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Abstract
In this article, we analyse the role that artificial intelligence (AI) could play, and is playing, to combat global climate change. 
We identify two crucial opportunities that AI offers in this domain: it can help improve and expand current understanding 
of climate change, and it can contribute to combatting the climate crisis effectively. However, the development of AI also 
raises two sets of problems when considering climate change: the possible exacerbation of social and ethical challenges 
already associated with AI, and the contribution to climate change of the greenhouse gases emitted by training data and 
computation-intensive AI systems. We assess the carbon footprint of AI research, and the factors that influence AI’s green-
house gas (GHG) emissions in this domain. We find that the carbon footprint of AI research may be significant and highlight 
the need for more evidence concerning the trade-off between the GHG emissions generated by AI research and the energy 
and resource efficiency gains that AI can offer. In light of our analysis, we argue that leveraging the opportunities offered by 
AI for global climate change whilst limiting its risks is a gambit which requires responsive, evidence-based, and effective 
governance to become a winning strategy. We conclude by identifying the European Union as being especially well-placed 
to play a leading role in this policy response and provide 13 recommendations that are designed to identify and harness the 
opportunities of AI for combatting climate change, while reducing its impact on the environment.

Keywords  Artificial intelligence · Climate change · Digital ethics · Digital governance · Environment · Sustainability · 
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1  Introduction

In this article, we analyse the role that artificial intelligence 
(AI) could play, and is already playing, as a technology to 
combat global climate change. The Intergovernmental Panel 
on Climate Change (IPCC) has repeatedly emphasised the 
need for large-scale responses to human-induced climate 
change to prevent avoidable warming and to mitigate the 
effects of unavoidable warming as well as that which has 
already occurred (Masson-Delmotte et al. 2018; Pachauri 
et al. 2014).

Leveraging the opportunities offered by AI for global cli-
mate change is both feasible and desirable, but it involves 
a sacrifice (ethical risks and potentially an increased car-
bon footprint) in view of a very significant gain (a more 
effective response to climate change). It is, in other words, 
a gambit, which requires responsive and effective govern-
ance to become a winning strategy. The overall aim of this 
article is to contribute to the development of such a strategy. 
We begin in Sect. 2 by exploring the opportunities that AI 
affords for combatting climate change, identifying two cru-
cial opportunities: AI can help improve and expand current 
understanding of climate change; and AI is increasingly part 
of a package of responses that are essential to combatting the 
climate crisis effectively, by delivering much greener, more 
sustainable and effective solutions. However, as we argue, 
the introduction of AI into the climate domain risks amplify-
ing several social and ethical challenges already associated 
with AI more generally, such as unfair bias, discrimination, 
or opacity in decision-making.

In Sect. 3, we address the flipside of AI in the context of 
climate change: the contribution to global climate change of 
the greenhouse gases emitted by developing computation-
intensive AI systems. We focus on the carbon footprint of 
AI research, and assess the factors that influence AI’s green-
house gas (GHG) emissions in this context, finding that the 
carbon footprint of AI research can be significant, and high-
lighting the need for more scientific evidence concerning 
the trade-off between the GHG emissions generated by AI 
research and the energy and resource efficiency gains that AI 
offers when applied to various tasks and industries.

In Sect. 4, we turn to the wider policy context, and iden-
tify the European Union as being especially well placed to 
adopt effective policy response to the opportunities and chal-
lenges presented. Thus, in Sect. 5, we provide 13 recommen-
dations for European policymakers and AI researchers that 
are designed to identify and harness the opportunities of AI 
for combatting climate change, while reducing the impact 
of its development on the environment. We conclude our 

analysis by stressing that risks and benefits of the uses of AI 
to fight climate change are distinct yet intertwined, and that 
effective policies and strategies are required to both lever-
age the potential of AI and minimise the harms it poses to 
protect the environment.

2 � AI against climate change

AI is already having a significant positive impact in the 
fight against climate change. Yet exactly how significant, 
and precisely what sort of impact, are challenging questions 
to answer. This section provides an overview of initiatives 
and projects that rely on AI to understand and combat cli-
mate change (1.1), notes work already done to document this 
potential positive impact of AI on climate change (1.2), and 
identifies a set of obstacles to be overcome to ensure that the 
use of AI to understand and combat climate change is not 
only effective but also ethically sound (1.3).

2.1 � How AI is used against climate change

AI may be characterised as a set of multipurpose tools and 
techniques designed to simulate and/or improve upon pro-
cesses that would have seemed intelligent had a human per-
formed them (McCarthy et al. 2006). At a high level, key 
cognitive capabilities displayed by “intelligent” machine 
systems include a combination of classification, prediction, 
and decision-making. These capabilities are already being 
deployed in a diverse array of domains, like health (e.g., 
recognising features in an image such as an X-ray scan for 
cancer diagnosis), transportation (e.g., using environmental 
sensors to safely drive a car), and communication (e.g., pro-
cessing human speech and responding in kind). Applying 
the “solution space” of AI to the “problem space” of climate 
change could yield significant benefits, by, first, helping to 
understand the problem, and second, by facilitating effective 
responses.

First, despite scientific consensus about the basic facts 
of climate change, many aspects of the environmental crisis 
remain uncertain. This includes the explanation of past and 
present events and observations, and the accurate prediction 
of future outcomes. The ability of AI to process enormous 
amounts of non-structured, multi-dimensional data using 
sophisticated optimisation techniques is already facilitat-
ing the understanding of high-dimensional climate datasets 
and forecasting of future trends (Huntingford et al. 2019). 
AI techniques have been used to forecast global mean tem-
perature changes (Ise and Oba 2019; Cifuentes et al. 2020); 
predict climactic and oceanic phenomena such as El Niño 
(Ham et al. 2019), cloud systems (Rasp et al. 2018), and 
tropical instability waves (Zheng et al. 2020); better under-
stand aspects of the weather system—like rainfall, generally 
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(Sønderby et al. 2020; Larraondo et al. 2020) and in spe-
cific locales, such as Malaysia (Ridwan et al. 2020)—and 
their knock-on consequences, like water demand (Shrestha 
et al. 2020; Xenochristou et al. 2020). AI tools can also help 
anticipate the extreme weather events that are more com-
mon as a result of global climate change, for example heavy 
rain damage (Choi et al. 2018) and wildfires (Jaafari et al. 
2019), and other downstream consequences, such as pat-
terns of human migration (Robinson and Dilkina 2018). In 
many cases, AI techniques can help to improve or expedite 
existing forecasting and prediction systems, for example by 
automatically labelling climate modelling data (Chattopad-
hyay et al. 2020), improving approximations for simulating 
the atmosphere (Gagne et al. 2020), and separating signals 
from noise in climate observations (Barnes et al. 2019).

Second, combating climate change effectively requires a 
vast array of responses to the crisis, which broadly include 
both mitigating existing effects of climate change and reduc-
ing emissions through decarbonisation to prevent further 
warming. For example, a 2018 Microsoft/PwC report esti-
mated that using AI for environmental applications could 
boost global GDP by between 3.1 and 4.4%, while reduc-
ing greenhouse gas emissions anywhere from 1.5 to 4% by 
2030 compared to a “business as usual” scenario (Microsoft 
2018, 8). An array of AI-based techniques already plays a 
key role in many of these responses (Inderwildi et al. 2020; 
Sayed-Mouchaweh 2020). This includes, for example, 
energy efficiency in industry, especially the petrochemi-
cal sector (Narciso and Martins 2020). Studies have also 
used AI to understand, at a high level, industrial pollution 
in China (Zhou et al. 2016), the carbon footprint of con-
crete used in construction (Thilakarathna et al. 2020), and 
even energy efficiency in shipping (Perera et al. 2016). Other 
work has explored the use of AI in electrical grid manage-
ment (Di Piazza et al. 2020), to forecast building energy 
usage (Fathi et al. 2020), and to assess the sustainability 
of food consumption (Abdella et al. 2020). Many of these 
studies involve showing the potential applicability of AI-
based methods in silico and/or at a small scale. However, 
the techniques presented could have considerable impact 
across society and the global economy if taken forward and 
scaled up.

There are also examples where AI-based approaches can 
help improve the understanding of, and facilitate effective 
responses to, climate change—particularly in the policy-
making domain. For example, AI can help to predict carbon 
emissions based on present trends (Mardani et al. 2020; Wei 
et al. 2018), and help monitor the active removal of carbon 
from the atmosphere through sequestration (Menad et al. 
2019). AI approaches have also been employed to assess the 
potential viability and impact of large-scale policy changes 
and other societal shifts. This includes top-down policy ini-
tiatives, such as carbon tax schemes (Abrell et al. 2019) and 

carbon trading systems (Lu et al. 2020), as well as detecting 
(Xiao et al. 2019) and weighing the variables associated with 
different travel modes (Hagenauer and Helbich 2017), and 
optimising electric vehicle sharing (Miao et al. 2019) and 
charging architecture (Tao et al. 2018). Each of these could 
in turn boost the availability and uptake of more climate-
friendly transportation options.

Beyond this indicative evidence, the growing use of AI to 
fight climate change can also be seen from the higher vantage 
point of major institutions and large-scale initiatives. The 
European Lab for Learning & Intelligent Systems (ELLIS) 
has a Machine Learning for Earth and Climate Sciences pro-
gramme that aims to “model and understand the Earth sys-
tem with Machine Learning and Process Understanding”.1 
The European Space Agency has also established a Digital 
Twin Earth Challenge to provide “forecasting on the impact 
of climate change and responding to societal challenges”.2 
On the academic side, the EC-funded iMIRACLI (innova-
tive MachIne leaRning to constrain Aerosol-cloud CLimate 
Impacts) initiative will support 15 PhD students across nine 
European universities to “develop machine learning solu-
tions to deliver a breakthrough in climate research”,3 with 
doctoral projects underway since autumn 2020.

Several European universities have initiatives and train-
ing programmes dedicated to unlocking the power of AI 
for climate.4,5,6 Indeed, a search of Cordis—the European 
database for funded research—for current projects address-
ing climate change and AI returned a total of 122 results.7 
Analysis of these 122 projects suggests that they represent 
both geographic and disciplinary breadth. The projects are 
well spread across the continent, albeit with a clear skew 
towards western Europe in terms of where they are coordi-
nated (see Fig. 1). Figure 2 displays the top-level field(s) of 
study indicated for each of the projects, where this informa-
tion was provided (n = 106). Unsurprisingly, a large majority 
of projects relate to the natural sciences and/or engineering 
and technology, but a considerable number are also anchored 
in social sciences. And as Fig. 3 shows, at a more granular 
level, the breadth of subjects that these projects touch on is 

1  https://​ellis.​eu/​progr​ams/​machi​ne-​learn​ing-​for-​earth-​and-​clima​te-​
scien​ces.
2  https://​coper​nicus-​maste​rs.​com/​prize/​esa-​chall​enge/#.
3  https://​imira​cli.​web.​ox.​ac.​uk.
4  https://​www.​uv.​es/​uvweb/​uv-​news/​en/​news/​ai-​under​stand​ing-​model​
ling-​earth-​system-​inter​natio​nal-​resea​rch-​team-​co-​led-​unive​rsity-​valen​
cia-​wins-​erc-​syner​gy-​grant-​12859​73304​159/​Novet​at.​html.
5  https://​www.​exeter.​ac.​uk/​resea​rch/​envir​onmen​tal-​intel​ligen​ce/.
6  https://​ai4er-​cdt.​esc.​cam.​ac.​uk.
7  Search of Cordis research project database conducted 30th Novem-
ber 2020 of Projects with search string [('climate change' OR ‘global 
warming’) AND ('artificial intelligence' OR 'machine learning')], 
(n = 122).

https://ellis.eu/programs/machine-learning-for-earth-and-climate-sciences
https://ellis.eu/programs/machine-learning-for-earth-and-climate-sciences
https://copernicus-masters.com/prize/esa-challenge/#
https://imiracli.web.ox.ac.uk
https://www.uv.es/uvweb/uv-news/en/news/ai-understanding-modelling-earth-system-international-research-team-co-led-university-valencia-wins-erc-synergy-grant-1285973304159/Novetat.html
https://www.uv.es/uvweb/uv-news/en/news/ai-understanding-modelling-earth-system-international-research-team-co-led-university-valencia-wins-erc-synergy-grant-1285973304159/Novetat.html
https://www.uv.es/uvweb/uv-news/en/news/ai-understanding-modelling-earth-system-international-research-team-co-led-university-valencia-wins-erc-synergy-grant-1285973304159/Novetat.html
https://www.exeter.ac.uk/research/environmental-intelligence/
https://ai4er-cdt.esc.cam.ac.uk
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vast, and spans domains as diverse as viticulture, mycology 
and galactic astronomy.

There is also considerable evidence of private and non-
profit initiatives using AI to combat climate change around 
the world. Microsoft’s AI for Earth is a 5-year $50 million 
initiative established in 2017, designed to support organi-
sations and researchers using AI and other computational 
techniques to tackle various aspects of the climate crisis. It 

currently has 16 partner organisations8 and has released rel-
evant open-source tools9 and provided grants in the form of 
cloud computing credits to projects using AI for a variety of 
purposes, from monitoring climate change in the Antarctic 
to protecting bird populations after hurricanes. Google’s AI 
for Social Good programme supports 20 organisations using 
AI to pursuing various socially beneficial goals with fund-
ing and cloud computing credits, including projects seek-
ing to minimise crop damage in India, better manage waste 
in Indonesia, protect rainforests in the US, and improve air 
quality in Uganda.10 Meanwhile, AI development company 
ElementAI’s AI for Climate program11 provides expertise 
and partnership opportunities to improve the energy effi-
ciency of manufacturing and business operations.

2.2 � How evidence of AI against climate change 
is gathered

Although AI is not a silver bullet nor “the only tool in the 
drawer” for combating climate change, and while uncriti-
cal “solutionism” regarding the use of AI for social good 
should be avoided (Cowls et al. 2021), nonetheless as the 
previous section illustrates, efforts to use AI to combat cli-
mate change are growing at a fast pace. Because of this pace 
of development, undertaking a more comprehensive, and 
rigorous, assessment is a challenge. To date, several system-
atic approaches to gathering evidence of the use of AI for 
climate change worldwide have been trialled, resulting in a 
range of datasets, organised in different ways, each of which 
paints a partial picture of the phenomenon. For instance, 
some researchers have used the United Nations Sustainable 
Development Goals (SDGs) as a basis for evidence-gather-
ing about AI-based solutions to address climate change. Of 
the 17 SDGs, goal 13, “Climate Action”, is most explicitly 
associated with climate change, but several others, such as 
14, “Life Below Water”, and 15, “Life on Land”, are also 
related. For example, the database of University of Oxford’s 
Research Initiative on AIxSDGs12 contains 108 projects, of 
which 28 are labelled as related to Goal 13 (see Fig. 4); the 
SDG AI Repository managed by the UN’s ITU agency13 
contains 9 climate-focused projects; and the database of the 
AI4SDGs Think Tank14 contains 5.

Clearly, the full range of projects using AI to tackle 
climate change around the world is not captured in these 

Fig. 1   Countries in which EU-funded projects using AI to address 
climate change are “coordinated”. Not shown: Israel (1 project)

Fig. 2   Top-level disciplinary focus of EU-funded projects using AI to 
address climate change

10  https://​ai.​google/​social-​good/​impact-​chall​enge/.
11  https://​www.​eleme​ntai.​com/​ai-​for-​clima​te.
12  https://​www.​sbs.​ox.​ac.​uk/​resea​rch/​centr​es-​and-​initi​atives/​oxford-​
initi​ative-​aisdgs (last accessed 11 Aug 2021).
13  https://​www.​itu.​int/​en/​ITU-T/​AI/​Pages/​ai-​repos​itory.​aspx.
14  http://​www.​ai-​for-​sdgs.​acade​my/​topics#​13%​20Cli​mate%​20Act​ion.

8  https://​www.​micro​soft.​com/​en-​us/​ai/​ai-​for-​earth-​partn​ers.
9  https://​micro​soft.​github.​io/​AIfor​Earth-​Grant​ees/.

https://ai.google/social-good/impact-challenge/
https://www.elementai.com/ai-for-climate
https://www.sbs.ox.ac.uk/research/centres-and-initiatives/oxford-initiative-aisdgs
https://www.sbs.ox.ac.uk/research/centres-and-initiatives/oxford-initiative-aisdgs
https://www.itu.int/en/ITU-T/AI/Pages/ai-repository.aspx
http://www.ai-for-sdgs.academy/topics#13%20Climate%20Action
https://www.microsoft.com/en-us/ai/ai-for-earth-partners
https://microsoft.github.io/AIforEarth-Grantees/
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databases. This may be a result of the selection criteria 
employed in the surveys, or a lack of awareness of these 
evidence-gathering efforts among those actually deploy-
ing the technology (despite the annual, high-profile AI for 
Good summit organised by the ITU). It may also be that the 
SDGs are not the ideal framework, at least scientifically, 

for exploring the use of AI to tackle climate change. Each 
SDG contains specific targets and indicators (five and eight 
respectively in the case of the 13th goal), which are high-
level and policy-focused. Consider, for example, indicator 
13.1.2, the “number of countries with national and local dis-
aster risk reduction strategies”. Tying the outputs of a single 

Fig. 3   Frequency-based word 
cloud showing self-identified 
domains of EU-funded projects 
using AI to address climate 
change

Fig. 4   AI-based projects addressing the UN Sustainable Development Goals (Cowls et al. 2021)
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AI initiative to high-level and policy-focused outcomes may 
prove to be problematic and make the SDGs less than the 
ideal framework to map the uses of AI to tackle climate 
change.

Alternative approaches to mapping the uses of AI to 
address the climate crisis clarify the phenomenon further. 
One recent large-scale study pinpointed 37 use cases within 
13 domains where AI15 “can be applied with high impact in 

the fight against climate change” (Rolnick et al. 2019, 2), 
and offered a host of examples. For each case, the authors 
noted which subdomain of the technology (causal infer-
ence, computer vision, etc.) could be beneficial (see Fig. 5). 

Fig. 5   Domains of prospective 
positive climate impact and 
forms of AI technology relevant 
to each, from Rolnick et al. 
(2019)

15  Machine learning is commonly considered to be a subset of the 
wider set of technological systems that fall under the heading of arti-
ficial intelligence. Rolnick et al.’s usage of “machine learning”, how-
ever, is quite inclusive, capturing a broad array of examples. Rather 
than split definitional hairs, the evidence assembled is treated here as 
a comprehensive overview of the ways in which artificial intelligence 
per se can be used to combat climate change.
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Since the publication of this landscaping study, the authors 
have launched Climate Change AI (CCAI), an organisation 
composed of “volunteers from academia and industry who 
believe that tackling climate change requires concerted soci-
etal action, in which machine learning can play an impactful 
role”,16 which has resulted in a wide network of researchers.

Each of these approaches to gathering evidence of AI 
used to combat climate change helps illuminate the nature 
of the phenomenon and understand better which domains 
are attracting more efforts and which are potentially over-
looked. Consider for example a cross-analysis (Cowls et al. 
2021) between the aforementioned Oxford Research Initia-
tive AIxSDGs database and scoping study by Rolnick et al. 
(2019). Figure 6 charts the number of climate change-related 
projects in the AIxSDGs against the specific domains identi-
fied by Rolnick and colleagues. In some domains, such as 
Farms & Forests, there is clear evidence of projects that met 
the criteria for inclusion in the AIxSDGs database, whereas 
in others few if any projects are included. This may result 
in part from the criteria used in the AIxSDGs database col-
lection, among which was the need for evidence of tangible 
real-world impact.

It is clear that AI offers many options for addressing a 
wide array of challenges associated with climate change. 
And given the severity and scope of the challenges posed 
by climate change, it may be advisable to experiment with 
a wide array of potential solutions across many domains, as 
discussed in Sect. 2.1. However, the opportunities offered 
by AI can only be harnessed to their full potential if ethi-
cal values and social expectations are to be met. We turn to 
these next.

2.3 � What are the risks to be avoided or minimised?

Using AI in the context of climate change poses fewer and 
less severe ethical risks (Tsamados et al. 2020) than using AI 
in domains such as health and criminal justice, where per-
sonal data and direct human-facing decisions are at the core 
of all activities. Nonetheless, it is important to avoid or mini-
mise the ethical risks that may still arise when maximising 
the positive impact AI in the fight against climate change.

The first set of risks follows from the way AI models are 
designed and developed (Yang et al. 2018). Most data-driven 
approaches to AI are supervised, i.e. they are “trained” on 
existing labelled data as a basis from which to “learn” to 
cluster, classify, predict or make decisions regarding new, 
previously unseen data. This introduces the potential for 
unwanted bias to enter into the decisions at which an AI 
system ultimately arrives. This may lead to discrimination 
and unfair treatment of individuals or groups. Consider, for 
example, the earlier case of using AI to decide where to 
locate charging stations for electric vehicles (EVs) based 
on existing patterns of EV use (Tao et al. 2018). It is possi-
ble that using AI to decide where to place charging stations 
based purely on existing patterns of EV ownership—which 
could be skewed towards wealthier areas—may result in bias 
against less wealthy areas, in turn disincentivising the uptake 
of EVs in these areas. In the same vein, attempts to rely 
on smartphones to infer individuals’ transportation choices 
(Dabiri and Heaslip 2018) may lead to biased choices unless 
communities with lower smartphone uptake are properly 
accounted for.

A second set of risks concerns the erosion to human auton-
omy that some climate-focused AI systems may pose (Floridi 
and Cowls 2019; Taddeo and Floridi 2018). Tackling climate 
change requires large-scale coordinated action, including 

Fig. 6   Projects in the Oxford 
AIxSDG database working in 
the different domains identified 
by Rolnick et al. (2019)

16  https://​www.​clima​techa​nge.​ai/​about.

https://www.climatechange.ai/about
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systematic changes to individual behaviour. As Rolnick et al. 
note, “understanding individual behaviour can help signal how 
it can be nudged” (2019, p. 51), for example through limit-
ing people’s “psychological distance” to the climate crisis, 
helping them visualise its impacts, or encouraging them to 
take pro-environmental actions. There is considerable debate 
over the impact of nudging on individual autonomy (Floridi 
2016), and whether it prevents people making “free choices” 
(for discussion see Schmidt and Engelen 2020), so adopting 
such an approach in the environmental context requires strik-
ing the right balance between protecting individual autonomy 
and implementing large-scale climate-friendly policies and 
practices (Coeckelbergh 2020).

Along with fair treatment and autonomy, uses of AI to 
fight climate change also risk breaching privacy. To the 
extent to which AI systems rely on non-personal data, e.g. 
meteorological and geographical data, to understand the cli-
mate crisis, they are unlikely to raise privacy concerns. But 
devising strategies to limit emissions may require data that 
reveal patterns of human behaviour, where privacy concerns 
could have more relevance. For example, in control systems 
designed to decrease carbon footprints in a range of contexts, 
such as energy storage (Dobbe et al. 2019), industrial heat-
ing and cooling (Aftab et al. 2017), and precision agriculture 
(Liakos et al. 2018), the effectiveness of AI systems depends 
on granular data about energy demands, often available in 
real time. The data collected may contain sensitive personal 
information, risking privacy at both individual and group 
levels (Floridi 2017). This tension is highlighted in recent 
Vodafone Institute research finding showing that, while 
Europeans are broadly willing to share their data to help 
protect the environment, a clear majority (53%) would only 
do so under strict conditions of data protection (Vodafone 
Institute for Society and Communications 2020, 3).

None of these obstacles emerge solely from the use of 
AI to combat climate change. However, ethical challenges 
caused by AI may take on novel forms in this context, and, 
therefore, require careful responses. Furthermore, the com-
putational cost and potential environmental impact of devel-
oping AI systems raises a different set of considerations spe-
cific to the climate change domain, which are the focus of 
the next section.

3 � AI’s carbon footprint

AI (both in the sense of training models and of uses) can 
consume vast amounts of energy and generate green-
house gas (GHG) emissions (García-Martín et al. 2019; 
Cai et al. 2020). This is why establishing systematic and 
accurate measurements of AI’s carbon footprint is key to 

ensuring that efforts to harness the potential of this technol-
ogy outweigh its environmental cost. For reasons explained 
in Sect. 3.1, this section focuses on methods to estimate the 
carbon footprint only of AI research (training models), not 
of AI uses in general, and the technological and normative 
factors that contribute to the rise of computationally inten-
sive AI research.

Following the advent of deep learning (DL), computing 
power (henceforth compute) usage rose exponentially, dou-
bling every 3.4 months (Amodei and Hernandez 2018), as 
specialised hardware to train large AI models became central 
to the research field (Hooker 2020). The increase in energy 
consumption associated with training larger models and with 
the widespread adoption of AI has been in part mitigated 
by hardware efficiency improvements (Ahmed and Wahed 
2020; Wheeldon et al. 2020). However, depending on where 
and how energy is sourced, stored and delivered, the rise of 
compute-intensive AI research can have significant, negative 
environmental effects (Lacoste et al. 2019).

3.1 � Gauging the carbon footprint of AI

A “carbon footprint” accounts for the GHG emissions of a 
device or activity, expressed as carbon dioxide equivalent 
(CO2eq). When applied to a product like a smartphone, a 
carbon footprint estimation considers emissions that occur 
during constituent activities, like the extraction of raw mate-
rials, manufacturing, transportation, lifetime usage and 
how the product is disposed of (Crawford and Joler 2018; 
Malmodin and Lundén 2018). This estimate includes, among 
other things, information on the carbon/emission intensity 
of electricity generation throughout a product’s lifecycle 
and on the carbon offsetting efforts made by the various 
actors involved in the aforementioned activities (Matthews 
et al. 2008). However, determining the carbon footprint of 
a type of product (e.g. AI systems) or entire sector (e.g. 
Information Communication Technologies, ICT) can be a 
daunting task that yields only partial results, not least due to 
transparency issues and methodological challenges of GHG 
monitoring (Matthews et al. 2008; Russell 2019; Cook and 
Jardim 2019; Mytton 2020).

Estimates of GHG emissions of the ICT sector (includ-
ing computing devices and data centres) vary greatly across 
different studies (Malmodin and Lundén 2018; Hintemann 
and Hinterholzer 2020). Malmodin and Lundén’s (2018), 
a widely cited study based on data from 2015, estimates 
that the ICT sector is responsible for 1.4% of global GHG 
emissions. Depending on future efficiency gains and the 
diversification of energy sources, estimates indicate that the 
ICT sector will be responsible for anywhere between 1.4% 
(assuming a stagnant growth) to 23% of global emissions by 
2030 (Andrae and Edler 2015; Malmodin and Lundén 2018; 
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C2E2 2018; Belkhir and Elmeligi 2018; Jones 2018).17 At 
the same time, it is worth noting that the demand for data 
centres, which are key to the ICT sector and the operation 
of AI in research and production settings, has grown sub-
stantially in recent years, yet data centres’ energy consump-
tion has remained relatively stable (Avgerinou et al. 2017; 
Shehabi et al. 2018; Jones 2018; Masanet et al. 2020). The 
International Energy Agency reports that, if current effi-
ciency trends in hardware and data centre infrastructure can 
be maintained, global data centre energy demand—currently 
1% of global electricity demand—“can remain nearly flat 
through 2022, despite a 60% increase in service demand” 
(IEA 2020). Indeed, significant efforts have been made to 
curb data centres’ carbon footprint by investing in energy-
efficient infrastructure and switching to renewable sources 
of energy (Jones 2018; Masanet et al. 2020). Cloud providers 
especially, such as Microsoft Azure and Google Cloud, have 
worked to keep their carbon footprint in check by commit-
ting to renewable energy, improving cooling systems and 
efficient processors, recycling waste heat, and investing in 
carbon offsetting schemes (Jouhara and Meskimmon 2014; 
Avgerinou et al. 2017; Jones 2018; Open Compute Project 
2020). In fact, both providers have leveraged AI to reduce 
the energy consumption of their data centres, in some cases 
by up to 40% (Evans and Gao 2016; Microsoft, C 2018).

Whether these efforts keep pace with the growing demand 
for data centre services and whether efficiency gains are 
equally realised around the world will be crucial factors 
affecting the environmental impact of the sector. These goals 
may not be easily achievable. Even in the EU, where energy-
efficient cloud computing has become a primary issue on 
the political agenda, the European Commission estimates 
a 28% increase in energy consumption of data centres by 
2030 (European Commission 2020d). Things are compli-
cated even further by transparency concerns regarding the 
data required to calculate GHG emissions of on-premise 
data centres as well as cloud vendors, which will need to be 
addressed to obtain an accurate understanding of the carbon 
footprint of the ICT sector (Hintemann 2015; Mytton 2020; 
Hintemann and Hinterholzer 2020).

At the same time, understanding the carbon footprint of 
AI involves more than just monitoring data centres, as the 
rest of this section will show (Henderson et al. 2020; Cai 
et al. 2020). Given the wide range of artefacts and activities 
relying on some form of AI and the multi-layered production 
process of AI systems—spanning from data collection and 
storage, to hardware production and shipment, to AI/machine 
learning (ML) model trainings and inferences—gauging 

the carbon footprint of AI is challenging. This is why this 
section focuses on the carbon footprint associated with the 
energy consumption of AI research activities, available in 
corresponding research publications.18 As we shall see in 
Sect. 3.3, verifiable information on the short- and projected 
medium-term environmental impact of AI research activities 
is limited and suffers from a lack of systematic and accu-
rate measurements. However, the information contained in 
research publications regarding the energy consumption and 
carbon emission of AI is more accessible and testable than 
in industry reports. Thus, it offers a more reliable starting 
point to understand the environmental impact of AI, even if 
it is indicative only of a subset of all AI-related activities. 
Furthermore, to gauge the energy consumption and carbon 
footprint of AI research activities, it is important to distin-
guish between two phases of computation that are central to 
supervised ML research methods: training (or “learning”) 
and inferences. Training a ML model involves providing 
labelled sample data, or a “training set”, to a ML algorithm 
so that it can “learn” from it and create an appropriate math-
ematical model with the optimal parameters that minimise 
a certain cost function (e.g. some metric of error). Once the 
training phase is finished, a model and its parameters are 
fixed and such model can be operationalised and produce 
actionable output on new, unseen data, which is the “infer-
ence” process.

In the short term, the training phase is computation-
ally more demanding and energy intensive (Al-Jarrah et al. 
2015). In the medium term, the energy consumption of the 
inference phase scales with usage, as inference can usually 
occur millions of times per day for an indefinite amount of 
time (Sze et al. 2017). So, training is often more energy-
intensive in data-driven, ML-based research, while inference 
might be more energy-intensive in at-scale production sys-
tems which may require non-stop usage. This is why, in the 
context of AI as a whole, this article focuses on information 
pertaining to the research and training of AI models.

Several approaches to monitoring and estimating the 
GHG emissions of AI research activities have been recently 
offered. These include the reporting of floating point opera-
tions (Lacoste et al. 2019; Schwartz et al. 2019; Hender-
son et al. 2020), hardware type and hardware burden or 
“processors multiplied by the computation rate and time” 

17  A new standard (L.1470) set out by the ITU was recently devel-
oped to keep the ICT industry in line with the Paris Agreement and 
reduce GHG emissions by 45% from 2020 to 2030 (ITU 2020).

18  Over the past two decades, the number of data-driven AI confer-
ences and publications has grown dramatically (Perrault et al. 2019). 
The volume of peer-reviewed AI papers increased by more than 300% 
from 1998 to 2018, while the number of publications on “Machine 
Learning” on the open-access archive “ArXiv” has doubled every 
15  months since 2015 (Perrault et  al. 2019). This growth is also 
fuelled by an increasing amount of publications originating from the 
private sector—big technology companies in particular—with their 
seemingly limitless resources to conduct experiments (Perrault et al. 
2019, 17; Lohr 2019; Ahmed and Wahed 2020).
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(Thompson et al. 2020, 10), the data centre in use during 
model training, as well as the energy sources powering the 
electrical grid (Schwartz et al. 2019; Anthony et al. 2020), 
the number of experiments required during model construc-
tion (Schwartz et al. 2019; Strubell et al. 2019), and the 
time period in which a model was trained, as carbon/emis-
sion intensity can vary throughout the day (Anthony et al. 
2020). Of these approaches, two recent efforts stand out for 
their generalisability and/or ease of use, namely Henderson 
et al.’s (2020) “experiment-impact-tracker” and Lacoste 
et al’s (2019) Machine Learning Emissions Calculator.

The first approach rests on a comprehensive framework 
available on GitHub (Henderson et al. 2020), specifying 
the relevant data to collect during and after model training 
phases to assess the related GHG emissions:

	 1.	 Central processing unit (CPU) and graphics processing 
unit (GPU)19 hardware information;

	 2.	 experiment start and end times;
	 3.	 the energy grid region the experiment is being run in 

(based on IP address);
	 4.	 the average carbon/emission intensity in the energy 

grid region;
	 5.	 CPU- and GPU-package power draw;
	 6.	 per-process utilisation of CPUs and GPUs;
	 7.	 GPU performance states;
	 8.	 memory usage;
	 9.	 the real-time CPU frequency (in Hz);
	10.	 real-time carbon intensity.
	11.	 disk write speed.

Unfortunately, information about these 11 variables is 
rarely available in its entirety in most research publications 
(Henderson et al. 2020). In an analysis of 1,058 research 
papers on DL, Thompson et al. (2020, 10) found that most 
papers “did not report any details of their computational 
requirements”.

By contrast, the second approach (Lacoste et al.’s 2019) 
limits itself to information pertaining to the type of hard-
ware, hours of training, region of compute, and cloud pro-
vider/private infrastructure. This is a helpful approach to 
estimating the carbon footprint of AI research activities 
using a minimum amount of data and without actually 
reproducing experiments and models. For this reason, we 
use Lacoste et al.’s (2019) approach to calculate the carbon 
footprint of large AI research projects, and we use GPT-3, 
OpenAI’s latest research breakthrough as our case study. 
While the following estimates cannot be definitive, due to 
a lack of data available in OpenAI’s research publication, 

they serve to reflect both the importance and the difficulty 
of assessing carbon footprints when researchers fail either 
to report them or to provide enough information regarding 
training infrastructure and model implementation.

GPT-3 is an autoregressive language model that has 
attracted considerable attention from researchers and news 
outlets since documentation was published on arXiv in May 
2020 by Brown et al. (2020). From the research publication 
detailing GPT-3, we know that the model required several 
thousands of petaflop/s-days (3.14E23 FLOPS) of compute 
during pre-training. This is orders of magnitude higher than 
the previous state-of-the-art (SOTA) 1.5B parameter GPT-2 
model that the company released in 2018, which required 
only tens of petaflop/s-days (Radford et al. 2018). GPT-3 
was trained using NVIDIA’s V100 GPUs on a cluster pro-
vided by Microsoft. Thus, one can calculate that, at a theo-
retical processing speed of 28 Terra Flops (TFLOPS)20 for a 
V100 GPU, it would take around 355 GPU years for a single 
training run (Li 2020).

Using Lacoste et  al.’s carbon impact calculator and 
assuming that the cloud provider (Microsoft Azure) was 
based in the US (West), we find that a single training run 
would have generated 223,920 kg CO2eq. If the cloud pro-
vider had been Amazon Web Services (AWS), the same 
training would have generated 279,900 kg CO2eq.21 This 
does not include the carbon offsetting efforts made by these 
companies (Mytton 2020). As a point of reference, a typi-
cal passenger car in the United States emits about 4600 kg 
CO2eq per year (US EPA 2016), meaning that one training 
run would emit as much as 49 cars (Microsoft Azure) or 
61 cars (AWS) in a year. A single training run can emit 
drastically more GHG depending on the region of compute 
and the carbon/emission intensity of electricity generation 
in the selected region (Lacoste et al. 2019). For example, it 
is ten times more costly in terms of CO2eq emissions to train 
a model using energy grids in South Africa compared to 
France (see compute regions in Lacoste et al. 2019). Figure 7 
below offers examples of the variation of energy consump-
tion across different countries.

The authors of GPT-3 (Brown et al. 2020) also note that 
training the model required an immense amount of resource, 
but GPT-3 has the advantage of adapting to new tasks quite 
efficiently compared to other language models that would be 

20  The 28 TFLOPS is assumed here based of NVIDIA’s advertise-
ment of the V100 performance as well as on Microsoft’s DeepSpeed 
and ZeRO-2 performance results for training + 100-billion-parameter 
models using V100 GPUs (NVIDIA 2018; Rangan and Junhua 2020).
21  Using a different set of assumptions and a methodology similar 
to that of Henderson et  al. (2020), a group of researchers from the 
University of Copenhagen have estimated the training run would emit 
up to 84,738.48 kg CO2eq in the US (region not specified) (Anthony 
et  al. 2020). This highlights the importance of disclosing enough 
information in research publications.

19  It is important to also include field programmable gate arrays 
(FPGAs) and application-specific integrated circuits (ASICs) like ten-
sor processing units (TPUs) to this framework.
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relatively costly to fine-tune. For example, the authors report 
that to generate “100 pages of content from a trained model 
can cost on the order of 0.4 kW-h, or only a few cents in energy 
costs” (Brown et al. 2020).

More recently, researchers from the Google Brain team 
released a research paper stating to have trained a 1.6 trillion 
parameters language model—approximately 9 times big-
ger than GPT-3 (Fedus et al. 2021). And although the paper 
describes the use of a training technique that reduces compu-
tational costs and increases model training speed, it does not 
indicate the energy consumption or carbon emissions of the 
research project. This comes against the backdrop of earlier 
warnings from Google’s own Ethical AI team regarding the 
environmental costs of such large models (Bender et al. 2021).

It is crucial for the field of AI to come to terms with these 
numbers. These large AI research projects may be indicative 
of—and exacerbate—a failure to engage with environmental 
questions, to disclose important research data, and to shift the 
focus away from ecologically short-sighted success metrics 
(García-Martín et al. 2019; Schwartz et al. 2019; Henderson 
et al. 2020). In what follows we explore the technological and 
normative factors that have entrenched the field of AI research 
on an energy-intensive, and potentially carbon-intensive, path.

3.2 � Factors driving increases in AI’s carbon 
footprint

3.2.1 � Technological considerations: compute‑intensive 
progress

The recent rise of AI can be largely attributed to the 
increasing availability of massive amounts of data and to 

the adoption of general methods leveraging the “contin-
ued exponentially falling cost per unit of computation” 
described by Moore’s law (i.e. the number of transistors 
per microchip doubles every 2 years for the same costs) 
(Sutton 2019). DL epitomises AI research that is based on 
scaling general purpose methods with increased computa-
tion and availability of large amounts of unstructured data 
(Sutton 2019). Recent breakthroughs, where AI models 
were able to reach parity with humans on a number of 
specific tasks, are the result of such AI research based on 
deep neural networks and improvements in computation 
and data availability (Ahmed and Wahed 2020; Hooker 
2020). However, the advent of DL has also marked a split 
between the increase in available compute (i.e. Moore’s 
law) and the increase in compute-usage (Theis and Wong 
2017; Thompson and Spanuth 2018; Ahmed and Wahed 
2020). Exploring these trends helps us map the risks 
and opportunities of AI research with regards to climate 
change.

Moore’s law has resulted in developers being able to 
double an application’s performance for the same hardware 
cost. Prior to 2012, AI developments have closely mirrored 
Moore’s law, with available compute doubling approxi-
mately every two years (Perrault et al. 2019). As shown 
in Fig. 8, improvements in computer hardware provided 
almost a 50,000 × improvement in performance, while the 
computational requirements of neural networks had grown 
at a similar pace until the introduction of chips with multi-
ple processor cores (Hill and Marty 2008; Thompson et al. 
2020, 8). Arguably, hardware development has often deter-
mined what research activities would be successful (Hooker 
2020). For example, deep convolutional neural networks and 

Carbon 
emissions 
(CO2eq)

Train 
Compute 
(FLOPS) GPU

Training 
hours Cloud Provider 

South Africa (West) 942,330kg 3.14E+23 V100 3.11E+06 Microsoft Azure

India (South) 858,360kg 3.14E+23 V100 3.11E+06 Microsoft Azure

Australia (Central) 839,700kg 3.14E+23 V100 3.11E+06 Microsoft Azure

Europe (North) 578,460kg 3.14E+23 V100 3.11E+06 Microsoft Azure

South Korea (Central) 485,160kg 3.14E+23 V100 3.11E+06 Microsoft Azure

Brazil (South) 186,600kg 3.14E+23 V100 3.11E+06 Microsoft Azure

France (Central) 93,300kg 3.14E+23 V100 3.11E+06 Microsoft Azure

Fig. 7   Environmental costs (in kg of CO2eq) of a single training run of GPT-3 across different compute regions (Regional carbon intensity 
sourced from https://​github.​com/​mlco2/​impact/​tree/​master/​data.)

https://github.com/mlco2/impact/tree/master/data
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backpropagation, which are central components to contem-
porary DL research, had already been introduced in the 80s 
(Fukushima and Miyake 1982; Werbos 1988), but had real 
impact only four decades later, following hardware progress 
and large-scale data availability (Hooker 2020).

As described by Thompson et al. (2020, 8), during the 
“multicore era”, DL was “ported to GPUs, initially yielding 
a 5 − 15 × speed-up which by 2012 had grown to more than 
35 × ” and which led to the AlexNet breakthrough in 2012 
(Alom et al. 2018). Shortly after the AlexNet breakthrough 
in image recognition, a number of achievements followed in 
the various subfields of AI. In 2015, a reinforcement learn-
ing (RL) system achieved human-level performance in a 
majority of Atari games; in 2016 object recognition reached 
human parity and AlphaGo beat one of the world’s greatest 
Go players; in 2017 speech recognition reached human par-
ity; in 2018 reading comprehension, speech synthesis and 
machine translation all reached human parity; and in 2019, 
the ability to scan and extract contextual meaning from text 
and speech (and answer a series of interconnected questions) 
reached human parity (Alom et al. 2018; Microsoft 2019; 
Evans and Gao 2016). These breakthroughs were all possible 
due to considerable increases in compute-usage (Ahmed and 
Wahed 2020). Indeed, since 2012, compute-usage has been 
doubling every 3.4 months, spearheaded by the development 
of DL (Amodei and Hernandez 2018).

Increases in compute have been essential, especially to 
RL, as this is an area of ML that stands out for its sample-
inefficient methods of learning. Learning phases can require 
hundreds of millions of samples, making it impractical for 
“real-world control problems” such as in robotics (Buck-
man et al. 2018). Yet, RL has been used for text summarisa-
tion, robotic manipulation, and also to compete with human 
performance in domains such as Atari games, Chess, and 
Go (Berner et al. 2019). As researchers begin to apply RL 

methods to increasingly complex domains, like online mul-
tiplayer games, sample inefficiency will continue to drive 
energy costs higher. For example, OpenAI Five, which 
was developed to compete with professional Dota 2 play-
ers, played 900 years’ worth of games per day to reach a 
competitive level at the game (Berner et al. 2019). After 
ten months of training, using around 770 Peta Flops/s·days 
of compute, the model beat the world champions at Dota 2 
(Berner et al. 2019).

The multicore era also marks a decoupling of the 
improvements in hardware performance from the growth in 
computational requirements of large AI models, with the 
latter considerably outpacing the former. Because of this, 
researchers are facing diminishing returns (Thompson et al. 
2020). The compute needed to train SOTA models is grow-
ing approximately ten times faster than GPU performance 
per watt (Thompson et al. 2020). This means that the pre-
sent trend in scaling ML models is unlikely to be a sustain-
able path forward, both in terms of financial costs and for 
the preservation of the planet, given the very high levels 
of energy consumption that are associated with it (Hen-
derson et al. 2020; Thompson et al. 2020). As shown in 
Fig. 9, it would be financially and ecologically prohibitive 
to reach lower error rates in different tasks, as any improve-
ment (measured in percentage points) on a model’s accu-
racy would require significantly more energy and GHG. 
For example, if we look at the Thompson et al.’s (2020) 
polynomial models, it appears that reducing the error rate 
by 16.7 percentage points for MS COCO (Common Objects 
in Context) to achieve an error rate of 30%, would require 
109 × more computation (GFLOPS) and generate 108 × more 
CO2eq (in lbs).

To enable the current compute-usage trend and mitigate 
diminishing returns, ML-specific hardware, such as Goog-
le’s TPUs, and various approaches, like neural architecture 

Fig. 8   Computing power 
demanded by DL throughout 
the years (figure taken from 
Thompson et al. 2020)
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search, have been developed in recent years (Amodei and 
Hernandez 2018). However, even as new devices and hard-
ware architectures continue to deliver better energy effi-
ciency, it is not guaranteed that these improvements will 
keep pace with compute-usage, nor are they guaranteed to be 
available to everyone around the globe (Ahmed and Wahed 
2020; Hooker 2020). It follows that, if AI researchers are 
unable to access SOTA hardware to train large ML mod-
els, or if hardware performance does not keep pace with the 
growth of compute-usage in AI research, then the field’s 
energy consumption will grow quickly (Nature Electronics 
2018). Additionally, research has shown that the current 
focus on DL and custom hardware has come at the detriment 
of funding “hardware for use cases that are not immediately 
commercially viable”, making it more costly to diversify 
research (Hooker 2020, 9).

Algorithmic progress has also shown promising effects 
in relation to efficiency improvements for large model 
trainings. Although algorithmic progress is more depend-
ent on human knowledge—as opposed to computational 
advances—and thus takes more time and effort to occur 
(Sutton 2019), Thompson et al. (2020) note that three years 
of algorithmic improvement is equivalent to an increase in 
computing power by a factor of 10. This can be observed 
in image recognition (Hernandez and Brown 2020), neu-
ral machine translation (Thompson et al. 2020), and certain 
areas of RL (Hernandez and Brown 2020). For example, 
since 2012, the compute required to train a neural network 
to the “same performance on ImageNet classification has 
been decreasing by a factor of 2 every 16 months” and it now 
takes “44 times less compute to train a neural network to the 

level of AlexNet” (Hernandez and Brown 2020). Neverthe-
less, we note that research exploring new neural network 
architectures or new hardware–software–algorithm combi-
nations has largely been side-lined in favour of compute-
intensive AI research (Hooker 2020; Marcus 2020; Ahmed 
and Wahed 2020).

Fortunately, researchers have also sought to reduce the 
computational burden and energy consumption of AI by 
focusing on building more efficient models through vari-
ous approaches, such as random hyperparameter search, 
pruning, transfer learning or simply by stopping training 
early for underperforming models (Sze et al. 2017; Pham 
et al. 2018; Chen et al. 2019; Schwartz et al. 2019; Coleman 
et al. 2019a). More efforts are required in these areas. To 
be successful they need endorsement and cultivation from 
the wider field of AI to gain larger uptake. For AI research 
to continue to thrive, while keeping its carbon footprint in 
check and avoid running into a technological impasse in the 
coming years (Jones 2018), the field needs to reconsider its 
dedication to compute-intensive research and move away 
from performance metrics that focus exclusively on accu-
racy improvements (Schwartz et al. 2019). The following 
section addresses the normative factors that have enabled 
these negative trends.

3.2.2 � Normative considerations

For a field of research that relies on data collection and data 
processing, information about the energy consumption and 
carbon emissions of AI/ML models and research activities 
should be more detailed and more accessible (Henderson 

Fig. 9   Implications of achieving performance benchmarks on the computation, carbon emissions (lbs), and economic costs from deep learning 
based on projections from polynomial and exponential models (figure from Thompson et al. 2020)
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et al. 2020). Indeed, alongside the technological factors that 
have skewed the development of AI/ML models, there are 
also normative factors, like the lack of effective reproduc-
ibility requirements for research publications, which also 
contribute to explain the entrenchment of research activities 
in energy-intensive practices (Hooker 2020; Fursin 2020). 
Examining these factors, and questioning the validity of 
some standards and practices in AI research, is key to ensur-
ing that the field keeps its carbon footprint to a minimum.

AI research has been grappling with a reproducibility 
crisis. Given the growing amount of AI-related research 
activities and compute-usage, this crisis needlessly super-
charges the field’s carbon footprint (Fursin 2020). From 
papers that do not disclose their code (as is the case for 
GPT-3) to papers that do not share the data used to train their 
model (e.g. for privacy or proprietary reasons) to papers that 
provide insufficient or even misleading information about 
the training conditions of their models, there have been per-
sistent obstacles to verifying and reproducing results in AI 
research (Gibney 2020; Fursin 2020). In turn, these obstacles 
translate into unnecessary energy consumption.

After conducting a survey of 400 algorithms presented 
in research papers at two top AI conferences (IJCAI and 
NeurIPS), researchers reported that only 6% of the presented 
papers shared the algorithm's code, a third shared the data 
on which they tested their algorithms, and only half shared a 
partial summary of the algorithm (Gundersen and Kjensmo 
2018; Hutson 2018). Several studies have investigated this 
issue in the context of energy consumption and carbon emis-
sions (Lacoste et al. 2019; Schwartz et al. 2019; Strubell 
et al. 2019; Henderson et al. 2020; Dhar 2020). Indeed, after 
analysing a sample of 100 papers from the NeurIPS 2019 
proceedings, Henderson et al. (2020, 4) reported that none of 
them provided carbon metrics, only one of them “measured 
energy in some way, 45 measured runtimes in some way, 46 
provided the hardware used” and 17 of them “provided some 
measure of computational complexity (e.g., compute-time, 
FPOs, parameters)”. Although major AI conferences, such 
as ICML, IJCAI or NeurIPS, are increasing their efforts to 
normalise the submission of code and have implemented 
reproducibility checklists, the disclosure of information 
regarding computational complexity, energy consumption, 
and carbon emission is still uncommon (Strubell et al. 2019; 
Thompson et al. 2020).

Sharing source code is necessary to ensure reproducibil-
ity in AI research. But it is not sufficient. Researchers have 
highlighted the importance of disclosing the training data 
and the initial parameters set for the training phase, or hyper-
parameters (Schwartz et al. 2019; Hartley and Olsson 2020). 
Sharing a model’s sensitivity to hyperparameters, or of the 
random numbers generated to start the training process in 
the case of RL, is essential to allow researchers to reproduce 
results without going through a long, and environmentally 

costly, process of trial and error (Hutson 2018; Strubell 
et al. 2019; Gibney 2020). Indeed, the number of experi-
ments run by researchers before achieving publishable 
results are both “underreported and underdiscussed” (Dodge 
et al. 2019; Schwartz et al. 2019, 9). In this case, a direct 
result of incomplete or misleading information disclosures 
is the “double costs” incurred by researchers that have to 
rediscover, even if only partially, the information that led to 
the reported results. Building on existing research becomes 
more difficult when newcomers have to incur unnecessary 
costs of experimentation that were already incurred for the 
original publication of a model. This approach inflicts an 
unnecessary double cost on the environment via increased 
energy consumption.

According to recent research on the energy consumption 
and carbon footprint of DL in natural language processing 
(NLP), the process of researching and developing SOTA 
models multiplies the financial and environmental costs of 
training a model by thousands of times (Strubell et al. 2019). 
Indeed, over the course of six months of research and devel-
opment, a single research paper may require training thou-
sands of models before being published (Dodge et al. 2019; 
Schwartz et al. 2019, 4). Similarly, Schwartz et al’ (2019, 4) 
have reported that massive amounts of computation go into 
“tuning hyperparameters or searching over neural architec-
tures”. This is the case, for example, of Google Brain, which 
trained over 12,800 neural networks in its neural architecture 
search to achieve a 0.09 percent accuracy improvement and 
1.05 × in speed on the CIFAR-10 dataset (Zoph and Quoc 
2017). In light of our calculations regarding the carbon emis-
sion of a single training run for GPT-3, this would mean that 
to achieve their published model the research team at Ope-
nAI may have generated much more CO2eq than previously 
estimated. Failing to report the research experiments that 
went into achieving the reported results can have a snow-
ball effect for the field of AI research in terms of energy 
consumption and carbon emissions, as it imposes a longer 
trial-and-error process onto new researchers.

Modern AI research has focused on producing deeper and 
more accurate models at the detriment of energy efficiency 
(Sutton 2019; Perrault et al. 2019; Hooker 2020). Indeed, 
some of the main benchmarks, challenges and leader boards 
on which AI researchers and organisations compete, such 
as GLUE (2020), SuperGLUE (2020), SQuAD2.0 (2020),  
Russakovsky (2015) and VTAB (2020), have been heavily 
focused on driving accuracy improvements with little regard 
for improving on energy efficiency (Perrault et al. 2019; 
Reddi et al. 2020). This narrow focus increases compute-
intensive AI research and exacerbates diminishing returns, 
with researchers competing for fractional improvements 
in error rates (Henderson et al. 2020). It is only relatively 
recently that efforts have emerged to reduce compute-
usage and improve energy efficiency of DL methods, at the 
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algorithmic, hardware, as well as implementation levels 
(Chen et al. 2015, 2017; EDL 2017; Sze et al. 2017; Guss 
et al. 2019; García-Martín et al. 2019; Jiang et al. 2019; Cai 
et al. 2020). The Low Power Image Recognition Challenge 
(LPIRC) is a good example of such efforts (García-Martín 
et al. 2019).

To demonstrate the prevalence of accuracy metrics over 
efficiency metrics, a group of researchers at the Allen AI 
Institute sampled 60 papers from top AI conferences (ACL, 
CVPR and NeurIPS) that claimed to achieve some kind of 
improvement in AI (Schwartz et al. 2019). As shown in 
Fig. 10, a large majority of the papers target accuracy (90% 
of ACL papers, 80% of NeurIPS papers and 75% of CVPR 
papers), and in both ACL and CVPR, which are empirical 
AI conferences, only 10% and 20% respectively argue for 
new efficiency results (Schwartz et al. 2019). The preva-
lence of accuracy over efficiency in AI research has also 
been stressed by the Electronic Frontier Foundation’s “AI 
Progress Measurement” project, which tracks progress on 
problems and metrics/datasets from the AI research litera-
ture and provides a comprehensive view of the field’s priori-
ties (EFF 2017).22

Several issues arise from focusing on accuracy over 
efficiency metrics. First, it creates a high barrier to entry, 
as only wealthy research groups are able to incur in the 
growing costs of compute-intensive research (Ahmed and 
Wahed 2020). This leads to a limited number of researchers 
to be able to afford stronger results and hence publications 
(Schwartz et al. 2019, 2), thus creating a virtual monopoly 
on fundamental research and side-lining researchers from 
smaller organisations, less funded contexts, and developing 
countries (see Fig. 11). Second, it ingrains a “the bigger the 
better” mentality into the field, thus giving carte blanche to 
organisations and researchers to accelerate experimentation 
and increase their eventual energy consumption. This, in 
turn, makes it harder to explore efficiency improvements. It 
also reduces the diversity of research topics. Third, it keeps 
the field on a path of diminishing returns and incentivises 
researchers to pursue incremental improvements and “pub-
lish at all cost”, even if it means achieving practically (for 
deployed systems) negligible accuracy improvements.

3.3 � Overall balance

It is important to keep in mind that, although training AI/
ML models can require a lot of energy, they are usually used 
to improve the efficiency of many tasks that would other-
wise require more time, space, human effort, and potentially 
electricity (Narciso and Martins 2020). When deployed in 
production settings or edge devices, AI systems can have 
downstream effects that counterbalance their own energy 
consumption and GHG emissions (see Sect. 2). Addition-
ally, recent progress in making the deployment of deep neu-
ral networks on edge devices, like smartphones and tablets, 
much more efficient, has been significant for the environ-
mental impact of AI (Cai et al. 2020). Indeed, the diversity 
of hardware platforms in use today has created various effi-
ciency constraints requiring, for example, that neural net-
works are redesigned and retrained for each new environ-
ment they are deployed in (Cai et al. 2020). However, novel 
approaches, such as “Once-for-All” networks, show great 
promise as they require approximately 1/1300 of the carbon 
emissions of SOTA neural architecture search approaches 
while also reducing inference time (Cai et al. 2020).23

For most or all industry sectors, AI offers significant 
“gains in efficiency and performance” (Hall and Pesenti 
2017, 2), and indeed, the European Commission’s Horizon 
2020 programme has been investing in projects using AI sys-
tems to improve the energy and resource efficiency of many 
sectors (Dahlquist 2020). Balancing the energy consumption 
of AI against its energy-efficiency gains will be an important 

Fig. 10   Proportion of papers that target accuracy, efficiency, both or 
other from a sample of 60 papers (figure from Schwartz et al. 2019)

22  It is also worth noting the carbon footprint associated with the 
steep growth in attendance at AI conferences. The Stanford AI Index 
reports that in 2019, NeurIPS had an increase of 41% in attendance 
over 2018 and over 800% relative to 2012 (Perrault et al. 2019). Other 
conferences such as the AAAI and CVPR are also seeing an annual 
attendance growth of around 30% (Perrault et  al. 2019). These gen-
erate a non-negligible amount of carbon emissions (Perrault et  al. 
2019; Henderson et al. 2020). Using the attendance of the top 10 AI 
conferences in 2019, Henderson et  al. (2020) estimate that around 
34,449,597 kg of CO2eq were emitted from these conferences alone.

23  Once-for-all networks support “diverse architectural settings by 
decoupling training and search”, thus reducing GPU usage and car-
bon emissions (Cai et al. 2020, 1).
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task for both researchers and regulators alike, one that begins 
with obtaining enough information about a model.

Our analysis thus far is testament to the complexity inher-
ent to any attempt to talk about AI in the context of climate 
change. On the one hand, the power of AI can be harnessed 
to address some of the most complex tasks associated 
with combating climate change successfully. On the other 
hand, the development of AI is itself contributing to GHG 
emissions that advance climate change still further. Taken 
together, this analysis suggests the need for coordinated, 
multilevel policymaking that can advance the use of AI to 
combat climate change, whilst ensuring that the develop-
ment of AI does not itself contribute to the existing problem. 
This is why in the remainder of article we turn from techni-
cal to political considerations for AI and climate change.

4 � Policy context: the EU’s twin transitions

The opportunities presented by AI for tackling climate 
change are just one example of the broader intersection 
between the digital revolution and the efforts for sustainabil-
ity. In recent years, this “Green & Blue” formula (Floridi and 
Nobre 2020; Floridi 2020) has become apparent, at least on 
paper, in European policymaking. “A European Green Deal” 
and “A Europe fit for the digital age” were two of the six 
“headline ambitions” highlighted in the political guidelines 
released as part of von der Leyen’s campaign. Since von 
der Leyen took office, documents issued by the Commission 
have begun referring to the “twin transitions”—ecological 
and digital—that will shape Europe’s medium- to long-term 
future. The proximity and interdependence of “green plus 

blue” has recently been further reinforced by the Commis-
sion’s response to the coronavirus pandemic, which antici-
pates a large stimulus including “modernisation” through 
“fair climate and digital transitions, via the Just Transition 
Fund and the Digital Europe Programme” (European Com-
mission 2020i). References to the role of digital technol-
ogy are studded throughout the “European Green Deal” 
communication and roadmap, released in December 2019 
(European Commission 2019). As the document notes, 
“digital technologies are a critical enabler for attaining the 
sustainability goals of the Green Deal in many different 
sectors”, and technologies “such as artificial intelligence … 
can accelerate and maximise the impact of policies to deal 
with climate change and protect the environment” (p. 9). 
Domains in which “smart” or “innovative” digital technolo-
gies are expected to play a role include energy grids (p. 6), 
consumer products (p. 8), pollution monitoring (p. 9), mobil-
ity (p. 10), and food and agriculture (p. 12)—that is, many of 
the domains in which the existing evidence, summarised in 
Sect. 2, suggests that AI is already being deployed and will 
make an increasing difference.

Recent Commission documents on Europe’s forthcoming 
“digital transformation” equally highlight the possibilities 
this transformation holds for sustainability. As the Com-
mission’s recently released “Strategy on shaping Europe’s 
digital future” (European Commission 2020e) notes, digi-
tal technologies will “be key in reaching the ambitions of 
the European Green Deal and the Sustainable Development 
Goals” as “powerful enablers for the sustainability transi-
tion” (European Commission 2020c, p. 5). The document 
highlights sectors including agriculture, transport and 
energy as benefiting particularly from digital “solutions”. 

Fig. 11   Number of deep learn-
ing papers on arXiv, per region 
(figure from Perrault et al. 
2019)
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In addition, other Commission documents released within 
the last twelve months also highlight the twin transitions:

•	 The “European strategy for data” announces the estab-
lishment of a “common European Green Deal data 
space” to use shared data to meet Green Deal targets 
(European Commission 2020b);

•	 The “White Paper on Artificial Intelligence: A European 
approach to excellence and trust” highlights the impact of 
AI on climate change mitigation and adaptation in its first 
paragraph and again throughout (European Commission 
2020g); and

•	 The “New industrial strategy for Europe” asserts that 
Europe “needs an industrial sector] that becomes greener 
and more digital” (European Commission 2020b, p. 2)

Several of the documents make reference to the so-called 
“Destination Earth” initiative, the stated intention of which 
is to “develop a very high precision digital model of the 
Earth to monitor and simulate natural and human activity, 
and to develop and test scenarios that would enable more 
sustainable development and support European environmen-
tal policies” (European Commission 2020h). Destination 
Earth is designed to contribute both to the Commission’s 
Green Deal and to its Digital Strategy. It targets national 
authorities to aid policymakers and then opens up to users 
from academia and industry. The technical details of Desti-
nation Earth remain to be specified, but it is said to provide 
access to “data, advanced computing infrastructure, soft-
ware, AI applications and analytics”. Therefore, while the 
exact role of AI tools within the initiative remains to be seen, 
the scale and ambition of Destination Earth and its role at 
the intersection of the “twin transitions” suggest it may be 
important in fostering the use AI to tackle climate change.

Given the prominence of digital technologies in every-
day life and the increasing salience of the climate change 
challenge—as well as the coordination of policy priorities 
that accompanies a new administration—it is not surpris-
ing to find concordance among these documents. Even so, 
the extent to which the Commission seems to anticipate the 
twin transitions developing hand-in-hand is striking. The 
EU’s renewed commitment to using AI and other digital 
technologies to make European society and industry greener 
and more sustainable is an important statement of intent and 
suggests that Europe may become a focal point of efforts to 
develop AI to combat climate change effectively. However, 
it is important not to conflate the stated aspirations of poli-
cymakers with the actual outcomes of policies, especially 
in the fast-changing and unpredictable domains of digital 
technology and global climate change. And it could just as 
well be the case that, despite high hopes for complementa-
rity and coherence between the EU’s digital and ecological 
agendas, incongruity and conflict may be just as likely to 

result. The policy documents also tend to presume a harmo-
nious relationship between the digital and ecological transi-
tions, overlooking the trade-offs that may need to be struck 
between them, and how this could or should be done. For 
all the opportunities these policy documents highlight, they 
brush over the challenges that need to be addressed to ensure 
a successful adoption of AI tools. To this end, in the next 
section, we offer 13 recommendations.

5 � Recommendations for EU policymakers 
and the AI research community

The previous sections identified two areas where recommen-
dations for leveraging the opportunities and addressing the 
challenges posed by AI in the context of climate change can 
be offered. Stated as objectives, these are, first, to harness 
the potential of AI for understanding and combatting cli-
mate change in ways that are ethically sound; and second, to 
gauge and minimise the size of AI’s carbon footprint. In this 
section, we address these two objectives, to identify specific 
methods and areas of intervention for European policymak-
ers and AI researchers in turn. Our recommendations urge 
these stakeholders to assess existing capacities and potential 
opportunities, incentivise the creation of new infrastructures, 
and develop new approaches to enable society to maximise 
the potential of AI in the context of climate change, while 
minimising ethical and environmental drawbacks.

5.1 � Recommendations for policymakers

By themselves, comprehensive surveys and conferences 
appear to be insufficient to gather, document, and analyse 
all the relevant evidence of AI being used to understand 
and combat climate change. More needs to be done to 
monitor and seek positive, climate-focused AI solutions 
from across sectors, domains, and regions of the world. 
This would involve deriving best practices and lessons 
learned from existing projects and identifying opportu-
nities for future initiatives that may be missed without 
sufficient funding or support. Given the political and eco-
nomic commitments it has already made, the EU would be 
an especially suitable sponsor and host of such an initia-
tive. The EU is also in a leading position internationally to 
disseminate its findings to support action against climate 
change at a global scale.

Recommendation 1: Incentivise a world-leading 
initiative (Observatory) to document evidence of 
AI being used to combat climate change around the 
world, derive best practices and lessons learned, docu-
ment how the values fairness, autonomy and privacy 
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are safeguarded, and disseminate the findings among 
researchers, policymakers and the public.

Another challenge concerns the ability to share the nec-
essary resources for developing robust AI systems. This 
includes the best practices and lessons learned to be col-
lected by the initiatives proposed in Recommendation 1 but, 
crucially, it also extends to data. The effectiveness of AI 
systems rests in large part on the size and quality of available 
datasets used to train these systems.

The recent European Strategy for Data notes that a cur-
rent lack of data hinders the use of data for the public good, 
underlining the Commission’s support for establishing a new 
Common European Green Deal “data space [to] support … 
the Green Deal priority actions on climate change” (European 
Commission 2020b). This may in turn require legislative and 
regulatory steps to facilitate business-to-business and business-
to-government data sharing. The document also notes the need 
to “assess what measures are necessary to establish data pools 
for data analysis and machine learning”. The issue for the cli-
mate change data space is not simply to open the floodgates to 
data sharing, but also to ensure that the data that is shared is 
high-quality, accurate, and relevant to the problem at hand. In 
short, this is not just a question of collation but also of curation. 
The steps outlined so far to ensure that the specific require-
ments of climate change research are served by the data space 
are moving in this direction.

The European Strategy for Data argues that “data spaces 
should foster an ecosystem (of companies, civil society 
and individuals) creating new products and services based 
on more accessible data”. In the case of climate change, 
organisations (particularly in the private sector) may need 
further encouragement to develop AI-based solutions that 
are not “products and services” per se, but rather focused 
efforts to tackle climate-related issues, with or without a 
profit incentive, and potentially in partnership with public 
and non-profit groups. Therefore, the Commission could 
play a more front-footed role in stimulating these efforts or 
“challenges”, as it has already sought to do in the context of 
business-to-government data sharing for the public interest 
more generally (European Commission 2020f).

Recommendation 2: Develop standards of quality, 
accuracy, privacy, relevance and interoperability for 
data to be included in the forthcoming Common Euro-
pean Green Deal data space; identify aspects of cli-
mate action for which more data would be most benefi-
cial; and explore, in consultation with domain experts 
and civil society organisations, how this data could be 
pooled in a common global climate data space.
Recommendation 3: Incentivise collaborations 
between data providers and technical experts in the 
private sector with domain experts from civil society, 
in the form of “challenges”, to ensure that the data 

in the Common European Green Deal data space is 
utilised effectively against climate change.

As Sect.  4 makes clear, there has been considerable 
investment—both fiscal and political—to harness the twin 
ecological and digital transitions to create a more sustain-
able and prosperous EU. If done right, using AI in the fight 
against climate change is an ideal point of synthesis for 
these objectives. Therefore, to build on the previous recom-
mendations, we also recommend that the European Com-
mission earmarks a proportion of the recently announced 
Recovery Fund to support efforts to develop AI that tackles 
climate change in the ways identified through the proposals 
in Recommendation 1. Per the recent agreement between the 
Commission, the Parliament and European leaders, a con-
siderable proportion (30%) of the Fund will be “dedicated 
to fighting climate change”, and it is separately stated that 
more than 50% of the overall fund will support modernisa-
tion related, to inter alia, “fair climate and digital transi-
tions”. Thus, there is ample scope to invest a substantial 
proportion of this fund to leveraging AI-based responses 
to climate change, building on opportunities identified in 
Recommendations 1–3.

Recommendation 4: Incentivise the development of 
sustainable, scalable responses to climate change that 
incorporate AI technology, drawing on earmarked 
Recovery Fund resources.

It is important to ensure that all EU-funded and supported 
climate change research and innovation that uses AI follow 
steps to prevent bias and discrimination. This should take 
the form of protocols, auditing, and best practices tailored 
to this particular research context. In particular, large-scale 
initiatives such as the Destination Earth project ought to be 
designed with great care to prevent biases and discrepan-
cies from arising in the so-called “digital twin” that will be 
created.

At the same time, transparency of purposes—clarify-
ing for what an AI system is being optimised—may help 
to protect human autonomy. To this end, it may not be 
enough to make available information about how systems 
are optimised, but it may also be necessary to give affected 
stakeholders the opportunity to question, and even contest, 
the optimisation parameters that are set for a given system, 
depending on the context. Ensuring that these mechanisms 
of explanation and contestation are reliable and reproduc-
ible is likely to require access to the relevant data and initial 
conditions and parameter settings that were used for training 
algorithms.

Recommendation 5: Develop mechanisms for ethical 
auditing of AI systems deployed in high-stake climate 
change contexts, where personal data may be used and/
or individual behaviour may be affected. Ensure that 
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clear, accessible statements regarding what metrics AI 
systems are optimised for, and why this is justified, are 
made available prior to the deployment of these sys-
tems. The possibility for affected stakeholders to ques-
tion and contest system design and outcomes should 
also be guaranteed.

Policymakers also have an important role to play in equal-
ising access to compute, developing efficient deep learn-
ing, and making AI research that is compute-intensive more 
accessible and affordable. For example, researchers in the 
US have suggested nationalising cloud infrastructure to pro-
vide more researchers with the ability to work without bear-
ing exorbitant costs (Etchemendy and Li 2020). A European 
equivalent of the “National Research Cloud” could enable 
the EU to establish a long-term infrastructure that enables 
more European researchers to compete on a global scale, 
while also ensuring that research occurs on an efficient and 
sustainable European platform.24

The reported and estimated decrease (by 30%) of EU-
based data centres (EEA 2020) is largely due to efforts by 
EU member states to increase the share of renewable ener-
gies in power generation (European Commission 2020a). 
The CO2 emissions stemming from national power genera-
tion across EU member states have been decreasing, albeit 
emission rates differ significantly between different member 
states. For example, power generation in Estonia emits over 
9 times more CO2 than in Slovakia (EEA 2020).

Recommendation 6: Develop greener, smarter and 
cheaper data infrastructure (e.g., European research 
data centres) for researchers and universities across 
the EU.

Given the EU’s increasing interest and investments in AI 
(Stix 2019), it is also important that the AI sector is con-
sidered specifically when formulating environmental poli-
cies. Both in research or production settings, AI requires 
increasingly specialised hardware and services that should 
be considered in any long-term environmental strategies.

Recommendation 7: Assess AI and its underlying 
infrastructure (e.g., data centres) when formulating 
energy management and carbon mitigation strategies 
to ensure that the European AI sector becomes sustain-
able as well as uniquely competitive.

Carbon labels and similar standards can benefit from 
receiving the endorsement of policymakers and even be 
required within the EU. Policymakers are key to ensuring 

that the field of AI research becomes more transparent when 
it comes to energy consumption and carbon emissions.

Recommendation 8: Develop carbon assessment and 
disclosure standards for AI to help the field align on 
metrics, increase research transparency, and commu-
nicate carbon footprints effectively via methods such 
as adding carbon labels to AI-based technologies and 
models listed in online libraries, journals, and lead-
erboards.

These labels would allow researchers and developers to 
make environmentally informed decisions when choosing 
components (e.g. model, hardware and cloud provider) for 
their work. For example, borrowing directly from The Car-
bon Trust’s (2020) “product carbon footprint labels”, the 
following labels could be adapted to AI research and dis-
tributed in a similar fashion to ACM labels:

•	 Lower CO2eq—indicating that the carbon footprint of 
a model/product is significantly lower carbon than the 
market dominant model/product in its category.

•	 CO2eq measured—indicating that the model/product 
footprint has been measured in accordance with an inter-
nationally recognised standard such as product standards: 
PAS2050, GHG Product Standard and ISO14067.

•	 Carbon neutral—indicating that the model/product emis-
sions are offset by the issuing organisation.

More informed discussions about the necessity and 
timeliness of certain compute-heavy research projects can 
emerge from these systematic disclosures. For example, if 
OpenAI’s GPT-3 had been trained on the latest NVIDIA 
hardware A100, a single training run could have been twice 
as efficient. AI research projects ought to engage actively 
with, and communicate, the ecological trade-offs they are 
making. Even if one may not expect researchers to weigh 
accurately all the potentially beneficial environmental 
impact that their research project has or could lead to, such 
cost–benefit analysis should be considered (Rolnick et al. 
2019; Henderson et al. 2020).

Policymakers are also key to ensuring that AI research-
ers in the EU are able to expand the field of AI research 
and diverge from conventional assumptions and research 
practices. Diverse funding will help European researchers 
to break from technological and normative trends that make 
it costly for researchers to try new ideas.

Recommendation 9: Incentivise diverse research 
agendas by funding and rewarding projects that 
diverge from the current trend of compute-intensive 
AI research to explore energy-efficient AI.

Examples of potentially energy-efficient AI strategies 
include new hardware-software-algorithm combinations, 

24  Such a project would present clear synergies with the EU’s land-
mark cloud infrastructure project, Gaia-X, which seeks to develop a 
common data infrastructure in Europe (GAIA-X 2020).
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algorithmic progress, symbolic AI, and hybrid symbolic-
neural systems (Marcus 2020). Following this recommen-
dation would enable the EU to enhance its potential for the 
development of AI research, by allowing a diverse pool of 
researchers from multiple countries to pursue a wide range 
of research agendas and compete with compute-intensive AI 
research coming from the US and China.

Recommendation 10: Incentivise energy-efficient and 
green research by making EU funding conditional on 
applicants measuring and reporting their estimated 
energy consumption and GHG emissions. Funding 
could fluctuate according to the environmental efforts 
made (e.g. usage of efficient equipment, usage of 
renewable electricity, Power Usage Effectiveness of 
< 1.5).

5.2 � Recommendations for AI research stakeholders

The field of AI research stakeholders, which includes (but is 
not limited to) researchers, laboratories, funding agencies, 
journal editors, conference organisers, and the managers of 
open-source ML libraries, can take several immediate steps 
to ensure that its carbon footprint is properly gauged and 
kept in check. At the same time, policymakers should play 
a critical role in ensuring that new reporting standards are 
set for organisations conducting large scale experiments and 
that the underlying infrastructure of AI remains environmen-
tally sustainable while supporting innovative AI research 
in the EU. To this end, we offer recommendations to both 
stakeholders in both the research and policy domains.

Steps have already been taken to tackle the reproducibility 
crisis mentioned in Sect. 3.3. For example, within two years of 
encouraging paper submissions to include source code, Neu-
rIPS reported the number of papers with code going from 50 
to 75% of submissions (Gibney 2020). Additionally, standards 
and tools, like the Association for Computing Machinery’s 
(ACM) (2020) artifact badging, NeurIPS’s (2020) OpenRe-
view, cKnowledge (Fursin 2020), PapersWithCode (2020), 
and MLPerf (Reddi et al. 2020), have been established in 
recent years to promote openness in scientific communication 
and ensure reproducibility. Similarly, systematic and accurate 
measurements to evaluate the energy consumption and carbon 
emissions of AI is needed for research activities. “Plug and 
play” tools need to be developed to facilitate the reporting of 
GHG emissions, and research conferences, journals and the 
community at large can play an important role in normalising 
the reporting of such data.

Open-source ML libraries, which are often established 
by private organisations, are essential to AI research. Add-
ing information on the energy consumption, carbon emis-
sions, and training conditions of various models—including 

hyperparameter sensitivity or algorithm performance against 
hardware—on these websites can help the field develop its 
environmental commitment.

Recommendation 11: Develop conference and jour-
nal checklists that include the disclosure of, inter alia, 
energy consumption, computational complexity, and 
experiments (e.g. number of training runs, and mod-
els produced) to align the field on common metrics 
(Gibney 2020; Schwartz et al. 2019; Henderson et al. 
2020).
Recommendation 12: Assess the carbon footprint of 
AI models that appear on popular libraries and plat-
forms, such as PyTorch, TensorFlow and Hugging 
Face, to inform users about their environmental costs.

These recommendations aim to normalise the disclosure 
of information pertaining to AI’s carbon footprint as well as 
to help researchers and organisations select research tools 
based on environmental considerations. Online AI courses, 
ML libraries, journals and conferences can take actions to 
collect and display more information regarding the energy 
consumption and GHG emissions of AI. These recommen-
dations aim to enable researchers to monitor and report 
systematically their AI projects’ carbon footprints using 
ready-made tools such as Lacoste et al.’s calculator (2019) 
or Henderson et al.’s framework (2020).

Increasing research on energy efficient computing and 
efficient AI is an important component to ensure that AI’s 
carbon footprint is controlled in the long run. And the pro-
motion of efficiency metrics and research may need to come 
from the field itself. For example, the low-power image rec-
ognition challenge was created to define a common metric 
to compare image recognition results, accounting for energy 
efficiency and accuracy (Gauen et al. 2017). Similarly, Stan-
ford University’s DAWNbench benchmark was created in 
response to the field’s hyper focus on accuracy metrics 
(Coleman et al. 2019b). The benchmark offers a “refer-
ence set of common deep learning workloads for quantify-
ing training time, training cost, inference latency, different 
optimisation strategies, model architectures, software frame-
works, clouds, and hardware” (Coleman et al. 2019a).

Recommendation 13: Incentivise the development 
of efficiency metrics for AI research and development 
(including model training) by promoting efficiency 
improvements and objectives in journals, conferences 
and challenges.

Note that key organisations such as the ACM, IEEE, Neu-
rIPS and ICML, among others, would be instrumental in 
normalising efficiency metrics or publication requirements 
such as the one outlined in Recommendation 6. The nor-
malisation of such metrics and requirements can bring more 
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researchers to actively seek energy-efficient approaches to 
research and development, such as by changing their region 
of compute or cloud provider, or by opting to run intense 
calculations during times of excess electricity generation 
capacity (e.g. at night).

6 � Conclusion

In this article, we have analysed the beneficial impact that AI can 
have in the fight against climate change, the ethical challenges 
encountered in this process, and the computational intensity 
that the development of AI requires, which introduces different 
challenges relating to energy consumption and GHG emissions. 
Benefits and risks are distinct yet intertwined. This is why we 
agree with Floridi and Nobre (2020) and see the use of AI to 
fight climate change as a leading example of

“a new marriage between the Green of our habitats—
natural, synthetic and artificial, from the biosphere to 
the infosphere, from urban environments to economic, 
social, and political circumstances—and the Blue of 
our digital technologies, from mobile phones to social 
platforms, from the Internet of Things to Big Data, 
from AI to future quantum computing”.

In this marriage, some risks, such as AI’s carbon foot-
print, are not entirely avoidable, but they can certainly be 
minimised, to deliver the best strategies against climate 
change. This is why the right policies are key to harness the 
opportunities while ensuring that the risks are adequately 
assessed and minimised, as much as possible.

Harnessing the positive and mitigating the negative 
impact of AI on the environment is achievable with the 
support of robust policymaking and of key stakeholders. 
The formula of “Green & Blue” has never been more cen-
tral to the European policymaking agenda, and the Recom-
mendations outlined in this article can serve as a “Green & 
Blue-print” for a more sustainable society and a healthier 
biosphere. By shedding light on the use of AI to counter 
climate change and offering recommendations to make 
this use of AI ethically sound and sustainable, this article 
aims to inform EU policy strategy for the ‘twin transitions’ 
and help ensure that the marriage between the Green and 
the Blue is a success that leads to a better society and a 
healthier planet.
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