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Overview: Wemodel energy constraints in a network of spiking neurons, while exploring

general questions of resource limitation on network function abstractly.

Background: Metabolic states like dietary ketosis or hypoglycemia have a large impact

on brain function and disease outcomes. Glia provide metabolic support for neurons,

among other functions. Yet, in computational models of glia-neuron cooperation, there

have been no previous attempts to explore the effects of direct realistic energy costs on

network activity in spiking neurons. Currently, biologically realistic spiking neural networks

assume that membrane potential is the main driving factor for neural spiking, and do not

take into consideration energetic costs.

Methods: We define local energy pools to constrain a neuron model, termed Spiking

Neuron Energy Pool (SNEP), which explicitly incorporates energy limitations. Each neuron

requires energy to spike, and resources in the pool regenerate over time. Our simulation

displays an easy-to-use GUI, which can be run locally in a web browser, and is freely

available.

Results: Energy dependence drastically changes behavior of these neural networks,

causing emergent oscillations similar to those in networks of biological neurons. We

analyze the system via Lotka-Volterra equations, producing several observations: (1)

energy can drive self-sustained oscillations, (2) the energetic cost of spiking modulates

the degree and type of oscillations, (3) harmonics emerge with frequencies determined

by energy parameters, and (4) varying energetic costs have non-linear effects on energy

consumption and firing rates.

Conclusions: Models of neuron function which attempt biological realism may benefit

from including energy constraints. Further, we assert that observed oscillatory effects of

energy limitations exist in networks of many kinds, and that these findings generalize to

abstract graphs and technological applications.

Keywords: neuronal metabolism, ATP, glia, epilepsy, Lotka-Volterra, ketosis, computational neuroscience, spiking

neural networks
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1. INTRODUCTION

With health and basic biology in mind, many neurological
problems are co-morbid with metabolic disorders, such as
diabetes (Reske-Nielsen and Lundbæk, 1963; Dejgaard et al.,
1991; Biessels et al., 1994; Duby et al., 2004; Mijnhout et al.,
2006). Further, energetic metabolism can have a huge impact
on brain function and neurological diseases (Gasior et al., 2006;
Barañano and Hartman, 2008; Stafstrom and Rho, 2012). With
biologically inspired technology as a goal, the brain requires a
large proportion of the body’s energy, and yet is highly efficient
for its absolute power compared tomodern supercomputers, with
the brain consuming orders of magnitude less energy for more
functional processing.

1.1. Biological Energy in Brains
Biological neurons are fundamentally cells first, and neurons
second, with high energy requirements. A newborn human
weighs around 3.5 kg with a brain about 400 g, which consumes
about 120 kcal/day, a disproportionate 75% of total caloric intake
(Holliday, 1971); during adulthood, an average human weighs
around 70 kg, and the brain about 1, 400 g, which consumes about
415 kcal/day, a slightly less but still quite disproportionate 23%
of total calories. In other words, the human brain is <2% of the
body’s volume but burns 23% of daily calories.

1.1.1. Neuron Energy Budgets
With around 86, 000, 000, 000 neurons in the human brain
(Herculano-Houzel, 2011a) each neuron consumes in the range
of 4.8 × 10−6 cal/day. When considering experimental data
in rodents, of the total energy consumption by gray matter
(mostly neurons; at a rate of around 2.22 × 109 ATP/neuron/s),
spikes account for around 20% of the gray matter budget, with
postsynaptic effects 50% (Howarth et al., 2012); notably this
excludes housekeeping metabolic costs. Each neuron may fire
around 350, 000 times/day at a rate ranging from [0.15 to 16 Hz],
with means from [1.5 to 4Hz] (Fanselow and Nicolelis, 1999;
Schoenbaum et al., 1999). Each action potential may consume
around 1.19 × 108 ATP, and with a firing rate of around 4
Hz, spiking alone consumes roughly 4.75 × 108 ATPs/neuron/s
(Howarth et al., 2012). One (action potential/cortical neuron/s)
raises oxygen consumption by (145 mL/100 g gray matter/h)
(Attwell and Laughlin, 2001). Notably, neuronal anatomy and
physiology are extremely variable within species (Markram et al.,
2015) as are architectures and glial support across species
(Herculano-Houzel, 2011a; Han et al., 2013), and as neuronal
energy requirements also must be (Lennie, 2003). The animal
and human numbers discussed here provide a theoretical context,
and define rough ranges of operation for our upcoming model, as
follows.

For example, out of activity-dependent energy consumption,
most is consumed by the synapse itself (Rangaraju et al., 2014),
where typical energy in a pool at synapse is around 106 free
ATP per nerve terminal. Further, despite this reserve, ATP
production and transport responds quickly to synaptic activity,
and disruption of ATP regeneration can impede activity rapidly,
perhaps in part due to the dual role of ATP, of both signaling and

energy supply (Rangaraju et al., 2014; Lindberg et al., 2015). In
our upcoming model, the ratio of spike cost to available energy
can be used to compute the rough number of spikes required
to impede firing; these biological data suggest that in the model,
pool depletion should be rapid in the absence of regeneration.

1.1.2. Glial Function: Metabolism, Energy, and More?
Glia are deeply intertwined with neurons and perform
many functions, including providing metabolic support for
neurons, controlling synapse formation, modifying blood flow,
neuromodulation, and various other roles (Barres, 2008). They
even have their own class of “gliotransmitters” which signal to
neurons (Araque and Navarrete, 2010; Perea et al., 2014). Quite
intriguingly, grafting human glial precursors into mice during
development makes them learn faster and appear generally
more intelligent, enhancing long-term potentiation (LTP) and
performance on a variety of tasks; in a control condition grafting
mouse cells similarly does not enhance learning (Han et al.,
2013). Thus, it has been suggested that the human glia provided
some information-processing improvement over rodent glia.

1.1.3. Measuring Brain Resources in Humans: PET,

fMRI, CBF, BOLD
Metabolic effects can be measured in living humans via methods
like positron emission tomography (PET) or functional magnetic
resonance imaging (fMRI), producing indicators of glucose
and ketone uptake, or blood oxygen level dependent response
(BOLD) on cerebral blood flow (CBF). The relationship between
neuronal activity and CBF is defined as neurovascular coupling,
and this relationship is often considered to be non-linear
(Pasley and Freeman, 2008). For example, a certain quantity of
spikes or local field potentials elicited by sub-threshold activity
or neuromodulation may result in a proportional quantity of
increased blood flow (Raichle and Gusnard, 2002). Notably, the
resultant increase in blood flow is greater thanwould be predicted
by oxygen use alone (Leithner and Royl, 2014), which in light
of this context, suggests the need for waste product removal
or other factors. Spikes and sub-threshold responses produce
different reactions in CBF, where with consistent activity in a
region, local field potentials (LFPs) and blood flow remain high
and well-coupled, with spikes tapering off, as if they were more
metabolically expensive (Mathiesen et al., 1998; Logothetis et al.,
2001; Logothetis and Wandell, 2004; Viswanathan and Freeman,
2007). Sub-threshold depolarizations and synaptic activity may
also in part drive the CBF. At a whole brain level, measured via
such means, basal metabolism is estimated to consume 30% of
brain glucose, with spontaneous brain activity consuming around
70% of the brain’s energy (Tomasi et al., 2013).

1.1.4. Ketosis, Metabolism, Epilepsy, and

Neurological Diseases
Metabolism may impact many neurological disorders. A
ketogenic diet is hypothesized to be the oldest documented
therapeutic diet, first noted as a treatment for seizures by
Hippocrates. Currently, a highly reliable treatment for seizures,
particularly the drug-resistant form, is a ketogenic diet (Yellen,
2008; Zupec-Kania and Spellman, 2008; Rho and Stafstrom,
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2012; Danial et al., 2013; Korsholm and Law, 2013; Lutas and
Yellen, 2013). When fasting, or consuming a diet very low in
carbohydrate and high in fat, the body will produce ketone bodies
which produce 2×ATP/molecule as glucose, as well as glucose, to
fuel the brain; other organs and muscles temporarily use ketones
but transition to full use of fatty acids leaving the brain as the
primary consumer of ketone bodies in a long-term ketogenic
diet. Note, dietary ketosis is distinctly different from diabetic
ketoacidosis.

Intentional dietary ketosis may be the most globally impactful
metabolic intervention for brain function known, having broad
physiological impact on neurons, brains, and a surprising
multitude of disease outcomes, including epilepsy, malignancy,
trauma, stroke, neurodegeneration, Parkinson’s, Alziemer’s, ALS,
Autism, depression, migraine, insomnia, aging, mitochondrial
diseases, and more (Gasior et al., 2006; Barañano and Hartman,
2008; Stafstrom and Rho, 2012). Brain regions which consume
the most energy (Sokoloff, 1991, 1996), fire the most rapidly,
and have the highest incidence of seizure. Inhibitory neurons are
about 10–15 times more connected than excitatory neurons, and
they make many more local connections. Thus, with inhibitory
transmission being proportionally more metabolically expensive
than excitatory per neuron, if inhibitory neurons run out of
energy differentially, it could relax suppression of excitatory
firing.

1.2. Energy-Related Models in Biological
Networks
Since there is virtually no literature computationally modeling
the direct effect of energy on network activity with spiking
neurons, we extend the background to other domains.

1.2.1. Glia Models: Non-energetic
In addition to metabolic support, glia possibly play bulk
neuromodulatory role in neuronal processing, and few studies
have attempted to model this algorithmically, though without
the primary goal of exploring energy requirements on spiking
networks (Porto-Pazos et al., 2011; Allam et al., 2012;
Alvarellos-González et al., 2012; Volman et al., 2012). These
studies are interesting, in part because they improve neural
network performance on AI-like tasks via incorporating
signaling algorithms thought to be performed by glia, much
as in murine experiments discussed above (Han et al.,
2013).

1.2.2. Neuron Models: Competitive, but

Non-energetic
It is possible to consider that artificial neural networks may have
modeled something like resource constraint more abstractly;
competition between neurons for long term potentiation and
depression resources may recapitulate some features of energy
restriction (Hunzinger et al., 2012). Further, via inhibition,
other forms of competition may take place (Song et al., 2000;
Atsumi, 2003; Behi et al., 2012; Ruan et al., 2012; Tal et al.,
2014). As another example, energy can be considered in a
non-analogous sense, wherein physics-inspired computation
is defined in an orthogonal manner, such that “energy” is

used for computation and/or memory (Bengio, 2015), which
may occur (Lindberg et al., 2015), but is not a resource
per-se. Though competition can impact network dynamics, it
misses features of resource regeneration as well as energetic
dynamics.

1.2.3. Ecological Resource Models: Predatory-Prey

Dynamics
One might consider that resource models abstractly could speak
to formalizing energetic dependence in neurons or brains.
Ecology has modeled predator-prey dynamics, which may
resemble resource constraints in biological networks broadly. In
this type ofmodel, a predator (e.g., wolves) and prey (e.g., rabbits)
interact in a network of organisms distributed throughout the
physical environment, with the prey serving as the resource,
which limits the predator.

These systems are oftenmodeled via Lotka-Volterra equations
(Lotka, 1910; Goel et al., 1971). These are non-linear, differential

equations: dx
dt

= αx − βxy and
dy
dt

= δxy − γ y, where: x is
number of prey; y is number of individual predators in a species;
dy
dt
and dx

dt
are growth rates of two populations over time; t is time;

and α,β , γ , δ are positive real parameters. This system will often
produce a limit-cycle in population sizes between the predator
and prey.

Tangentially, though not in study of resource constraints,
neural network activity itself has been modeled using Lotka-
Volterra methods (Noonburg, 1989) which themselves
can describe many types of dynamical systems. Further,
approximating neural network activity using these means
may allow for more formal analysis of neural network activity
(Moreau et al., 1999). Though these models describe natural
oscillation in neuronal networks, none included energetic
constraints.

1.3. Models of Energy in Technical,
In-silico, Hardware, Economic, or Abstract
Networks
Models of resource or energy usage and constraint in other
networked systems may also provide insight into modeling
neuroenergetics. Lotka-Volterra equations have also been used
in economics for many years to model resource interactions
between industries and sectors (Gandolfo, 2008), which may
produce oscillatory interactions as well. Within graph theory,
related questions include how to maximize graph connectivity
with limited or unreliable functional links between nodes
(Wan et al., 2008), a task which the brain may perform.
There are practical applications in maintaining functional
connectivity in networks, particularly in telecommunications
(Shtessel et al., 2012) robustly, as brains do. Resource constraints
are also applied via load-balancing and sharing protocols
and algorithms to allocate network resources, power, CPU,
disk drives, including shortest path bridging (Allan et al.,
2010; Arpaci-Dusseau and Arpaci-Dusseau, 2015), some of
which may show distant similarities to energetic constraints
on maintaining brain functional connectivity (Tomasi et al.,
2013).
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1.4. Our Contribution: Models of Resource
Constraint in Spiking Neurons
Though much is known about the impact of energy resources
on mammalian brains, and there have been some attempts
to model other functions of glia, there have been no studies
directly modeling resource-dependence in computational neural
networks. Despite the popular practice of modeling seizures
in neural networks (Richardson, 2012), and the strong impact
of ketone-bodies and energy metabolism on the treatment of
seizure, there has been no attempt to include explicit energy in
epilepsy spiking neural network models. Here we remedy the
dearth of research into the effect of resource-dependence on
biologically realistic neural networks.

1.5. Definitions of Energy and Resources
In biological systems, distinctions can be made between various
resources: glucose, ketone bodies, ATP, glycogen, pyruvate,
oxygen, lactate, neurotransmitter production, and various forms
of waste-removal such as CO2 or free radicals. Ultimately,
just as phenomenological neuron models can mimic neuronal
behavior in a model-free descriptive sense, energy resources
ultimately behave as a pool with delayed momentum both in
refilling and regeneration. We chose an abstract level for our
model such that it does not speak to the specific constituents
of biological energy, but generalizes to explore this pool-like
resource utilization by neurons and networks broadly, and
resource-constraint abstractly.

2. MATERIALS AND METHODS

2.1. Base Neuronal Model with Energy Pool
We designed an energy pool for a biologically realistic neuron
model, termed Spiking Neuron Energy Pool (SNEP). The well-
studied phenomenological neuron model we used is in the family
of Spike Response Models (SRM), which is a generalization
of integrate-and-fire models. We added an energy pool which
neurons utilize and deplete when spiking (Equations 1–3). Each
neuron has one such corresponding energy resource pool. Energy
pools can range from empty to full. Each spike requires energy
and drains the resource pool in a pre-defined quantity, which is
parametrically varied in our experiments. Resources in energy
pools replenish, either at constant or varying rates. As typical,
each neuron maintains a memory of its membrane potential,
integrates new signals from synaptically weighted input spikes via
changes in membrane potential, and spikes down one-directional
axons when the membrane potential threshold is crossed (i.e.,
becomes positive enough in voltage), but with the caveat that
firing is possible only if its energy pool contains more than a
lower bound of sufficient resource. Therefore, every spike reduces
energy in the pool, and the pool replenishes over time. When a
firing event happens, action potentials are transmitted through
the neuron’s axons and synapses to its neighbors in a quantity
proportional to the synaptic weight between each pair of neurons,
increasing the neighbors’ probability of firing. Synaptic weights
do not change with experience; thus, there is no plasticity. If
a firing neuron is an inhibitory neuron, the same mechanism
applies, but the receiving neuron’s potential moves away from

the firing threshold (negative). Inhibitory neurons are 20% of
the population, matching data in both rodents and primates
(humans). Each spike takes time to reach its destination, and this
time is a function of the distance between the source and target
neurons. A small probability of sub-threshold firing is adjusted
proportional to the membrane potential. For computational
efficiency, a step-wise, rather than continuous, refractory effect
limits neurons from firing shortly after they have just fired. In
practice, within large ranges of these energy constraints, neurons
will often be restricted from firing based on energy limitation,
when they would have fired based on membrane potential alone.
To conclude, typically a neuron model would fire singly due to
its membrane potential, but in our model a second factor, energy,
serves to regulate spiking.

Change in membrane potential: V̇k = −V/τν +
∑

j

wjk × Ij

(1)
Change in energy pools

(replenishment):
ė =

{

τe if e < emax

0 if e ≥ emax
(2)

Spike conditions: if: V > Vθ and e > re then: V = Vr ,
e = e− re, and initiate a spike.

(3)

2.2. Definitions
• V is the present dynamic membrane potential (voltage) of a

neuron, with Vk indexing the signal-integrating neuron.
• Ij is employed for the set of input signals from pre-synaptic

neurons, indexed by the pre-synaptic neuron, j
• wjk indexes the set of weights connecting input neurons, j, to

the signal-integrating neuron, k.
• Vr is the negative resting membrane potential, to which the

neuron returns after spiking.
• Vθ is the firing threshold for an action potential, which if V

goes above, enables a spike.
• τv is a small positive constant, and specifies the rate of leak in

membrane potential from Vr toward Vθ ; thus, a given neuron
can eventually fire in the absence of inputs (similar to random
biological firing).

• e is the current dynamic quantity of resources in an energy
pool.

• emin and emax are the minimum and maximum functional
limits for energy in the pool. When energy is less than emin

the cell fails to operate normally via integrating inputs (i.e.,
not reacting via membrane potential). When energy is at emax

replenishment ceases.
• E is the total amount of energy in all pools summed (remaining

energy).
• re is the energetic cost of a single spike. A pool requires at least

re for a neuron to spike, and re is subtracted from the pool after
spiking. When energy in the pool is less than re the cell will
not spike, even if its membrane potential is beyond the spiking
threshold.

• τe is an assumed linear rate at which the energy pool is
replenished with resources used by spiking neurons, specified
in quantities of an arbitrary unit, γ .
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• γ is defined as an arbitrary unit of energy, and can be
conceived of as something akin to combined effect of ATP,
glucose, ketone-bodies, oxygen, neurotransmitter production,
and waste-removal. In other words, energy in this context
represents resource abstractly.

2.3. Network Structure
Though network structure and energy parameters are largely
independent, structural network density could impact neuronal
transmission. Macro-level connectome data are very well
documented in human subjects (Nooner et al., 2012), and at a
large scale, graph features are similar to those in rodent brains.
At a micro-scale, neuronal density in primate (human) brains
is much greater than in rodents (Herculano-Houzel, 2011a),
which likely affects neuronal transmission. To study dynamical
effects of energy dependence of neurons, we incorporate the
SNEP’s into a large neural network with structure and weight
distribution from in-vivo biological macro-connectome data
derived from rsfMRI and DTI in human participants (Nooner
et al., 2012; Taylor et al., 2015), since these whole-brain data are
well-validated.

Our neural network consists of 7, 500 explicit energy-
dependent spiking neurons. Clustering was performed via
spectral methods (Craddock et al., 2012), which have been
previously demonstrated at a resolution of around 200 regions.
To obtain around 40 neurons per cluster, sub-groups of neurons
were clustered into 188 regions, and inside each region, neurons
were connected with a probability that is inversely proportional
to distance. Between regions, the probability of two neurons
laying in different regions to be connected is proportional to
the connectivity matrix used in Taylor et al. (2015). Weight
distributions are initialized according to realistic distributions,
and constants such as leak rate default to standard rates in the
software simulation. In this model, axonal connections between
neurons have directionality. The size of the network can be
scaled up.

2.4. Simulation Environment: BrainPower
The simulation, coined “BrainPower,” allows great flexibility
in the choice of neuronal parameters and energy dynamics
(Figure 1). Manipulable neuronal parameters include an
extensive set of features (below). Manipulable energy parameters
include regeneration rate, the energy requirement per spike,
and the oscillatory type of energy regeneration as static or
oscillating.

Users can explore the simulation freely, and it runs locally in
the web browser. This provides two benefits, (1) the simulation
can be widely shared without installation, and (2) the code is
consistent across experiments and platforms since it is hosted on
the remote server. The set of GUI-parameters is displayed at right
in the interface, and each is commented internally. Data-logging
is built in as an advanced feature with a Python back-end. A demo
is available at: https://binds.cs.umass.edu/BrainPower/, and the
open source code is freely available under the MIT license at:
https://gitlab.com/BrainPower/Neural-Network/.

2.5. Experimental Design
2.5.1. Independent Manipulated Variables
Our approach is to systematically map the space of energy and
neuronal parameters, covering biological ranges, and extending
parameters widely enough to describe the effect of energy on
network dynamics generally. For example, with re = 0γ the
network will typically remain active for long periods of time,
while with very high energy requirements for a spike, activity can
dampen or die out, with a continuum of impact in between these
ranges. We describe both likely biological ranges, and also those
parameter extremes which may have technological relevance
outside of biology or neuroscience.

We manipulate the energetic parameters, re, τe, and neuronal
parameters, such asVθ , to explore the effect of energy on network
dynamics. We vary re between re = 0γ and re = 0.4γ . For the
first experiments, we set replenishment rate as a fixed value, with
τe = 0.003γ /ms or τe = 0.006γ /ms. Each value of re is run as
a separate simulation for 40,000 iterations, or 40 s where each
iteration represents 1 ms.

2.5.2. Dependent Measured Variables
With multiple 40 s experiments, we analyze the last 10 s of
every simulation, discarding the first 30 s of data to ensure
the convergence to a stationary process. A stationary process is
defined as a process in which the joint distribution of the random
variables at times t1 + τ , t2 + τ + . . . , tk + τ does not depend on
τ . Therefore: FX(xt1+τ , xt2+τ , . . . , xtk+τ ) = FX(xt1 , xt2 , . . . , xtk ).
Once the simulation reaches a stationary process, it behaves
similarly indefinitely. Thus, we can analyze its behavior using
only a finite size sample. When no energy constraint is applied to
the system, the stationary process is such that the level of activity
of the network follows a white noise distribution, but with energy
constraints it takes time to reach a stationary process.

We analyze time series variables of total firing activity and
available energy. To measure total activity of the network, we
record the number of spiking events at every time step, indexed
via neuronal identity. Equivalently, to measure the available
energy at every time step, we record energy in each pool in
quantity of γ . This number represents the quantity of energy
resources available for potential firing.

2.6. Simulation Parameters
The following parameters are used for our simulations (further
documented within the freely available software). The value for
“fireEnergy” below represents re, the variable we use for our
analysis. The replenish energy τe can bemade to oscillate between
an upper and lower limit by modifying “maxThreshold” and
“minThreshold” but we fix it to two levels, 0.003 and 0.006γ /ms,
to have a constant rate of replenishment in these first studies.

Energy pool settings: amplitude: 0.01, fireEnergy:
manipulated, frequency: 100, lastRegenUpdate: 0, maxEnergy:
1, maxThreshold: 0.003, minEnergy: 0, minThreshold: 0.003,
regenSign: 1, regenerationTime: 1, replenishEnergy: 0.003.

Network settings: AxonDistance: 10, decayTime: 1,
firing_threshold: 0.6, izhikevich: False, refactoryPeriod: 10,
shouldLog: False, signal_weight: 0.4.
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FIGURE 1 | BrainPower: our open simulation environment. Neurons are orbs of light, axons are shafts of light, blue for excitatory, and red for inhibitory, and

active signals (action potentials) move along axons as traveling diffuse golden clouds. We extend this 3D simulation and visualization in JavaScript using Python, and a

fully functional version of our simulation can be used by anyone live at: https://binds.cs.umass.edu/BrainPower/. Neural network activity is visualized in real-time, and

runs locally in most modern web-browsers. Drop-down control menus on the right top of the simulation allow a user-interactive way to set network parameters; each

menu can be expanded to an extensive set of options.

3. RESULTS

3.1. Energy Limitations Introduce
Oscillatory Dynamics
Our chief finding is emergent network oscillations, which arise
when energy demands are present, and may be reminiscent of
oscillations found in the brain. Energy requirements regulate
levels of activity in this network of spiking neurons (Figure 2).
For some parameter ranges, the system itself is a self-sustained
oscillator, notably even when energy regeneration rates are
constant. To understand the relation of this model with common
self-sustained oscillators, we can analyze it as an instance of
the class of Lotka-Volterra (LV) predator-prey models. The LV
equations often describe dynamics of two species interacting in
an ecosystem. To survive and reproduce, the predator consumes
the prey. When the number of prey increases, the predators have
more available food, increasing their population by reproducing,
which in turn reduces the prey population, continuing full-circle.
This dynamic can be seen in a phase space plot or limit cycle
(Figure 3).

We can use the metaphor provided by the LV model to
understand our neuronal population with energy requirements.
In this case, the available energy in the pool acts as the
prey, required for the neuron to spike. The neuronal spikes
act analogously to predators, requiring energy in order to
generate, and diminishing energy pools with a stochastic
“reproduction rate” given by the probability of producing
downstream spikes. There are several interesting features
of our neuronal ecosystem. First, the predator, a spike, is

not deterministic, as spikes may be born spontaneously as
a consequence of the neuron model. Second, for a new
predator to be created there should be available energy in
the associated local energy pool of that particular neuron.
Recall that in the LV model, the overall number of prey
is the value that counts, while in true evolutionary systems
and our neuron model, locality matters. Here, there could
be zero activity even when the number of available pools
is non-zero (but small), though that context also exists in
classic evolutionary applications of LV. Third, if we exclude
spontaneous generation, reproduction only happens between
connected elements, creating network effects, common in spiking
neural networks.

3.2. Oscillatory Dynamics Emerge as a
Limit-Cycle
First, we demonstrate the influence of energy per spike on
emergent oscillations. The phase space plot of our model is
depicted in Figure 3. Arrows show a tendency toward statistical
directionality in the system.When there is no energy requirement
(re = 0γ ), the level of energy is constant and the amount of
activity varies independently of energy. With re small (0.06γ ),
there are variations in level of activity, but dynamics are not
primarily related to position in phase space. As we increase
energy requirements (re = 0.277γ ), the system organizes itself
and a limit cycle emerges. Finally, when re = 0.394γ , the
system rhythmically dies due to a lack of available energy in pools
supporting neurons.
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FIGURE 2 | Energy impacts activity. Top text specifies: total activity (left), total available energy (center), and power spectrum (right) under different energy

requirements, re values, for a period of 2s. From top to bottom, re goes from zero required energy re = 0γ to a relatively high requirement re = 0.394γ . When

re = 0γ , the total activity behaves much like random noise, while the available energy remains constant, since there is no cost for spiking. As we increase re, it can be

seen that activity synchronizes, creating oscillatory behavior which intensifies with large re. The power spectrum analysis also shows this synchronization. When re is

zero or small, there is no single frequency displaying high power. As we increase re, power gets concentrated in fewer frequencies, and these frequencies are related

to re, as discussed below.

3.3. Cost Per Spike Influences Synchrony
Next, we compute the power spectrum of network activity
(Figures 2, 4) as a means to better understand periodic behavior
in the network. As required energy per spike, re, increases,
some frequencies stand out. There is a relationship between the
dominant frequencies and the magnitude of re. To show this
visually, in Figure 4 we plot, for each re, frequencies of the

spectrum above a fixed power threshold, i.e., above 3, which
arbitrarily isolates the signal of the power peaks in this case. These
plots show that the frequency of the largest periodic component
decreases as we increase the energy requirement per spike. When
we plot the same data illustrating period instead of frequency,
the relation turns out to be linear (Figure 4). As we increase
the spike cost requirement, the period of the wave increases
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FIGURE 3 | Dynamics between available energy and total activity of the network. Arrows shows how the system will likely move at each point (the gradient of

the system). As we increase the energy requirement re, we move from a state of noisy independent points to a more classic limit cycle. We also observe notable

cases: (A) when re = 0γ there is no consumption of energy at all, (B,C) middle ranges, and (D) when re is high enough, the system reaches the 0 activity level thus

breaking the cycle’s dynamics.

FIGURE 4 | Relationship between spike-cost (re; x-axis) and oscillatory frequency distribution (y-axis). (A) Frequency and (B) period of the components

above a power threshold of three as a function of re. Middle image depicts power threshold process which isolates the signal of peaks. As we increase the required

energy, the frequency of the total activity oscillation decreases, while period increases. Changes in re produce linear changes in the period of the oscillations.

Secondary smaller parallel curves correspond to the extinction of spiking activity due to too few resources.
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(the time between two peaks in activity increases). The slope
of the larger line is related to the replenishment rate τe. Using
τe = 0.003γ /ms, the slope that relates energy to period is
0.6814ms/γ (STD = 0.001). If we double the replenishment rate
to 0.006γ /ms, the slope becomes 0.3347ms/γ (STD = 0.001),
which is almost half the original slope (not depicted graphically).
Behavior remains similar, but it takes half the time to go from one
peak in activity to the next, as the energy going into the system in
one time-step is doubled.

3.4. Harmonics Emerge Near Energetic
Limits
Interestingly, at high energy requirements we find secondary
components (harmonics) with different slopes. Those harmonics
are a consequence of the limit cycle passing through a zero-
activity level. In the LV context, this is equivalent to an extinction
of the predator population (spiking activity). This is shown in
Figure 3D. As a consequence, we see a range in the spectrum of
energy requirements between 0γ and approximately 0.26γ in our
setup (with no harmonics), where the period of oscillations can
be adjusted linearly while having a stable system. These appear
more likely to be biological proportions, as elaborated in the
Discussion below.

3.5. Energetic Cost Demonstrates a
Complex Relationship with Activity
Relationships between energy requirement per spike, re, and the
level of total activity can be seen in Figure 5. With a complete
simulation of T time-steps, summing all the energy consumption
over the simulation and dividing by T produces the average
energy consumption rate for the whole network per time-step,

E/ms =
∑T

0 Et
T (Figure 5). The same average energy consumption

per millisecond, alternatively defined via translation from
spike/activity counts, E/ms = Ē = activity(re) × re, is a

non-decreasing concave function of re (Figure 5). As we increase
re, Ē increases but at a slower rate, implying that the activity level
decreases as a function of re (Figure 5). If the relation between
the level of activity and the required energy is null, the average
energy consumption per millisecond would be a straight line:
Ē = activity × re. The level of activity is negatively affected by
re; thus, the slope of Ē(re) decreases. For re large enough, the
function approaches an asymptote. To understand the meaning
of this asymptote, we can hypothesize an energy level re and
activity level, A, which changes at the next step to r′e, A

′ where
r′e = 2re. For the average energy consumption per ms to remain
the same, it is required that:

reA = r′eA
′
= 2reA

′. (4)

If we consider the network as a binomial model with the expected
activity as A = p(re)N, where p(re) is the probability for a
neuron firing for a given re, then for Equation (4) to hold, it
is required that p(r′e) = 1

2p(re) or 2p(r
′
e) = p(re). This model

assumes independence of firing. We need twice as much energy
to generate the same amount of activity. Given that the energy
replenishment is fixed, the system needs twice as much time to
generate and use the energy required for A, the given level of
activity.

The asymptote that appears in Figure 5 shows the existence
of a notable situation: when the energy’s dynamics dominate the
activity dynamics (around fire energy > 0.15). In many spike-
response or integrate and fire models, a neuron will fire even
with no incoming signals, albeit at a minimum frequency. In our
model, membrane potential has a fixed decay toward the firing
threshold, and the minimum firing frequency without inputs is
controlled by the relation between the resting state Vr voltage,
threshold voltage Vθ , and the decay τv. If the frequency of firing
is faster than the time required for a pool to regenerate sufficiently
for another spike after firing, energy would be the primary

FIGURE 5 | Energy consumption and firing rate of the whole network as a function of re, required energy for a single spike. (A) Average energy

consumption rate for the whole network per time-step, as a function of re. (B) Average total activity of the whole network as a function of re. Plots show that average

energy consumption rate is a concave function of re. This implies that re actually affects the level of activity in a non-linear manner. Biological ranges are likely around

the concave minima of about re = 0.15.
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limiting factor for firing, rather than input spikes (via membrane
potential); this would be energy dominating the system. On the
other hand, if the energy replenishes faster than the average time
required for inputs to cause the membrane potential to reach a
threshold, energy will play little role in the dynamics. Finally,
there are situations in between, when neither the energy nor
the membrane potential completely dominates the dynamics.
This middle range is of most interest. To further observe these
dynamics, we replicate simulations in two further experiments:

1. Increasing the membrane potential threshold Vθ (Figure 6).
2. Also keeping a high Vθ , and additionally increasing the

connectivity of the network while preserving the proportional
correlation matrix (Figure 6).

This demonstrates a second continuum, revealing the varying
influence of energetic costs on the system’s behavior. We now
discuss the implications of these results.

4. DISCUSSION AND CONCLUSIONS

Energy, time, and many neuronal parameters in our study are, in
actuality, unit-less, and like any symbolic model, the proportions
of these parameters, rather than their absolute values, define
accuracy. The goal of our approach is to systematically map
the space of energy and neuronal parameters, not only to cover
biological ranges, but to extend parameters widely enough to
describe the effect of energy on networked systems generally.
In biological systems, neither the action potentials alone nor
energy alone dominate neuronal firing, with both explaining
variation in experimental evidence. Our experiments include a
wide range of combined proportional parameters, within which
likely exist biologically realistic proportions for corresponding
features. Overall, some ranges appeared biologically realistic and
some limit-ranges did not. For example, with no required energy
the network will typically remain highly active for long periods of

FIGURE 6 | Frequency (left) and period (right) as a function of required energy re, with increased membrane potential threshold Vθ (all) and increased

connectivity (bottom). (A) Frequency as a function of re for high Vθ . (B) Period as a function of re for high Vθ . (C) Frequency as a function of re for high Vθ and high

connectivity. (D) Period as a function of re for high Vθ and high connectivity. When Vθ increases with a low connectivity (top two plots), membrane potential dominate

the system’s dynamics: There is no clear relation between re and oscillations. On the other hand, when the connectivity increases (bottom two plots), making each

neuron more likely to fire due to neighbors’ input spikes, a relation between re and periodicity of oscillations re-emerges. To illustrate this relationship, the power

threshold for the spectrum can be decreased, which in turns causes the appearance of noise.
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time, while with higher energy requirements for a spike, activity
can sometimes dampen or die out, with a continuum of impact in
between these ranges. In middle ranges, the system demonstrates
more realistic sustained and lively bursting.

4.1. Input Parameter Matching
The multiple energy parameters of the network are initialized at
varying proportions, and it is an open question which ranges of
ratios are realistic. Several proportions may be considered:

1. The ratio of spike cost to total pool quantity determines the
number of spikes required to empty the pool, in the absence
of any regeneration of the pool. Studies of ATP imaging
and synthesis blockage at the synapse suggest this ratio
should result in a fairly rapid time to empty the immediately
available energy under constant spiking conditions with no
hypothetical energy regeneration (Rangaraju et al., 2014).

2. The ratio of spike cost to regeneration rate (defined both by
frequency and magnitude) determines which ranges of spike
rate form an equilibrium with the regeneration rate. Realistic
ranges may be obtained by (a) interpolating limits to avoid
extinction or saturation of random firing, (b) determining
which produce a realistic firing rate, (c) determining which
produce realistic firing rate distributions and limit-cycle
behavior, discussed in the next subsection.

3. The ratio of regeneration rate (defined both by frequency and
magnitude) to total pool quantity can potentially define the
depth or type of oscillations that emerge, due to the possibility
of harmonic interactions between neuronal oscillations and
regeneration caps. Mapping the space of these interactions
would be an extensive undertaking, and so we defined this
ratio at only two levels, with both parameters at a high
frequency to avoid any such interactions.

4.2. Emergent Output Matching and
Interpretation
With varying levels of spike cost in relation to other parameters,
we can ask which outputs might be most realistic, and at such
hypothesized proportions, whether network behavior produces
any notable emergent features:

1. Firing rate (frequency) distribution represented on the right-
most column of Figure 2 demonstrates a realistic frequency
distribution as often observed in EEG. Specifically, EEG data
have a fat-tailed geometric distribution with large quantities of
low frequencies (0−5Hz), tapering off rapidly just below alpha
(10Hz), and continuing to tapermuchmore slowly past 20Hz.
In our results, the range between re = 0.006 and re = 0.227γ
produces a distribution which appears to match such EEG
power spectra.

2. Another picture of the frequency distributions can be obtained
from the limit cycle plots (Figure 3). Too high levels of energy
requirements produce extinction, with too low producing
random saturated firing. A value between re = 0.006 and re =
0.227γ produces moderate behavior, which we hypothesize to
be realistic.

3. To improve upon the previous two snapshots, the energy
consumption and firing rates as a function of spike cost may

also inform realistic ranges with a more continuous resolution
(Figure 5). The convex maxim for energy consumption
around re = 0.15γ serves as the mid-point between firing and
energy dominating activity. The same point serves as a stable
minima in the concave function describing quantity of firing,
perhaps acting as an attractor, producing an efficient means
to generate low levels of self-sustained activity, which is itself
often considered difficult to cultivate experimentally in neural
networks (Gewaltig, 2013).

4. To extend the previous point, realistic total quantities of firing
can be observed at this maxima/minima of re = 0.15γ .
Published extrapolations suggest that the cost of a spike is
so high that <1% of neurons can be “substantially active
concurrently” (Lennie, 2003). Indeed, in the time window we
bin into, the range of percentage active at a single point in time
is just slightly below the 1% range.

4.3. Level of Abstraction
We do not take into consideration costs of non-signaling
activity (Hyder et al., 2013b), variable requirements of gray
vs. white matter (Harris and Attwell, 2012), or dynamics of
particular metabolites in neuron-glia energetics (Jolivet et al.,
2009, 2010, 2015). Instead we focus on network dynamics
at a higher level of abstraction, attempting to create realistic
global behavior, which could serve as a means of time-series
estimation.

4.4. Functional Neuroenergetics via
Non-invasive Imaging
Using MR techniques to measure oxygen consumption can serve
as a good metabolic marker for exploring brain metabolism
directly (Hyder et al., 2011; Shu et al., 2016). Measuring
specific metabolites such as glucose or ketone bodies using
PET is also possible (Wang et al., 2003; Bentourkia et al.,
2009; Pifferi et al., 2011; Di and Biswal, 2012). Using such
methods, studies have shown that loss of consciousness due
to anesthesia largely reduces energy consumption, and that
the awake resting brain at baseline requires a large proportion
of the brain’s energy budget (Shulman et al., 2004, 2009;
Hyder et al., 2013a). Though EEG data have no reliable spatial
resolution, they can serve as an indirect means to asses gross
metabolic changes (Hyder et al., 2013b). For example, glucose
consumption after fasting has a detectable impact on resting
state EEG (An et al., 2015); indeed, in our model we see
increases in similar frequency bands with mid-range energy
requirements.

4.5. Cost of Neuronal Energetics within and
across Species
We employed connectivity data from human subjects, and there
is some question as to whether the greater neuronal density in
primates vs. rodents may influence energetic requirements. It
appears that energetic cost may scale linearly with the number
of neurons in both rodents and primates (Herculano-Houzel,
2011b; Balaban, 2013; Hyder et al., 2013b). The resting state
methods used to infer one of the networks we used have also
been employed in studying energetics. Resting state functional
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connectivity may indeed be metabolically expensive, albeit with
hubs demonstrating possibly higher energy efficiency (Tomasi
et al., 2013). Local glucose consumption may influence the
degree of resting state functional connectivity (Riedl et al., 2014).
Metabolic networks measured via FDG-PET can be analyzed
much like rsfMRI data would be, producing covariant metabolic
networks which largely overlap with rs-fMRI networks (Di
and Biswal, 2012; Thompson et al., 2016). Further, impeding
mitochondrial function can impact resting state functional
connectivity (Sanganahalli et al., 2013). Neural networks have
been employed to illustrate some of the dynamics between active
and resting state activity (Bennett et al., 2015), and for integrating
EEG, fMRI, andmetabolic demands (Sotero and Trujillo-Barreto,
2008). Overall, it is likely the case that at our general level of
abstraction, that our energetic model may complement such
studies both in animals and humans.

4.6. Biological Speculation
Biologically, energy may not just be used supply basic metabolic
cellular needs, but energy itself may be a domain of information
processing much like membrane potential and spiking, with
ATP acting as a major excitatory neurotransmitter, and
adenosine acting as a major inhibitory neurotransmitter
(Lindberg et al., 2015). This may not just be cross-talk
between independent systems, but may in part explain
the algorithmic role glia play in signaling. Glia do indeed
likely play a role in modulating neuronal signaling, perhaps
performing slower time-scale associative learning (Barres,
2008; Araque and Navarrete, 2010), complementing the faster
time-scale learning via spike-timing dependent plasticity
(STDP) (Taylor, 1973; Levy and Steward, 1983; Dan and
Poo, 1992; Debanne et al., 1994; Markram et al., 1997; Bi
and Poo, 1998). Neurons may integrate many different types
of signals, including cross-talk between spikes, homeostatic

events, energy, and others for the purposes of information
processing, learning, and pattern detection. Our model is

congruent with the feasibility of such interactions, with a
complex interplay between energetic oscillations and neuronal
activity.

4.7. Technological Speculation
Our results may extend beyond informing studies of brain and
biology. As introduced above with computerized load balancing
and sharing, network connectivity maintenance, predator-prey
networks, and economics (Lotka, 1910; Goel et al., 1971;
Gandolfo, 2008; Wan et al., 2008; Allan et al., 2010; Shtessel
et al., 2012; Arpaci-Dusseau and Arpaci-Dusseau, 2015), we
assert that resource-utilization generally, causes the emergence
of oscillations and periodic components. Here, we illustrate an
analogous relationship, with oscillatory dynamics and energy
requirements in the brain. We propose that such dynamics
necessarily must emerge with two features of (1) a momentum-
like delay and (2) bi-directional interdependence. Each of the
above and our neural networks should be considered special cases
only. Thus, our model has implication beyond critical inclusion
in computational neuroscience and may be of relevance to future
energy-aware technological networks.
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