
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Chris Wincup,
King’s College Hospital NHS
Foundation Trust, United Kingdom

REVIEWED BY

Elizabeth C. Jury,
University College London,
United Kingdom

*CORRESPONDENCE

Andras Perl
perla@upstate.edu

SPECIALTY SECTION

This article was submitted to
Autoimmune and Autoinflammatory
Disorders : Autoimmune Disorders,
a section of the journal
Frontiers in Immunology

RECEIVED 01 August 2022
ACCEPTED 20 September 2022

PUBLISHED 12 October 2022

CITATION

Perl A, Agmon-Levin N, Crispı́n JC and
Jorgensen TN (2022) Editorial: New
biomarkers for the diagnosis and
treatment of systemic lupus
erythematosus.
Front. Immunol. 13:1009038.
doi: 10.3389/fimmu.2022.1009038

COPYRIGHT

© 2022 Perl, Agmon-Levin, Crispı́n and
Jorgensen. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Editorial
PUBLISHED 12 October 2022

DOI 10.3389/fimmu.2022.1009038
Editorial: New biomarkers for
the diagnosis and treatment of
systemic lupus erythematosus

Andras Perl1,2,3*, Nancy Agmon-Levin4, José C. Crispı́n5,6
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Editorial on the Research Topic

New biomarkers for the diagnosis and treatment of systemic
lupus erythematosus
Systemic lupus erythematosus is an autoimmune disease of unknown etiology that

primarily affects females of child-bearing age with various morbidities (1). Mortality of

SLE still exceeds 10% over 5 years (2, 3). While current treatments are partially effective,

they carry significant side effects (4), with infections due to toxicity of

immunosuppressant medications being a major cause of death (5, 6). This includes

belimumab, the 1st drug approved by the FDA for SLE treatment in 56 years (7), and

more recently anifrolumab, both of which also predispose to infections (8). Therefore, a

significant unmet need exists to identify biomarkers that can be targeted for safe and

effective therapeutic intervention in SLE. A research topic centered around new

biomarkers for the Diagnosis and Treatment of SLE included 15 publications with a

wide range of focus and experimental design. This Editorial addresses the challenges of

integrating a series of newly reported single biomarkers, composite biomarkers based

multi-omics approaches, and biomarkers based on machine learning with the complex

systems biology of SLE. These newly reported biomarkers are shown in Table 1.

S100 calcium-binding protein A8 protein (S100A8) levels as biomarkers for systemic

lupus erythematosus (SLE) were quantified in serum, urine, and saliva samples from 249

patients with SLE and 52 age- and sex-matched healthy controls (HCs) and a receiver

operating characteristic curve was used to analyze whether they may be used as biomarkers

for diagnosis and prediction of flares (17). For SLE diagnosis, the area under the receiver

operating characteristic curve (AUC) was 0.831 for serum S100A8 (95% CI, 0.765–0.897),
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0.751 for urine S100A8 (95% CI, 0.648–0.854), and 0.729 for

salivary S100A8 (95% CI, 0.646–0.812). Pearson’s correlation

analysis showed that S100A8 in serum, urine, and saliva was

significantly associated with the SLEDAI (r = 0.267, p < 0.001;

r = 0.274, p < 0.001; and r = 0.629, p < 0.001, respectively). Among

the clinical manifestations, nephritis was the only organ

involvement that was associated with increased concentration of

S100A8 in serum, urine, and saliva in comparison to SLE patients

without LN (17). An independent study demonstrated that

enhanced glomerular S100A8 staining in class IV LN patients

over controls (16). S100A8 has been identified as a differentially

expressed gene (DEG) with overexpression in kidneys of LN

patients (16).

Mass spectroscopy of circulating immune complexes

identified 300 proteins in the serum of SLE patients, several of

which were found to be highly associated with LN in two

independent patient-control cohorts (14). Prolyl 3-hydroxylase

1 (P3H1), phosphatase and actin regulator 4 (PHACTR4), and

regulator of G-protein signaling 12 (RGS12) discriminated LN

AUC values of 0.82, 0.99, and 0.90, respectively.

Serial kidney biopsies for initial diagnosis and subsequent

monitoring of lupus nephritis (LN) remain challenging, thus

non-invasive biomarkers are needed. Urinary ALCAM, PF4, and

VCAM-1 were identified as potential biomarkers for predicting

kidney disease activity in childhood-onset SLE with ALCAM (AUC

0.83) being the single most predictive (15). Herpes virus entry

mediator (HVEM) demonstrated comparable diagnostic ability to

creatinine normalization when distinguishing active lupus nephritis

from inactive SLE patients using the candidate biomarker ALCAM

(20). In a 3-stage study including a total of 321 LN patients, a

combination of four biomarkers, adiponectin, MCP-1, sVCAM-1

and PF4, were found to have the greatest predictive value for the

detection of proliferative, active LN (18). Patients with LN exhibit a

profound depletion of atypical age-associated B-cell (ABC) like

CD11c+T-bet+CD21hi B cells in comparison with healthy

individuals and SLE patients without LN (19). Selected from 284
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DEGs identified in two independent SLE cohorts in the Gene

Expression Omnibus (GEO) database, machine learning validated

ABCB1, IFI27, and PLSCR1 as top predictors of SLE in a Chinese

validation cohort of patients over ethnically matched controls (13).

Expression of each these genes was correlated with the expansion of

pro-inflammatory lineages of the adaptive and innate immune

systems (13). Separately, a comprehensive analysis of gut

microbiome genome databases newly identified Bacilli and

Lactobacillales as promoters of SLE and Bacillales, Coprobacter

and Lachnospira as protectors from SLE (9).

Among plasma sphingolipids, lactoceramide has been

identified as a potential predictor of cardiovascular disease

(CVD) in African-American patients with SLE (11). Tan et al.

provide an extensive review of biomarker development for SLE

(21). The biomarkers are divided by their molecular nature: i)

autoantibodies; ii) serum proteins (cytokines, chemokines,

complement components, soluble receptors and transporters);

iii) microRNAs and long non-coding RNA (LncRNAs); and

relevance for organ involvement, such as nephritis,

neuropsychiatric lupus, and cutaneous lupus. The review does

not discuss cellular biomarkers, such as Tregs, memory B or T

cells, or metabolites. Indeed, a comprehensive review of all

biomarkers implicated in lupus pathogenesis and patients care

remains daunting. In contrast, Ole Petter Rekvig focuses on the

role of DNA structure in triggering anti-DNA antibodies and its

relationship to lupus nephritis (12). Mitochondrial N-formyl

methionine (fMet) is newly implicated in promoting neutrophil-

mediated inflammation in systemic sclerosis (22).

Neuropsychiatric SLE (NPSLE) can be diagnosed in the

majority of patients with appropriate screening instruments

(23). NPSLE and particularly depression has been associated

with elevated levels of type 1 interferons, TNFs, and IL-6 in the

cerebrospinal fluid (CSF) of SLE patients (24). Accumulation of

senescent cells in the hippocampus has been linked to major

depression (25). Apparently, depression in lupus-prone MRL/lpr

mice is associated with the accumulation of senescent cells in the
TABLE 1 New biomarkers for the diagnosis and treatment of SLE.

Biomarker Source Outcome Impact Reference

Bacilli, Lactobacillales Gut SLE Risk (9)

Bacillales, Coprobacter, Lachnospira Gut SLE Protection (9)

IL-6 Hippocampus NPSLE Diagnosis (10)

Lactoceramide Plasma CVD Diagnosis (11)

Anti-DNA Serum LN Flare (12)

ABCB1, IFI27, PLSCR1 PBMC SLE Diagnosis (13)

P3H1, PHACTR4, RGS12 Serum LN Diagnosis (14)

ALCAM, VCAM-1 and PF4 Urine LN Flare (15)

S100A8 Kidney SLEDAI, LN Diagnosis (16)

S100A8 Blood, Urine, Saliva SLEDAI, LN Flare (17)

Adiponectin, MCP-1, sVCAM-1,PF4 Urine LN Flare (18)

CD11c, T-bet, and CD21high B cells Blood LN Protection (19)
fro
LN, lupus nephritis.
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cornu ammonis 3 (CA3) region of hippocampus (10).

Importantly, oral fisetin, a senolytic drug, reduced the number

of senescent neural cells and IL-6 mRNA in the hippocampus

and improved depressive behavior in the MRL/lpr mice (10).

Given the diversity of hypotheses, methodologies,

experimental models and study design, integration of the newly

reported biomarkers with the systems biology of SLE present

multiple challenges. Such challenges can be easily attributed to a

general lack of understanding of lupus pathogenesis. However,

several key facts need to be considered when integrating such

interesting but diverse outcome. A hallmark of SLE is the

production of antinuclear autoantibodies (ANA) (26). Although

ANAs are directed to an ever growing number of nucleic acid and

nucleoprotein targets and their titers can greatly vary due to the

course of disease and impact of therapies, their detection remains

a key criterion of diagnostic workup (27). Thus, biomarkers may

be mechanistically connected, either upstream or downstream, to

the generation or handling of autoantibodies and cell-mediated

autoreactivity. T (28) and B cells of the adaptive immune system

(29, 30) and IFN-producing dendritic cells are essential for lupus

pathogenesis (31). Therefore, integrating biomarkers into the

signaling networks that connect the adaptive and innate arms of

a dysfunctional immune system is critical for appreciating their

significance for controlling pathogenesis, predicting flares or

serving as target for treatment in SLE. Notably, only few of

these studies involved cellular biomarkers (13, 19) that can be

connected to central pathways of lupus pathogenesis.

Nevertheless, certain easily detectable biomarkers may also serve

other purposes, such as sensing organ damage and obviating the

need for invasive procedures, i.e., renal biopsy in LN (15, 17–19).

Fisetin was found to control depression by preventing the

senescence of neuronal cells in the hippocampus of MRl/lpr

mice (10). Fisetin is known to exert its antiaging effect by

blocking the mechanistic target of rapamycin (mTOR) (32, 33)

(Figure 1), which serves a sensor of cellular stress and central

regulator of pro-inflammatory lineage development in the

immune system (36). Importantly, T cells of SLE patients (37–

41) and mice exhibit activation of the mechanistic target of

rapamycin (mTOR) (42, 43). Th17 and IL-4 and IL-17-
Frontiers in Immunology 03
producing DN T cells are expanded, while CD8 EMT cells (44,

45) and Tregs are deficient in SLE patients due to cell type-specific

skewing of autophagy that can be corrected with therapeutic

efficacy by mTOR blockade (45, 46). Rapamycin blocks

nephritis in SLE (47–49). Rapamycin also blocks the production

of vascular cell adhesion molecule-1 (VCAM-1) by vascular

endothelial cells (50). Of note, VCAM1 was identified as a

sensitive biomarker of active LN by two independent studies

published under this Research Topic (15, 18). Therefore, it’s

possible that mTOR blockade with sirolimus or fisetin would

block LN via reducing the expression and urinary excretion of

VCAM1 and other adhesion molecules.

In conclusion, while a single marker may not adequately

capture all the finesses of LN, SLE-CVD, NPSLE or other

subcategories of SLE, it is conceivable that the creation of

easily accessible screening assays measuring one or more

factors will provide fast and reliable information about the

development of organ-specific symptoms, the onset of flares,

and the prediction of different therapeutic intervention among

diverse SLE patients. Before we can reach such goal, it is however

important that new markers are tested across different patient

groups. For example, it will be of interest to know if S100A8, PF4

and (s)VCAM-1 are similarly upregulated in SLE patients with

NPSLE or CVD, or if this phenotype is specific for LN. Future

studies are clearly warranted to substantiate the importance of

these biomarkers for the diagnosis and treatment of SLE.
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FIGURE 1

Schematic diagram of mTOR complexes 1 (mTORC1) and 2 (mTORC2) in SLE. Similar to rapamycin, fisetin inhibits both mTOR complexes (34),
which may be involved in expanding Tregs (35) and thus improving depression and other organ involvement in SLE (10, 35).
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