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Androgen receptor (AR), an important target in the current androgen derivation therapy,

plays a critical role in the development and progress of prostate cancer (PCa).

Nonsteroidal antiandrogens, such as enzalutamide and bicalutamide, are commonly

used in clinic to treat PCa. Though they are very effective at the beginning, drug

resistance problem appears after about 18 months. One of the reasons is that these

antiandrogens share similar structure skeleton. Therefore, it is urgent to discover novel

antiandrogens with different skeletons for resistance problem. Herein, we combined

structure- and ligand-based methodologies for virtual screening chemical databases to

identify potent AR antagonists. Then the cytotoxic activities of the screened hit samples

were evaluated by using LNCaP prostate cancer cells. Virtual screening and biological

evaluation assay results suggest that several chemicals with novel pyrazolopyrimidine

skeleton can inhibit the proliferation of prostate cancer cells with similar, or even

higher, bioactivities to bicalutamide. AR reporter gene assay experiments proved that

Compound III showed potential antagonistic effects. In addition, molecular dynamics

simulations results proved that Compound III can properly bind to AR and prevent helix

12 (H12) from closing to distort the formation of activation function 2 (AF2) site, resulting

in the invalid transcription. Hence, pyrazolopyrimidine was discovered as a novel, potent

and promising antiandrogen skeleton deserved to be further studied.

Keywords: prostate cancer, androgen receptor, virtual screening, pyrazolopyrimidine, AR reporter gene assay,
molecular dynamics

INTRODUCTION

According to the latest cancer statistics 2016 (Siegel et al., 2016), prostate cancer (PCa) is the second
most common cancer amongmales around the world. The estimated death rate of PCa is 8%, which
is just lower than the leading lung cancer, but the estimated new cases of prostate cancer become
highest among the diagnosed cancers. Androgen receptor (AR) plays a critical role not only in the
development of prostate cancer but also in the progress of the advanced castration states (Tilley
et al., 1994; Taplin et al., 2003; Jernberg et al., 2017). Therefore, effective suppression of AR activity
remains mainstream therapeutic schemes to the treatment of advanced, recurrent and metastatic
prostate cancer.

AR, a class of ligand-activated transcription factor, is a member of the steroid and nuclear
receptor (NR) superfamily (Evans, 1988). The AR structure consists of four basic elements:
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N-terminal domain (NTD), DNA-binding domain (DBD),
hinge region and ligand-binding domain (LBD), that is a
highly structurally conserved throughout the NR superfamily
(Gao et al., 2005). Natural hormone testosterone (T) and
dihydrotestosterone (DHT), binding to AR LBD, are the
endogenous ligands of AR. The main mechanism of androgen
action is to regulate the gene expression, change the level of
specific proteins in cells and control cells behavior (Fix et al.,
2004). Once bound to AR, androgens play pivotal roles in the
sexual development, function, musculoskeletal growth of male
and the progress of prostate cancer.

The standard treatment of prostate cancer involves androgen
derivation therapy in conjunction with small molecule
antiandrogens that block AR signaling (Hodgson et al.,
2007). Antiandrogens compete with DHT for the binding
to AR, inhibiting AR transactivation through a variety of
mechanisms, including disruption of nuclear localization,
interruption of DNA binding and interference with co-activator
recruitment (Tran et al., 2009; Sadar, 2012). Unfortunately,
most patients receiving antiandrogen therapy eventually develop
drug resistance problem indicated by the rising level of serum
prostate-specific antigen (PSA), leading to the lethal disease state
termed castration-resistant prostate cancer (CRPC) (Denmeade
et al., 2003). To deal with this situation, more efforts have been
concentrated on design and discovery of new AR antagonists
with novel skeleton to overcome drug resistance in CRPC.

In the current study, a combined structure- and ligand-
based screening strategy was applied to virtually screen a big
commercial chemical database to fish potential AR antagonists.
Considering the published AR protein crystal structures are
all in the agonistic manner (Bohl et al., 2005a,b), we firstly
constructed its antagonistic conformation by using homology
modeling according to the reported process (Liu et al., 2012).
Structure-based docking method was used to find out chemicals
that could bind to AR with high affinities. Then, a set of
strictly validated QSAR models were used to predict the in silico
antiandrogen abilities of the screened chemicals. Subsequently,
the cell proliferation and AR reporter gene assay were used
to evaluate the biological activities of the filtered molecules.
Finally, molecular dynamics (MD) simulations and molecular
mechanics Generalized Born (GB) surface area (MM-GBSA)
calculations were applied to explore the interaction mechanics
between pyrazolopyrimidine and ARs including wild type (WT),
F876L and H874Y mutant types.

RESULTS AND DISCUSSION

In order to effectively dig out chemicals with high antiandrogen
potency, a combined structure- and ligand-based strategy was
applied in this work. The flowchart of the combined virtual
screening procedure was shown in Figure 1.

Structure-Based Virtual Screening
The AR ligand binding domain represents a hydrophobic pocket,
which can accommodate various chemicals of different sizes and
chemotypes. Taking into account that the crystal structure of
AR with antagonistic manner (Anti-AR) is unclear, homology

modeling was applied to construct its Anti-AR conformation
using the same method as previously reported (Liu et al., 2012).
Then the AR crystal structure (PDB ID:1T65) and Anti-AR were
both used to virtually screen the ChemDiv database by using
Glide standard precision (SP) docking program. Glide SP, a semi
flexible dockingmethod, performs exhaustive sampling and is the
recommended balance between speed and accuracy.

ChemDiv is now the recognized global leader in discovery
chemistry with the industry’s largest, most diverse, and most
pharmacologically-relevant commercial collection of 1.6 million
individually crafted, lead-like, drug-like small molecules etc.
All chemicals that can be docked into the ligand binding
domains of both 1T65 and Anti-AR were reserved. Subsequently,
these compounds were further filtered following Lipinski’s rules
of five, including less than five hydrogen-bond donors, ten
hydrogen-bond acceptors, 500 Da of molecular weight and
AlogP of 5 in Discovery Studio 2.5, to keep compounds with
potential bioavailability. Finally, 3,149 compounds were reserved
in Database 2 for further screening, as shown in Figure 2.

Ligand-Based Virtual Screening
Quantitative structure-activity relationship (QSAR) is an
analytical methodology that can be used to interpret the
quantitative relationship between molecular structures and
corresponding biological activities. Most importantly, after
thorough validation, QSAR models can be used to quantitatively
predict the activities of new chemicals. In this study, four QSAR
models constructed by using multiple linear regression (MLR)
method were employed to in silico evaluate the bioactivities of
the filtered ChemDiv chemicals contained in database 2.

The Development and Validation of QSAR Models
The linear MLR model Y1 was previously reported from
our group (Wang et al., 2015). Other three models Y2,
Y3, and Y4 were newly built. Experimental and predicted
antiandrogenic activities in these three models are listed in
Supporting Information Tables S1–S3. Here the antagonistic
activities (IC50) were experimentally tested from the AR reporter
gene assays. The Y in these QSAR models stands for the
negative logarithmic unit of the biological activities, pIC50. These
four linear equations were list as follows. The corresponding
parameters, demonstrating the model performances, were listed
in Table 1. The descriptors used to build the four linear model
and corresponding meanings were listed in Table 2.

Y1 = 1.188GATS7v − 1.108BEHp7 − 7.281E2u +

1.453HATS4u − 2.647H6m + 28.810R6u+ − 46.815R8u+
+ 12.157

Y2 = −2.89IC5+ 1.01GATS5e− 3.17DISPp− 12.99HATS3u
+ 27.13

Y3 = 5.601IVDE− 1.70C-009+ 1.11BLTF96+ 3.02
Y4 = 3.18 IC1 − 0.46F05[N-F] + 1.47R4u + 0.409

Depressant-80+ 3.85HATS7m− 7.15

In Table 1, the parameter R2 describes the fitting ability and
Q2
LOO represents the reliability and stability of a QSAR model.

Leave-one-out cross-validated correlation coefficient (Q2
LOO) is
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FIGURE 1 | The flowchart of the combination of structure- and ligand- based virtual screening strategy.

FIGURE 2 | The results of screening process step by step.
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TABLE 1 | The QSAR MLR models and corresponding statistical parameters.

Parameters Model Y1 Model Y2 Model Y3 Model Y4

R2 0.77 0.76 0.89 0.84

Q2
Loo

0.69 0.66 0.85 0.75

Q2
F1 0.78 0.74 0.86 0.89

Q2
F2 0.78 0.73 0.86 0.89

Q2
F3 0.85 0.88 0.86 0.76

CCC 0.90 0.89 0.91 0.93

RMSEatr 0.300 0.226 0.370 0.247

RMSEbpred 0.243 0.270 0.420 0.301

aRMSE value for the training set. bRMSE value for the prediction set.

the one of internal validation methods which can avoid the risk
of overfitting and the possibility of overestimating predictability.
From the above parameters listed in Table 1, it can be seen that
the fitting abilities of these MLR models are all high enough with
R2 greater than 0.75. The predictive abilities were evaluated by
means of four external validation parameters (Gramatica and
Sangion, 2016), Q2

F1 (www.oecd.org/dataoecd/33/37/37849783.
pdf), Q2

F2 (Schüürmann et al., 2008), Q3
F3 (Consonni et al., 2009)

and CCC (Lin, 1989; Chirico and Gramatica, 2011, 2012), and
the formulas of parameters were shown in the Table S4. All these
parameters are high enough to guarantee the predictive ability of
these models. Especially the parameter CCC values are all beyond
0.85 as suggested in the literature (Chirico and Gramatica, 2012),
which is a highly reliable parameter to guarantee the external
predictability of a model. All the root mean square error (RMSE)
values for the training set and prediction set are similarly low in
eachmodel. After thorough and rigorous validation, all these four
QSAR models were proved to be reliable, stable and predictive
and can be used to predict the bioactivities of new chemicals.

QSAR-Based Virtual Screening
After models construction and validation, these four models
were used to calculate the in silico antiandrogenic bioactivities
of the filtered compounds in database 2. Firstly, these 3,149
molecules were imported to DRAGON (DRAGON forWindows,
version 5.5)1 program to calculate all molecular descriptors.
Then the descriptors involved in these four QSAR models were
extracted and submitted to the equations Y1-Y4 to calculate
the biological activity of each molecule. Subsequently, all these
chemicals were ranked by the calculated biological activities,
considering simultaneously the results from four models. Only
molecules with high potency, predicted bioactivities from four
models greater than 7, can be retained for the succeeding process.
Finally, 396 compounds were reserved in database 3 for further
structural analysis and experiential analysis.

The 396 different compounds can be divided into 8
groups according to their skeleton structures. But some of
them contain poisonous substructures from the point view
of drug, some of them are easy to be hydrolyzed, or

1DRAGON for Windows(Software for Molecular Descriptor Calculations),
version 5.5 - Talet srl.http://www.talete.mi.it/

some of them have too complex structures etc. Finally, we
focused on pyrazolopyrimidine skeleton (Figure 3) showing
high in silico for antiandrogenic potency further study. The
representative pyrazolopyrimidine analogs and corresponding
predicted activities were listed in the Table 3.

Screening of Pyrazolopyrimidine Analogs
To find out more molecules with pyrazolopyrimidine skeleton,
we searched the ZINC database, a free database of commercially-
available compounds for virtual screening. On the ZINC website,
the user can choose to search the database according to the
structure similarity or substructure. In this study, our goal is to
find out more molecules with pyrazolopyrimidine skeleton, so we
used pyrazolopyrimidine as a substructure query to search ZINC
database. Totally 5076 samples were found and downloaded to
build a new chemical Database 4.

Then the four QSAR models were used again to calculate
the in silico antiandrogenic potency of the chemicals contained
in Database 4. We assumed that the chemicals with predictive
value less than 7 were less bioactive, which were removed in
the following study. As a result, 715 chemicals were remained
for the following screening process. To find out compounds
having high binding affinities with AR, the remained molecules
were then imported to LigandFit and Libdock modules to do
docking simulations. Taking into sufficient consideration of all
the above results, we selected 45 molecules with high potency
and submitted them to J&K Chemicals and SPECS. Finally
we successfully purchased four compounds (Table 4), and the
predicted biological activity from the Y1-Y4 models and the
docking affinities were listed in Table S5.

In vitro Evaluation of Hit Compounds
In order to determine whether the screened hit compounds
can affect the proliferation of prostate cancer cell, we carried
out the cell proliferation assay by using the LNCaP cell line.
The corresponding structures and biological activities (IC50)
were listed in Table 4. It can be seen that all these compounds
can suppress the proliferation of the LNCaP cells to varying
degree, which suggests that pyrazolopyrimidine analogs can act
as potential hits against CRPC. Compound IV, with the IC50 value
of 45.8µM, is 2-fold less active than bicalutamide. Compound III
were demonstrated to be more effective than the first-generation
AR antagonist bicalutamide and exhibited a dose dependent
manner as shown in Figure 4.

To examine whether these two compounds have antagonistic
activities toward AR, we performed transient transfection assay
with androgen reporter pMMTV-Luc, which contains the natural
AR target promoters, mouse mammary tumor virus (MMTV)
long terminal repeat promoters, and luciferase gene bound
at the downstream of an AR promoter. The concentration
of DHT is 10 nM in all AR luciferase assays. As the result,
compound IV have no significantly antagonistic activity against
AR, while compound III can moderately inhibit the DHT-
induced transcriptional activation of AR at the concentration of
10µM (29.8%) (Figure 5). We assumed that pyrazolopyrimidine
analogs with bulky groups may play a vital role in pushing away
H12 to form open conformation (antagonistic form) and hence
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TABLE 2 | The descriptors used to build the four linear model and corresponding meanings.

Descriptor Meaning Descriptor type

GATS7v Geary autocorrelation - lag 7/weighted by atomic van der Waals volumes 2D autocorrelations

BEHp7 Highest eigenvalue n. 7 of Burden matrix weighted by atomic polarizabilities Burden eigenvalues

E2u 2nd component accessibility directional WHIM index/unweighted WHIM descriptors

HATS4u Leverage-weighted autocorrelation of lag 4/unweighted GETAWAY descriptors

H6m H autocorrelation of lag 6/weighted by atomic masses GETAWAY descriptors

R6u+ R maximal autocorrelation of lag 6/unweighted GETAWAY descriptors

R8u+ R maximal autocorrelation of lag 8/unweighted GETAWAY descriptors

IC5 Information content index (neighborhood symmetry of 5-order) Information indices

GATS5e Geary autocorrelation - lag 5/weighted by atomic Sanderson electronegativities 2D autocorrelations

DISPp D COMMA2 value/weighted by atomic polarizabilities Geometrical descriptors

HATS3u Leverage-weighted autocorrelation of lag 3/unweighted GETAWAY descriptors

IVDE Mean information content on the vertex degree equality Information indices

C-009 CHRX2 Atom-centered fragments

BLTF96 Verhaar model of Fish base-line toxicity from MLOGP (mmol/l) Molecualr properties

IC1 Information content index (neighborhood symmetry of 1-order) Information indices

F05[N-F] Frequency of N - F at topological distance 05 2D frequency fingerprints

R4u R autocorrelation of lag 4/unweighted GETAWAY descriptors

Depressant-80 Ghose-Viswanadhan-Wendoloski antidepressant-like index at 80% Molecular properties

HATS7m Leverage-weighted autocorrelation of lag 7/weighted by atomic masses GETAWAY descriptors

FIGURE 3 | The skeleton structure of pyrazolopyrimidine analogs.

show the antagonistic bioactivity to AR, which could be further
proved by molecular dynamics simulations.

Molecular Dynamics Simulation
In order to investigate how Compound III produces antagonistic
effect on androgen receptor, molecular dynamics simulations
and MM/GBSA methods were employed to study the interaction
between Compound III and AR, including wild type AR, F876L
and H874Y mutant types, which are commonly occurred in the
AR LBD and often caused enzalutamide resistance problem (Liu
et al., 2017). Then free energy calculation and decomposition
analysis were carried out to analyze the MD results. Figure 6
shows the root mean square deviations (RMSDs) of all the
backbone atoms of the protein during all 100 ns MD, from
where it can be seen that after 80 ns, the RMSD values of the

protein backbone atoms and binding pocket atoms have small
fluctuations, so the last 20 ns trajectories were used to do all
the analysis. We analyzed the results with earlier work aimed to
enzalutamide and AR (Liu et al., 2017).

In Table 5, the binding free energies of Compound III/WT
AR, Compound III/F876L AR, and Compound III/H874Y AR
systems, are −44.37 kcal/mol, −57.04 kcal/mol and −42.02
kcal/mol, close to the enzalutamide’ s data (Liu et al., 2017). It can
be seen fromTable 5 that van derWaal provides the main driving
force for the binding between Compound III and WT/mutant
ARs. Electrostatic energies are also very important for binding
except Compound III/F876L AR complex. However, the polar
solvation energies are unfavorable to the binding free energy.

Hydrogen bond interaction (Table 6) between Compound
III and ARs show that all three complexes have relatively
stable hydrogen bonds during last 20 ns in simulations. For
the Compound III/WT AR system, Compound III formed
two hydrogen bonds with T877 (98.86%) and Q711 (51.25%),
while for the Compound III/F876L AR system, Compound III
formed only one stable hydrogen bond with N705 (97.94%).
Two hydrogen bonds are formed between R752 (85.41%), Q711
(65.50%) and Compound III respectively. Hydrogen bonds are
beneficial to stabilize the position of the benzene of Compound
III to prevent H12 from closing, as shown in Figure 7.

To get the optimized structure of each system, we
performed a cluster analysis for the last 20 ns trajectories
using Kclust algorithm (https://mmtsb.org/workshops/sean-
bin_workshop_2012/Tutorials/MMTSB_EnsembleAnalysis/
MMTSBEnsembleAnalysis.html). The systems of the Compound
III/WTAR, Compound III/F876L AR and Compound III/H874Y
AR were clustered into 6, 7, and 7 classes and the representative
conformation accounted for 44.0, 29.7, and 35.0%, respectively.
From the largest number of cluster, the conformation with
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TABLE 3 | The details of docking score and calculated bioactivities using four models of representative pyrazolopyrimidine analogs.

MOL_ID Y1 Y2 Y3 Y4 Docking score Structure

MOL_133 7.271 10.578 9.838 7.262 −10.089

N

N
H

NO

HO

CF3

O

MOL_135 7.764 8.300 8.371 8.826 −9.590

N

N
H

NO

HO

CF3

TABLE 4 | Structures and experimental activities of identified active compounds.

No CAS Structure IC50 (µM)

Compound I 436088-54-9

N

N
H

N
O

HO

CF3 214

Compound II 312699-22-2

N

N
H

N
O

HO

CF3

Cl

487

Compound III 332859-05-9

N

N
H

N

O

O

O

HO

F
F

F
23.4 ± 4.0

Compound IV 1502817-77-7

N

N
H

N
O

H2N

CF3 45.8 ± 2.3

R-Bicalutamide 113299-40-4
S

F

H
N

N

CF3

O O OH

O

24.6 ± 4.5

the lowest RMSD to the cluster centers was selected. These
optimized structures were used to analyze the conformation
difference between corresponding initial structure and structure
after 80 ns MD simulation, shown in Figure 6. We can see the
superimposition of the wild type AR and the three optimized
structures respectively in Figure 7. This figure shows that for
all three systems, benzene ring of Compound III is close to the
H12, meanwhile, the binding free energy decomposition analysis

(Figure 8) also shows that residue L/F876 has weaker interactions
with enzalutamide or Compound III than enza/F876L AR and
enza/H874Y AR complexes. It has been experimentally
confirmed (Korpal et al., 2013) or computational predicted
(Liu et al., 2017) that F876L and H874Y mutation could switch
enzalutamide from AR antagonist to AR agonist. The benzene
ring linked to pyrazole of Compound III is close to H12 in all
these systems, pushing H12 far away from the ligand binding
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FIGURE 4 | Inhibition of the proliferation for LNCaP cells by compound III, IV and bicalutamide.

FIGURE 5 | AR antagonistic activity. The COS-7 cells were treated with

positive compound Bic, compound III and IV (each of 10µM) in the presence

of 10 nM DHT. **p < 0.01 compared to cells treated only with DHT. All

experiments were repeated at least three times.

pocket, which distorts the AF2 site resulting the inactivation of
transcription. Based on the MD simulations results above, F876L
and H874Y mutations in AR cannot convert compound III from
AR antagonist to AR agonist.

CONCLUSION

In this study, structure-based docking and ligand-based QSAR
methodology were combined to virtually screen chemical
databases to discover new androgen receptor antagonists with

novel chemical skeleton. After virtual screening and the cell
proliferation assay validation, the inhibition rate of prostate
cancer cell LNCaP and DHT-induced transcriptional activation
of AR were detected on a series of pyrazolopyrimidine analogs
in vitro. Importantly, Compound III was proved to be the
one of the most potent of these non-nitrophenyl and non-
cyanophenyl type nonsteroidal AR antagonists and exhibited
potent antiandrogenic activity. MD simulations and MM/GBSA
methods were employed to investigate the antagonist mechanism
of representative Compound III to AR, which further proved
that this compound can prevent H12 in AR LBD from closing to
distort the formation of AF2, resulting the invalid transcription.
Hence, Pyrazolopyrimidine, as a novel antiandrogenic skeleton
serves as a core structure of AR antagonist, deserves to be
further optimized to discover more AR antagonists with high
potency.

MATERIALS AND METHODS

It was reported that virtual screening strategy combining
structure- and ligand-based methods improves the performance
and consistency of virtual screening compared to the single
methods alone (Svensson et al., 2012). In the current study,
molecular docking and QSAR models were used together to
search a chemical database for potential androgen receptor
antagonists.

Database Preparation
Considering the diversity of the molecular structure, the
commercially available ChemDiv structural library (http://
www.chemdiv.com/) was used for screening, which includes
1.6 million compounds. All these molecular structures were
protonated/deprotonated by generating ionization states with
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FIGURE 6 | The RMSDs of backbone atoms of the AR in all three trajectories.

TABLE 5 | The calculated binding free energies (kcal/mol) of the three systems by

MM/GBSA method.

Energies
(kcal/mol)

Compound
III/WT AR

Compound
III/F876L AR

Compound
III/H874Y AR

1Eele −30.95 −100.13 8.64

1Evdw −56.36 −56.08 −57.34

1Gnp −7.65 −7.86 −7.64

1Gp 50.59 107.03 14.32

1Gbind −44.37 −57.04 −42.02

The binding free energy (1Gbind ) is consist of electrostatic interaction energy (1Eele ), van

der Waals interaction energy (1Evdw ), polar solvation free energy (1Gp ) and nonpolar

solvation free energy (1Gnp ).

significant population at the specific 7.0 ± 2.0 in Maestro
(Friesner et al., 2004). After adding partial charges, the molecular
structures were minimized with MMFFs force field keeping its
original stereochemistry.

Structure-Based Virtual Screening
Protein Preparation
The androgen receptor crystal structures were downloaded
from Protein Data Bank (PDB code: 1T65) and prepared
by using the Protein Preparation Wizard in Maestro. The
treatments on AR structure include deleting the involved
solvents, adding the missing hydrogen atoms (missing loops)
and residues via Prime module, protonation protein crystal
structure to neutral (pH = 7), minimizing side chains using

OPLS 2005 force field, and definition receptor grid using
a 12 Å box centered on the ligand. All other adjustable
settings were set as default. Moreover, we constructed an
antagonistic AR (named Anti-AR) model according to
the reported homology modeling methodology (Liu et al.,
2012).

Docking-Based Virtual Screening
First, all the chemical structures were collected and docked
into the ligand binding domain of 1T65 and Anti-AR in
Glide standard precision (SP) model, respectively. This program
is generally used to approximate a systematic search of the
conformational, oriented and positional space for the docked
compound. The involved active site was defined from the
coordination of the built-in ligand, using the default settings.
The chemicals that could accommodate into the ligand binding
domains of 1T65 and Anti-AR formed database 1. Then, the
Lipinski’s rule of five (Lipinski et al., 2001) was further utilized as
a benchmark to filter the compounds to form database 2, which
were submitted to the next process.

Ligand-Based Virtual Screening
Our group has published a predictive QSAR models (Y1) on
androgen receptor antagonists (Wang et al., 2015), which can be
used here to evaluate the in silico bioactivities of the screened
chemicals. Furthermore, we found more AR antagonists with
different structures from the literatures, and three new QSAR
models (Y2, Y3, and Y4) were established and used in the present
study. The processes to buildmodels Y2, Y3, and Y4 are as follows.
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TABLE 6 | The hydrogen bonds between compound III and key residues in ARs.

Complex Donor Acceptor Distance(Å)* Angle(◦)* Occupancy (%)

Compound III/WT AR Compound III@N3-H20 T877@OG1 2.92 156.41 98.86

Q711@NE2-H22 Compound III@O4 3.10 153.14 51.25

Compound III/F876L AR Compound III@N3 N705@OD1-H20 2.89 156.58 97.94

Compound III/H874YAR R752@NH2-H22 Compound III@O2 3.04 144.22 85.41

Q711@NE2-H22 Compound III@O1 2.83 158.61 65.50

*The hydrogen bonds are determined by the acceptor … donor atom distance of < 0.35 nm and acceptor … H-donor angle of >120◦. WT AR represents wild type AR.

FIGURE 7 | The superimposition of WT AR’s initial structure with optimized structures of three systems in last 20 ns. Green cartoon and sticks represent the initial

crystal structure. (A) The complexes of initial structure and WT (deep salmon cartoon and sticks). (B) The complexes of initial structure and Compound III/F876L AR

(deep salmon cartoon and sticks). (C) The complexes of initial structure and Compound III/H874Y AR (deep salmon cartoon and sticks).

FIGURE 8 | Contribution of the important residues for ligand binding. All structures are average conformations generated from the last 20 ns snapshots of each MD

system.
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Data Set
The chemical structures together with corresponding
bioactivities taken from literatures (Hamann et al., 1998;
Zhi et al., 1998, 1999; Kong et al., 2000; Tachibana et al., 2007a,b;
Zhao et al., 2008) were collected to develop models Y2 − Y4

respectively. The biological activities (IC50) were converted into
negative logarithmic unit pIC50 and used as dependent variables.
The 3D structures of these molecules were imported into SYBYL
6.9 (SYBYL, version 6.9, Tripos Inc., St. Louis, MO)2 to calculate
Gasteiger-Hückel partial charges. The energy minimization
was performed using the Tripos force field with convergence
criterion of 0.01 kcal/mol·Å. Then the multi-search routine was
performed to do conformation search to obtain the lowest energy
conformation for each molecule. Subsequently, the compounds
were randomly split into training sets and prediction sets.

Descriptors Generation
The obtained lowest energy confirmations were submitted
to DRAGON 5.5 (DRAGON for Windows, version 5.5)3 to
calculate all the 20 types of descriptors. To decrease redundant
information, the calculated descriptors were pretreated to
exclude the constant or near constant value (variance <1) and
high correlated pairwise (R > 0.99).

Modeling Method and Validation
Here in this study, genetic algorithm was employed to select
important descriptors highly related to the bioactivities, using the
MLR method to build the QSAR models, executed in QSARINS
(Gramatica et al., 2013). To thoroughly validate the built QSAR
models, several internal and external validation standards were
combined to evaluate the robustness and predictive ability of
the built models (Gramatica and Sangion, 2016). After strict
validation, these models were used to predict the bioactivities
of the screened chemicals. The chemicals with high in silico
bioactivities formed database 3.

Structural Analysis
After the structure- and ligand-based virtual screening, chemicals
with high binding affinities and high in silico bioactivities were
filtered out for the succeeding analysis. Molecules with similar
skeleton were extracted.

Then, according to our experience on medicinal chemistry
and combining with the docking and QSAR results, the novel
skeleton of pyrazolopyrimidine was eventually proposed for
further research. To thoroughly explore the pyrazolopyrimidine
analogs, the specific skeleton was used as a substructure to
search the ZINC online database (http://zinc15.docking.org/),
and the resulted chemicals were downloaded to form a new
pyrazolopyrimidine database 4. Subsequently, LigandFit and
Libdock modules were used to dock all these pyrazolopyrimidine
analogs to the ligand binding domain of 1T65 and Anti-AR
protein, and the four QSAR models were employed to predict
corresponding bioactivities. At the end, the hit chemicals with

2SYBYL version 6.9. Tripos Inc., St. Louis, M. O.
3DRAGON for Windows(Software for Molecular Descriptor Calculations),
version 5.5 - Talet srl. http://www.talete.mi.it/

excellent performance both in the docking and QSAR model
predictions were selected for further experimental validation.

In vitro Assay and Biological Evaluation
Materials Preparation
The selected chemicals were purchased from the established
suppliers, including the J&K Chemicals and SPECS.

Cell Proliferation Assay
The LNCaP cells were cultured in RPMI 1640 medium
containing 10% FBS, 100 unit/ml penicillin and 100 unit/ml
streptomycin at 37◦C in a humidified atmosphere with 5%
CO2. Before being treated with compounds, cells were cultured
in 100mm cell dish at a density of 5 × 105 per well, then
sub-cultured when it grew to approximate 90% confluence.
Subsequently, the compounds were evaluated in a cellular assay
by measuring IC50 values. All experiments were performed
during the logarithmic phase of cell growth. For analysis of the
effect of all chemicals on LNCaP cell proliferation, the cells were
seeded in 96 well plates at a density of 5,000 LNCaP cells per
well and treated with chemicals for 120 h. A 20 µL aliquot of
tetrazole (MTT) was added to each well. After 4 h incubation, 150
µL of isopropanol was added to dissolve the crystal. Finally, the
absorbance was measured at a wavelength 570 nm.

AR Reporter Gene Assay
Luciferase reporter assay based on androgen response elements
(ARE) was used to examine chemicals for androgenic activity.
COS-7 cells were seeded in a 24 well plate, and cultured in
medium (DMEMmedium containing 10% charcoal-stripped FBS
(CSS), 2mM glutamine) for 24 h in a 24 well plate. The plasmids
of pcDNA3.1-AR, pMMTV-Luc and pRL-SV40 were transfected
in COS-7 cells by using transfection reagent Lipofectamine 3000
according to the instructions of manufacturer. After culturing at
37◦C in a 5%CO2 atmosphere for 24 h, cells were treated with the
chemicals (final concentration, 10µM) in the presence of 10 nM
DHT for 24 h. Then, cells were harvested with 150 µL of cell
passive lysis buffer (Promega). The firefly and renilla luciferase
activities were determined with a Dual-Glo Luciferase Assay Kit
(Promega). The data were obtained in triplicate and expressed as
inhibition rate over the DHT control. Inhibition%= 1−(RLUtest

− RLUblank)/(RLUDHT − RLUblank)×100%. RLU= relative light
unit.

Molecular Dynamics Simulations
The crystal structures of WT, H874Y mutant AR (PDB ID 2Q7L)
were obtained from the Protein Data Bank (http://www.rcsb.org/
pdb)4. Then Pymol (v1.7) program was used to generate the
3D structure of F876L mutant AR by mutated wild type AR
876F to 876L. Then the CDOCKER module of Discovery Studio
2.5 [(Discovery Studio version 2.5, 2009) Accelrys Inc. CA] was
used to dock Compound III to all the three kinds of ARs. The
lowest-energy models were selected as the docking results.

MD simulations were performed with AMBER12 (Case
et al., 2012) package. The geometry optimization and partial

4RCSB Protein Data Bank. http://www.rcsb.org/pdb
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charges calculation of small-molecule ligand were performed in
Gaussian09 program using HF/6-31G∗(Frisch et al., 2009) basis
set. Then the restrained electrostatic protential (RESP) (Bayly
et al., 1993; Cieplak et al., 1995; Fox and Kollman, 1998) of
Compound III was assigned using the general AMBER force
filed (GAFF) (Wang et al., 2004). The ff99SB force field (Hornak
et al., 2006) was used to parameterize the systems. Finally, all
the systems were neutralized with chloride ions and immersed
in a cubic TIP3P water box (Ryckaert et al., 1977). The solvent
boundary was at least 10Å away from the proteins. Subsequently,
all systems were minimized using a steepest decent method
followed by conjugate gradient method, and then heated from 0
to 310K. The temperature was controlled by Langevin thermostat
with a coupling coefficient of 2.0 ps−1. SHAKE algorithm
(Eaamann et al., 1995) was used to constrained bond lengths
involving hydrogen atoms. All equilibration and subsequent
MD stages were carried out in the isothermal isobaric (NTP)
ensemble with a target pressure of 1 bar. The time step was
set as 2 fs and the production time for all the systems was
100 ns.

The binding free energy of each system was calculated using
molecular mechanics/generalized born surface area (MM/GBSA)
methodology (Massova and Kollman, 2000; Xu et al., 2013; Sun
et al., 2014a,b). The binding free energy (1Gbind) is consisted
of electrostatic interaction energy (1Eele), van der Waals
interaction energy (1Evdw), polar solvation free energy (1Gp)
and nonpolar solvation free energy (1Gnp). Dielectric constants
of 1.0 and 80.0 were set for solute and solvent respectively.
The polar part of desolvation (1GGB) was computed with the
modified GB model developed by Onufriev et al. (referred to
as igb = 2 in Amber) (Onufriev et al., 2004), and the nonpolar
part of desolvation (1GSA) was determined based on the solvent
accessible surface area (SASA) computed by the LCPO algorithm:
(Weiser et al., 1999) 1GSA = 0.00721SASA. The change of the

conformational entropy (−T1S) was not considered due to high
computational cost and low prediction accuracy (Wang et al.,
2006; Hou et al., 2011). In total, 2,000 snapshots evenly extracted
from 80 to 100 ns were used to calculate the energy terms. For
each systems, the interaction spectrum between Compound III
and ARs on a per-residue basis was calculated by MM/GBSA
decomposition analysis supported by the mmpbsa.py module in
AMBER (Gohlke et al., 2003; Hou et al., 2008, 2012).
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