

We assessed four different potential-based inverse methods in the reconstruction of repolarization using 

the torso tank data. These included different combinations of two numerical methods to define the 

relationship between the heart and the torso (the method of fundamental solutions23 and the boundary 

element method24), two methods to regularize the inverse problem (zero-order and second-order 

Tikhonov25), and two methods to determine the regularization parameter lambda, (the L-curve method26 

and the CRESO method27). The combinations are as follows: 

1. The method of fundamental solutions with zero-order Tikhonov regularization and the CRESO

method (MFS-TIKH0-CRESO) – the method used in the main manuscript.

2. The method of fundamental solutions with zero-order Tikhonov regularization and the L-curve

method (MFS-TIKH0-Lcurve).

3. The boundary element method with zero-order Tikhonov regularization and the CRESO method

(BEM-TIKH0-CRESO).

4. The boundary element method with second-order Tikhonov regularization and the CRESO

method (BEM-TIKH2-CRESO) – the method used in previous studies for repolarization3-5).

Repolarization times (RT) were defined from recorded and ECGI-reconstructed electrograms as the time 

of maximum upslope of the T-wave, and the repolarization gradients (ΔRT) as the difference in RT 

between two adjacent electrodes divided by the distance between them.  

Inverse reconstructions were compared to ground truth recorded electrograms using methods described 

in the main article. The lambda values computed by each method were also compared. Statistical 

analysis was conducted using GraphPad Prism 7.04. For each metric, the significance of differences was 

tested using a one-way ANOVA with p<0.05 defined as significant.  



The MFS-Tikh0-CRESO method reconstructed T-waves, RTs and ΔRT better than most other 

methods tested (Figures S1 and S2 and Table S1). However, the absolute improvement in correlation 

and error metrics were minimal.  

Figure S1.1:  Boxplots of the lambda used for regularization (top left), correlation of the T-wave (top 

right), correlation of RT maps (bottom left) and MAE of RT maps (bottom right) between recorded and 

reconstructed epicardial electrograms using 4 different inverse methods. Probabilities that distributions 

are significantly different to MFS-TIKH0-CRESO: *** p≤0.0001 and ns p>0.05.      



Figure S1.2:  Linear regression analysis between recorded and reconstructed RT (top line) and ΔRT 

distribution statistics using MFS-Tikh0-CRESO (green), MFS-Tikh0-Lcurve (red), BEM-Tikh0-CRESO 

(blue), and BEM-Tikh2-CRESO (purple). The linear regression (black line) is for MFS-Tikh0-CRESO. 

There was no significant difference between the slope nor the intercept for any method (p>0.05).  

MFS-TIKH0-

CRESO 

MFS-TIKH0-L-

CURVE 

BEM-TIKH0-

CRESO 

BEM-TIKH2-

CRESO 

MEAN RT R2 0,98 0,98 0,99 0,98 

Sy.x 8,42 10,24 7,96 8,29 

STD RT R2 0,95 0,91 0,96 0,95 

Sy.x 4,57 5,59 4,34 4,32 

DISP RT R2 0,86 0,72 0,81 0,78 

Sy.x 21,79 25,84 25,61 24,49 

MEAN ΔRT R2 0,80 0,54 0,76 0,74 

Sy.x 3,12 5,69 3,51 3,06 

STD ΔRT R2 0,85 0,59 0,75 0,70 

Sy.x 5,29 8,20 6,77 6,46 

MAX ΔRT R2 0,74 0,39 0,53 0,50 

Sy.x 29,66 38,66 41,51 36,06 

Table S1.  Linear regression R2 and 𝑆𝑆𝑦𝑦.𝑥𝑥 between recorded and reconstructed RT and ΔRT 

distribution statistics using the 4 different inverse methods. 



Data S2. Spatial variability in accuracy 

Spatial maps of T-wave CC and RT Abs Error demonstrated the ECGI reconstructions were more 

accurate within the early and late repolarization regions than at the gradient border (Figure S2.1).  

Figure S2.1:  Spatial maps of CC between recorded and reconstructed T-waves (top) as well as absolute 

error in RT (bottom) for the same case as Figure 2 at baseline (blue) and with combined dofetilide and 

pinacidil perfusion (red).  

To see if this occurred across all data sets, we compared each metric between regions with monophasic 

T-waves (early/late regions) and biphasic T-waves (regions of gradient). To separate monophasic and 

biphasic T-wave waveforms, the integral over the T-wave for each electrode was calculated: 

∫ 𝑉𝑉𝑖𝑖
max (𝑉𝑉𝑖𝑖) − min (𝑉𝑉𝑖𝑖)

 𝑑𝑑𝑑𝑑𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑

Where the timing of 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑 and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑 were defined manually, and Vi is the sock recorded potential 

at electrode i. Potentials were normalized to by the amplitude over the entire QRST to compensate for 

amplitude variations between electrodes. Postive T-waves (early regions) were defined when the integral 

was > 0.2, Negative T-waves (late regions) for integrals of < -0.2 and the remaining electrodes were 

defined as Biphasic.  



Statistical analysis was conducted using GraphPad Prism 7.04. For each metric, the significance of 

differences was tested using a one-way ANOVA with p<0.05 defined as significant. Results are 

presented in Figure 2.2.  

Figure S2.2:  Correlation between recorded and reconstructed T-waves (left) and absolute error in RT 

(right) for torso tank and in-vivo data. Values have been categorized by the positive monophasic (early 

recovery), negative monophasic (late recovery), or biphasic morphology of the T-wave. Probabilities 

that distributions are significantly different: *** p≤0.0001, ** p≤0.01, and ns p>0.05.      

Figure S2.3:  Linear relationship between the MAE (between ECGI and recorded recovery times) and 

the total RT dispersion as recorded on the sock. One curve does not adequately fit both in-vivo (black) 

and ex-vivo torso tank (red) data (p=0.002). For ex-vivo data, R2 = 0.76 and Sy.x. = 5.1 ms while for 

in-vivo data R2 = 0.10 and Sy.x. = 2.7 ms.   



Figure S2.3 Demonstrates the linear relationship between the total RT dispersion and the MAE between 

ECGI and recorded recovery times for in-vivo and ex-vivo data. At low dispersion (no repolarization 

abnormalities), MAE is similar between ex-vivo and in-vivo data sets. At high dispersion (large 

repolarization abnormalities present), MAE increases for ex-vivo data. This increase is due to the steeper 

gradients in the transition zones and their spatial shift with ECGI, resulting in higher errors in RT times 

in the transition zone that, increases the overall mean absolute error.  



Data S3. Beat-to-Beat Variability 

Periodic beat-to-beat variation in the amplitude or shape of the T-wave in the 12-lead ECG, or T-wave 

alternans (TWA) are associated with increased risk of sudden cardiac death28-29. Their detection with 

ECGI may be useful in predicting sudden cardiac death risk. The reproducibility of repolarization maps 

on a beat-to-beat basis when alternans are not present is also important, to demonstrate that these are not 

an artefact of the ECGI reconstruction.  

The beat-to-beat variability of ECGI reconstructions was assessed using ECGI electrograms 

reconstructed using the method of fundamental solutions (MFS)23 with zero-order Tikhonov 

regularization25 and the CRESO method27 to define the regularization parameter. Differences between 

successive T-waves was assessed using the CC, and the difference in amplitude of the T-waves. 

Differences between successive repolarization maps was assessed using CC and the AE. The median of 

each metric over 10 beats was computed. 

For recorded electrograms, T-wave morphologies and repolarization maps were consistent and stable 

on a beat-to-beat basis for all experiments and electrodes indicating T-wave alternans were not present 

(summary of metrics in Figure S3). For ECGI, in all but one experiment for one drug setting, T-wave 

morphologies and repolarization maps were also consistent and stable. However, reconstructions were 

less stable than directly recorded maps. 

Figure S4 presents reconstructed electrograms for the one exception where T-wave alternans were 

seen with ECGI. For this case, no alternans were present in recorded electrograms, nor visible from 

torso ECG. Further analysis showed the alternans in ECGI arose as the computed lambda value chosen 

for regularization also changed on a beat-to-beat basis.  By fixing the lambda value to a constant, 

alternans were no longer present. We therefore advice verifying the lambda value is not a factor when 

alternans are present in ECGI reconstructions.      

https://en.wikipedia.org/wiki/T_wave
https://en.wikipedia.org/wiki/Sudden_cardiac_death


Figure S3.1:  Median beat-to-beat correlation of the T-waves (left top), amplitude difference in T-waves 

(right top), correlation of RT maps (left bottom) and AE of RT maps (right bottom) for recorded and 

ECGI reconstructed electrograms presented as median and interquartile ranges. Probabilities that 

distributions are significantly different: *** p≤0.0001.      

Figure S3.4:  Example ECGI reconstructed electrograms for the one case demonstrating T-wave 

alternans (left and middle) with computed lambda values for each beat (right). Electrograms in red were 

reconstructed with lambda < 0.07 and those in black with lambda > 0.07.  No alternans were present 

in recorded electrograms, nor visible from torso ECG.      



S4. Regions of Early/Late Recovery 

Though there was high qualitative consistency between the early and late repolarization regions of the 

heart in each study, the regions of early and late recovery appeared to be over- or under-estimated in 

size. Regions of abnormal recovery were defined as the electrodes with repolarization times outside the 

normal range, as defined from sock recordings in control state (no drugs) for each heart. The abnormally 

early and late regions defined by ECGI and sock recordings were compared in terms of the mean time 

in the region, and the size of the abnormal region (Figure S4.1). For each metric, the significance of 

differences was tested using paired t-tests with p < 0.05 defined as significant.  

In the presence or absence of abnormally recovery regions, the timing of the early regions were 

accurately captured (p = 0.95, though the late regions repolarized 2.8 ± 0.7 ms earlier than recorded 

(p<0.001). However, ECGI significantly overestimated the size of the early regions by 11 ± 4 cm2 (p = 

0.02) and underestimated the size of late regions by 13 ± 3 mm2 (p < 0.0001).  

Figure S4.1:  Comparison of regions identified as abnormally early or late repolarizing using sock 

recordings and ECGI. Regions were compared in terms of mean time (ms) and area (mm2).   

S5. Human Donor Heart 

Recorded activation and RT maps for the human donor heart (Figure S5.1) demonstrated a suspected 

left bundle branch block, with early activation and repolarization on the RV, and late repolarization on 

the LV. Dofetilide and pinacidil perfusion created regions of late and early repolarization in non-LAD 



and LAD (black dashed line) perfusion beds respectively. ECGI RT maps corresponded well to those 

recorded both at baseline and during drug perfusion. ECGI reconstructed T-waves (CC of 0.85 [0.52; 

0.96]) and RT maps (CC = 0.69 [0.55; 0.77] and MAE = 31 [26; 52] ms) well, with no significant 

difference in CC or MAE values compared to those obtained in pig hearts (p = 0.07, 0.96 and 0.38 

respectively)  

ΔRT maps showed there was no strong gradients at baseline in either recorded or ECGI maps. With 

drug perfusion, a strong gradient developed at the border of the LAD perfusion bed in both recorded and 

ECGI maps.   

Figure S5.  Recorded and ECGI reconstructed RT maps (top) and ΔRT maps for the human donor 

heart at baseline (left) and during dofetilide and pinacidil perfusion through non-LAD and LAD (black 

dashed line) arteries respectively.  
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