
www.nrronline.org
NEURAL REGENERATION RESEARCH 
November 2017,Volume 12,Issue 11

1762

Interferon regulatory factor 2 binding protein 2: a 
new player of the innate immune response for stroke 
recovery

M1/M2 Polarization 
The ischemic brain injury of stroke triggers an acute and sus-
tained inflammatory response of the brain-resident macrophages 
called microglia. Upon stroke injury, debris of dying neurons and 
astrocytes is recognized as damage-associated molecular patterns 
(DAMP) that activate Toll-like receptors (TLR) and the TLR 
signalling cascade. Microglia activation after stroke proceeds in 
an orderly transition from a proinflammatory M1 phenotype to 
an anti-inflammatory and restorative M2 phenotype. Bacterial 
lipopolysaccharides (LPS) induce M1 markers, including the 
pro-inflammatory cytokines tumor necrosis factor (TNF)-α, in-
terleukin (IL) 1β, IL12, as well as monocyte chemoattractant pro-
tein-1 (MCP1), macrophage inflammatory protein 1a (MIP-1a), 
cyclooxygenase 2 (Cox2) and inducible nitric oxide synthetase 
(iNOS). IL4 induces M2 markers including the anti-inflamma-
tory cytokine IL10, arginase 1 (Arg1), mannose receptor C type 
1 (Mrc1; also as CD206), Ym1 and found in inflammatory zone 
1 (Fizz1) (Murray et al., 2014; Chen et al., 2015). Experimental 
stroke studies showed that increased pro-inflammatory M1 po-
larization is associated with larger infarction and worse stroke 
outcome, whereas anti-inflammatory M2 polarization resolves in-
flammation, limits stroke injury progression and promotes tissue 
regeneration and recovery from stroke injury (Cruz et al., 2017).

Interferon Regulatory Factor (IRF) in 
Microglia Polarization
Growing evidence points to the IRF family of transcription fac-
tors as playing a key role to control the microglial inflammatory 
phenotype, and also a central role in defending against viral in-
fection through the activation of the interferon response. IRF1 

is a transcriptional activator that is activated by ischemic brain 
injury and promotes M1 polarization. IRF1-null mice have a 
reduced infarction after ischemic brain injury (Iadecola et al., 
1999). On the other hand, IRF2 binds to the same sequences 
as IRF1 but works as a transcriptional repressor through its 
interaction with the corepressor IRF2 binding protein 2 (IR-
F2BP2) (Childs and Goodbourn, 2003; Teng et al., 2010, 2011). 
Although the effects of IRF2 in the context of stroke remain to 
be seen, overexpression of IRF2 was shown to limit ischemia/
reperfusion injury in the liver (Klune et al., 2012). Moreover, a 
recent study by Cruz et al. (2017) showed that microglial-spe-
cific ablation of IRF2BP2 enhanced M1 inflammatory gene ex-
pression, impaired M2 phenotypic transition of microglia and 
worsened ischemic brain injury after stroke (Figure 1A). Thus, 
this study indicates that IRF2 acts to counterbalance the inflam-
matory response caused by IRF1.

Interferon Beta (IFNβ) Protects from Stroke 
Injury
IFNβ expression and signalling are activated by bacterial and 
viral infection to limit the spread of infection. IFNβ signaling 
is not only important to ensure pathogen clearance but also to 
prevent excess inflammation (IL1β activation) and tissue de-
struction, a process that was reported to be dependent on IRF5 
(Castiglia et al., 2016). IFNβ is also activated by ischemic brain 
injury (Marsh et al., 2009) and both endogenous and exoge-
nous IFNβ reduce inflammation and infarction (Marsh et al., 
2009; Inácio et al., 2015; Kuo et al., 2016). A recent report by 
Cruz et al. (2017) showed that activation of IFNβ signaling in 
the context of stroke also suppresses IL1β and limits brain in-
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flammation and tissue damage. Importantly, and unexpectedly, 
this process requires IRF2BP2 in microglia. Since IRF2BP2 only 
interacts with and co-represses IRF2 (and not IRF1 or IRF5), 
this also implicates IRF2 in the protective effect of IFNβ signal-
ing after stroke. Whether the IRF2 and IRF5 pathways work in 
parallel or converge to control IL1β remains to be determined. 

IRF2BP2 Expression in Microglia/
Macrophages
The effect of IFNβ on IRF2BP2 expression in microglia is not 
known. In macrophages, expression of IRF2BP2 is dynamically 
regulated; inflammation suppresses IRF2BP2 expression where-
as anti-inflammatory stimulation by IL4 elevates IRF2BP2 
expression (Chen et al., 2015). As in microglia, ablation of 
IRF2BP2 in macrophages promotes the inflammatory M1 phe-
notype and interferes with IL4-induced M2 polarization and 
worsens atherosclerosis in susceptible mice (Chen et al., 2015). 

The inflammation caused by ischemic brain injury would 
suppress IRF2BP2 expression and this may compromise the full 
beneficial effect of IFNβ to limit stroke injury. Recent studies 
identified several ischemia-induced microRNAs, including 
miR-107 (Yang et al., 2014; Bhatia et al., 2016) and miR-155 
(Arruda et al., 2015) that target and suppress IRF2BP2 expres-
sion. Antagonism of miR-155 promotes stroke recovery (Cabal-
lero-Garrido et al., 2015), an effect likely mediated by increased 
IRF2BP2 protein levels. Future studies will be required to test 
whether the therapeutic effect of IFNβ for stroke recovery can be 
improved by antagonism of miR-107 and miR-155 in order to 
maintain IRF2BP2 expression.

Synaptic Pruning in Stroke Recovery
Focal ischemic lesions produce a well-documented reorganiza-
tion of the sensorimotor cortex (Harrison et al., 2013), a process 
that is dependent on tissue repair and synaptic pruning by mi-
croglia (Paolicelli et al., 2011). Whether M2 microglia are better 
at synaptic pruning than M1 microglia, or target different types of 
synapses for pruning, are important questions that remain to be 

Figure 1 IRF2BP2 is required for microglia M2 polarization and anti-inflammatory effect of IFNβ.
(A) Resting MG are activated to the M1 phenotype by LPS and to the M2 phenotype by IL4. IFNβ suppresses IL1β expression and this effect re-
quires IRF2BP2. (B) IRF2BP2-deficient MG have prolonged M1 and delayed M2 activation after stroke and this is associated with larger infarction 
and worsened functional deficits. IRF2BP2: Interferon regulatory factor 2 binding protein 2; IFNβ: interferon beta; MG: microglia; LPS: lipopolysac-
charides; IL4: interleukin 4; IL1β: interleukin 1β; IRF1: interferon regulatory factor 1; IRF2: interferon regulatory factor 2; STAT1: signal transducer 
and activator of transcription 1; TNF-α: tumor necrosis factor-α; IL1: interleukin-1; CCL2: chemokine (C-C motif) ligand 2; IFN1β: interferon 1 
beta; STAT6: signal transducer and activator of transcription 6; KLF4: Kruppel-like factor 4; Arg1: arginase 1; Fizz1: found in inflammatory zone 1; 
CD206: mannose receptor C type 1 (Mrc1); IL10: interleukin 10; WT: wild type; IRF2BP2MKO: IRF2BP2 microglia/macrophage knockout.

elucidated. Nonetheless, the study by Cruz et al. (2017) showed 
more severe functional deficits using the adhesive removal test, 
suggesting that in the absence of IRF2BP2, the reorganization 
process in the sensorimotor cortex after stroke is impaired likely 
due to more severe inflammation. In this paper, IRF2BP2-defi-
cient microglia showed no difference in their phagocytic ability 
to engulf micro-particles after LPS stimulation compared to wild 
type (WT) microglia. Whether synaptic pruning in vivo is defec-
tive in IRF2BP2-deficient microglia remains to be seen. However, 
since there were fewer IRF2BP2-deficient M2 microglia in the 
peri-infarct area compared to littermate controls, and M2 mi-
croglia are associated with tissue repair, this could account for the 
delayed regression of the ischemic lesion. Figure 1B illustrates 
how IRF2BP2-deficient microglia likely have a delayed transition 
to the M2 phenotype that accounts for a prolonged inflammatory 
lesion and impaired recovery.

Inflammatory cytokines can also directly affect synaptic 
structure and neuronal network connectivity. TNFβ modulates 
synaptic transmission and synaptic scaling (Stellwagen and 
Malenka, 2006) and also increases the turnover of dendrit-
ic spines and axonal boutons, contributing to early synaptic 
abnormality in somatosensory cortex in mouse models of ex-
perimental autoimmune encephalomyelitis (Yang et al., 2013). 
Pathological levels of IL1β have been shown to impede synaptic 
long-term potentiation (Ross et al., 2003). The inflammatory 
cytokine IL1β is elevated not only at the area surrounding the 
infarction but also at the contralateral cortex 48 hours after 
ischemic stroke (Davies et al., 1999). 

Astrocytes as Mediators of Microglial 
Inflammation
Although not addressed in the Cruz et al. (2017) study, astro-
cytes are another key player in the response to stroke injury. 
Like microglia, astrocytes undergo an A1 and A2 polarization 
in response to brain injury. A recent study by Liddelow et al. 
(2017) showed that activated microglia activate an inflam-
matory A1 phenotype of adjacent astrocytes that precipitate 
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neuronal death following injury. Since IRF2BP2 is expressed in 
astrocytes and its expression is elevated in activated astrocytes 
(Liu et al., 2006), the function of IRF2BP2 in astroctyes and 
whether it affects their A1 polarization are important questions 
for future studies and may be relevant to stroke therapy.

Inflammation and Anxiety 
Another consequence of inflammation after stroke is the appear-
ance of affective mood disorders (anxiety and depression) that 
can occur in the absence of an obvious sensory-motor deficit, 
long after the initial ischemic insult. Histological (Nilupul Perera 
et al., 2006) and positron emission tomography (PET) imaging 
(Gerhard et al., 2005; Gulyás et al., 2012) studies detect inflam-
matory brain microglia/macrophages in the area of the ischemic 
lesion that can persist for several months. Ischemic lesions to the 
left prefrontal cortex, a brain region important for mood con-
trol, can produce anxiety and depression with minimal deficits 
in sensory and motor function in humans and mice (Terroni 
et al., 2011; Vahid-Ansari et al., 2016). Inflammatory microglia 
are tied to anxiety-like behaviours in mice (Li et al., 2014; Mc-
Guiness et al., 2016) and mice with IRF2BP2-deficient microglia 
are resistant to the anxiolytic effect of enhanced postnatal care 
(Hari et al., 2017). It will be interesting to see whether mice with 
IRF2BP2-deficient microglia display more severe post-stroke 
affective mood disorders. Together, these reports confirm a dele-
terious effect of brain inflammation and that its rapid resolution 
after stroke is desirable for functional recovery.
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