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ABSTRACT: The positron, as the antiparticle of the electron, can form metastable states
with atoms and molecules before its annihilation with an electron. Such metastable
matter−positron complexes are stabilized by a variety of mechanisms, which can have both
covalent and noncovalent character. Specifically, electron−positron binding often involves
strong many-body correlation effects, posing a substantial challenge for quantum-chemical
methods based on atomic orbitals. Here we propose an accurate, efficient, and transferable
variational ansatz based on a combination of electron−positron geminal orbitals and a
Jastrow factor that explicitly includes the electron−positron correlations in the field of the
nuclei, which are optimized at the level of variational Monte Carlo (VMC). We apply this
approach in combination with diffusion Monte Carlo (DMC) to calculate binding energies
for a positron e+ and a positronium Ps (the pseudoatomic electron−positron pair), bound to a set of atomic systems (H−, Li+, Li,
Li−, Be+, Be, B−, C−, O− and F−). For PsB, PsC, PsO, and PsF, our VMC and DMC total energies are lower than that from previous
calculations; hence, we redefine the state of the art for these systems. To assess our approach for molecules, we study the potential-
energy surfaces (PES) of two hydrogen anions H− mediated by a positron (e+H2

2−), for which we calculate accurate spectroscopic
properties by using a dense interpolation of the PES. We demonstrate the reliability and transferability of our correlated wave
functions for electron−positron interactions with respect to state-of-the-art calculations reported in the literature.

1. INTRODUCTION
The positron,1 as the antimatter analogue of the electron, has
many useful spectroscopic applications in chemistry, biology,
and materials science2−4 based on the detection and analysis of
γ rays produced during the electron−positron annihilation
process. Furthermore, the techniques to accumulate and
manipulate positrons5 and positronium atoms6 at low energies
have greatly advanced, allowing significant breakthroughs, such
as the production of dipositronium (Ps2),

7 the development of
positronium gamma-ray lasers,8 and the production of long-
lived positronium beams to study gravitational interactions.9

Positrons can also interact with atoms and molecules before
the onset of electron−positron annihilation (which happens on
the time scale of 10−9 seconds). For example, it has been
experimentally observed that positrons can form metastable
bound states with atomic and molecular systems, and their
positron−molecule binding energies have been measured
within a resonant annihilation process, in which the positron
binds to vibrationally excited molecules, apparently driven
mainly by electrostatic and polarization interactions.10−12

These experimental findings have stimulated a wide range of
theoretical studies,12 which have suggested various binding
mechanisms, such as the formation of a positronic chemical
bond between two otherwise repelling anions and a new series
of energetically stable atoms11,13,14 and molecules15−20 bound
by one positron. Furthermore, it has been shown that positrons
can act as a chemical mediator by drastically changing energy
profiles of proton-transfer reactions in amino acid com-

pounds.21 Hence, positron binding could be envisioned as a
useful mechanism for controlling chemical reactivity.
The prediction of positron binding to atoms and molecules

requires robust theoretical methods that can handle both
localized and delocalized positronic and electronic states, and
at the same time have the capacity to accurately capture
electron−positron correlation energies, which can be rather
large.11 One can rely either on the hierarchy of quantum-
chemical post-Hartree−Fock (HF) methods or quantum
Monte Carlo (QMC) methods. The main disadvantage of
post-HF methods lies in the use of single-particle atomic
centered basis sets that are unable to properly describe the
formation of bound states between electron−positron pairs. As
a result, many of these methods including many-body
perturbation theory (MBPT) and configuration interaction
(CI) struggle to accurately describe positron−matter systems22

and have to rely on large basis set extrapolations and
multireference approaches at an extreme computational cost,
limiting their applicability to relatively small systems.12,23,24

The same limitations affect potentially highly accurate
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approaches such as explicitly correlated methods25−27 and the
stochastic variational method (SVM),28,29 in which the
dependence on interparticle distances is explicitly introduced
in the wave function.
For these reasons, the most robust compromise is to study

electron−positron systems through explicitly correlated wave
functions optimized through QMC methods, as already done
in previous studies.30−36 QMC methods are a family of
stochastic integration techniques applied to compute physical
observables over chosen trial wave functions that approximate
the ground state. The main advantage of these approaches lies
in the possibility to work with wave functions that are able to
include explicit many-body interactions between the degrees of
freedom in the system, greatly enhancing the accuracy and
improving the convergence with respect to the basis set size.
Computationally, QMC methods suffer from a large prefactor
due to their stochastic nature; yet, for large systems, this is
compensated by the intrinsic parallelism of the algorithms that
can optimally exploit the rapid computational advancements
toward exascale high-performing computing (HPC) facilities.37

Thus, the main challenge in QMC remains the definition of a
variational ansatz for the wave function, which is able to
represent the basic properties of the system examined, while
still being generalizable and scalable with the number of
particles.
For positron−matter systems the ansatz should also include,

besides the standard electronic correlation effects and cusp
conditions, the electron−positron correlation interactions,
satisfying the nucleus−positron, electron−positron, and
eventually positron−positron cusp conditions, together with
the correct asymptotic behaviors as a function of the
interparticle distances.38

To fulfill these requirements, several ansaẗze have been
proposed in the literature, essentially based on three different
approaches: The first is to consider the electron−positron
interaction directly in the determinantal part of the wave
function;30,38−41 the second is to include this correlation effect
through a two-body Jastrow factor constructing the single
particle positronic orbital as a linear combination of an atomic
centered basis set,33−35,42 as usually done for the electrons; the
third is to include the correlation effects through an electron−
positron orbital that explicitly depends on the two particle
distances and that multiplies the purely electronic wave
function.27,30,43

The first approach, although the most accurate, is also the
most complicated to generalize to large molecular systems.
Thus, in this work, we compare the second and third types of
wave function, discussing the crucial differences in recovering
the electron−positron correlation, and introducing a novel
three-body Jastrow factor44 with the purpose of recovering the
correlation between electrons and positrons in the field of the
atomic nuclei, achieving a robust improvement in the
description of the positron−matter interactions. We apply
this novel wave function to study in a systematic way the
binding energies of the positron and positronium with the first
row atoms, anions, or cations (H−, Li+, Li, Li−, Be+, Be, B−, C−,
O−, and F−). In particular for the largest positron−atom
systems, PsB, PsC, PsO, and PsF, we show that our QMC total
energies are lower than results available in the literature.
In addition, we study the potential-energy surface (PES)

describing the bond formation of the repelling H− anions
mediated by one positron15−20 demonstrating the robustness
of our approach that can be generalized to larger electron−

positron systems, and reporting accurate estimations of its
spectroscopic properties.
This article is organized as follows: In section 2 we briefly

describe the VMC and DMC methods. In the section that
follows we explicitly define how we construct the electron−
positron wave function. Next, in section 4 we show the total
energies and the positron binding energies for several
positronic atomic and molecular systems. Finally, in section
5 we summarize the results and provide concluding remarks.

2. QUANTUM MONTE CARLO

Quantum Monte Carlo (QMC) methods37,45,46 are a set of
stochastic techniques used to integrate physical observables
over a given quantum state. The most common method is
variational Monte Carlo (VMC), which stochastically
estimates the energy functional E[ΨT(x ̅)] = (∫ΨT*(x ̅)ĤΨT(x̅)
dx ̅)/(∫ |ΨT(x ̅)|2 dx ̅) over a chosen trial state ΨT(x̅), where Ĥ is
the Fermionic Hamiltonian operator and x ̅ is the vector of
Cartesian and spin coordinates of the Nf Fermions system.
To stochastically compute the energy functional, the

integrand is rewritten as the product of two functions
E[ΨT(x̅)] = ∫ El(x̅)Π(x ̅) dx ̅, which correspond to the local
energy El(x̅) = HΨ̂T(x ̅)/ΨT(x̅) and to the probability density
proportional to the square modulus of the trial wave function
Π(x ̅) ∝ |ΨT(x̅)|

2. By sampling through the Metropolis
algorithm Fermionic configurations x̅i distributed according
to Π(x ̅), the value of the energy functional can be obtained as

the mean value E E E x( )l i l i
1

1≈ ̅ = ∑ ̅= over the local

energies, with the associated error EVar /E lσ = [ ] that
decreases as the square root of the number of samples, with

E E ExVar ( ( ) ) /( 1)l i l i l1
2[ ] = ∑ ̅ − ̅ −= equal to the variance

of the local energy.
Within this variational framework many different minimiza-

tion procedures have been developed to optimize the trial wave
function over a set of predefined parameters, obtaining the best
possible estimation of the ground state eigenvalue and
eigenstate,47−52 of which the most successful is probably the
Linear Method.53−55 In this work we will use the Stochastic
Reconfiguration (SR) introduced by Sorella in ref 56 and
successfully applied to optimize atomic and molecular wave
functions in ref 57.
To improve the treatment of quantum many-body effects

and overcome the limitations of the variational wave function’s
parametrization, here in addition we apply the diffusion Monte
Carlo (DMC) method.37,45,46 DMC is a projection technique
based on the wave function propagation in imaginary time that
is able to converge to the ground state of a Fermionic system
within the Fixed-Node (FN-DMC) approximation. The FN-
DMC overcomes the sign problem of the standard DMC
algorithm, by fixing the nodal surface of the projected wave
function to that of the trial wave function, and relaxing its
amplitudes. In this way one obtains the best estimation of the
ground state for a particular nodal surface, recovering
dynamical correlation between Fermions and obtaining a
more accurate estimation of the corresponding observables. In
our work, we use the recently implemented method from Zen
et al.58 to reduce the dependency of the binding energy
estimations on the time discretization.
The methods are implemented in QMeCha α.0.3.0,59 a

QMC package published on Github.
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3. ELECTRON−POSITRON WAVE FUNCTIONS
The most general expression for many-electrons and a positron
wave function Ψ(x̅e, xp; R̅) explicitly describes the many-body
correlation effects between the 4Ne electronic Cartesian and
spin coordinates x̅e and the four positronic xp coordinates in
the field of the nuclei R̅.
A first approximation to this fully correlated state can be

built by considering only the explicit correlation between
particle pairs. The wave function is thus built as a symmetrized
product (or a linear combination of symmetrized products) of
two-particle functions, as proposed for example by Bressanini
et al. in ref 39, describing the correlation between electron−
electron, electron−positron, nucleus−electron, and nucleus−
positron pairs. Clearly, this ansatz, although very accurate, is
more computationally expensive when applied to large systems
of many atoms and many positrons.
A way to further simplify the total wave function is that of

decoupling it into a product

Jx x R x R x x R x x R( , ; ) ( ; ) ( ; , ) ( , ; )e p
e

e
p

p e e pψ ψΨ ̅ ̅ = ̅ ̅ ̅ ̅ ̅ ̅ (1)

of two Fermionic functions, an electronic one ψe(x̅
e; R̅) (such

as a Slater determinant) and a positronic orbital ψp(x
p; x̅e, R̅),

and a bosonic Jastrow factor that describes the correlation
between the remaining particle pairs, eventually also including
three or four body correlation effects, as we propose in this
work.
Assuming that the electronic wave function ψe(x̅

e; R̅)
describes the spin and angular symmetries of the electrons in
the field of the nuclei, the general positronic function ψp(x

p; x̅e,
R̅) will depend on both the nuclear and electronic coordinates,
being symmetric for the exchange of any electronic coordinate.
In the literature the ψp(x

p; x̅e, R̅) function has been further
simplified assuming it to be independent from x̅e18,22,34,60,61 or
from R̅,30 the former chosen especially for computational
reasons, since it is also simpler to implement and integrate with
post HF methods.
In the following sections we discuss the three parts of the

total wave function.
3.1. Electronic Wave Function. Because of the multi-

configurational nature of some of the electronic systems
studied in this work, for example the Be atom and the Li−

anion, the electronic wave function is chosen to be the
antisymmetrized geminal power (AGP)62 which corresponds
to a more compact and constrained multideterminantal
expansion.63 For a closed shell system the AGP is built as
the determinant

x R G( ; ) dete
eψ ̅ ̅ = [ ] (2)

of a Ne
↑ × Ne

↓ matrix G, the elements Gij of which describe the
coupling of electronic pairs in a singlet state

0, 0
1
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2
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1
2

1
2
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1
2

1
2
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1
2

| ⟩ = − − −
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through the symmetric linear combination of products of two
atomic orbitals modulated by the coupling coefficients λqp:

G r r r r( , ) ( ) ( ) 0, 0ij G i j
q p

Q

qp q i p j
, 1

∑ϕ λ ψ ψ= = | ⟩↑ ↓

=

↑ ↓

(3)

For a spin polarized systems (Ne
↑ > Ne

↓) the geminal matrix can
be generalized64 by adding Ne

u = Ne
↑ − Ne

↓ columns, each with
Ne

↑ elements, containing unpaired molecular orbitals

l
i N

k N N
G r r( ) ( )

1,

1,
ik k i

q

Q

q
k

q i
e

e e1

∑ϕ φ= =
∈ [ ]

∈ [ + ]
↑

=

↑
↑

↓ ↑
(4)

occupied solely by the spin up electrons: In this way we
reconstruct a square G matrix of Ne

↑ × Ne
↑ elements.

3.2. Positronic Wave Function. A very common
approach in the literature18,22,34,60,61 assumes that the
positronic wave function is independent of the electronic
coordinates, and can be written as positronic molecular orbitals
(PMO) which are a linear combination

lx R x( ; ) ( )p
p

q

Q

q q
p

1

∑ψ ϕ̅ =
= (5)

of atomic orbitals ϕq(x
p), in which we have hidden the nuclear

coordinates on which the orbitals are centered. This kind of
approach is well suited when describing the positron’s
interactions with atoms or anions, since its density is
distributed spherically around the electronic charge. Yet, for
molecules such an approach becomes deficient, since while the
positron forms bound states with the electrons to which it is
attracted, it does not form bound states with the atomic nuclei
that repel it.
One way to solve this inconsistency is to construct the

positron’s orbital through a positronic basis set30,39 explicitly
describing the bound states between electron−positron pairs.
As a matter of fact, it can be easily shown that the ground state
of a system of one electron and one positron, that is, the
positronium (Ps), can be exactly described by an exponential
function of the electron−positron distance rep = |xe − xp|:

r R r Yx( ) ( ) ( , )ep ep ep
l
m ep epϕ θ ϕ= (6)

where R(rep) is a radial function normalized with respect to the
distance rep and Yl

m(θep,ϕep) is a real spherical harmonic
(centered on the positron) that is used to introduce an angular
momentum.65

Through this basis we can construct a positronic wave
function for many electrons and one positron as the product

x x r( ; ) ( )p
p e

i

N

p i
ep

1

e

∏ψ φ̅ =
= (7)

of identical orbitals (so that the function is symmetric with
respect to the exchange of the electronic coordinates), each
dependent on the electron−positrons distance riep, thus referred
to as electron−positron orbitals (EPO), that are defined as
linear combinations

lr r( ) ( )p
ep

q

Q

q q
ep

1

∑φ ϕ=
= (8)

of the newly defined positronic orbitals.
It can be shown that the scaling of the computational cost

with respect to the number of electrons, of both the PMO and
the EPO wave functions, is negligible with respect to that of
the electronic determinant. It is in fact known that through the
Sherman−Morrison formula66 Ne consecutive updates of the
electronic determinant require at most Ne

3 operations.
The PMO wave function, which is updated only when the

positron’s coordinates are changed, requires at most Q
multiplications (Q being the length of the atomic basis set
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which is proportional to Ne), which is negligible with respect to
the electronic determinant.
For the EPO, on the other hand, since the update of the

wave function for the change of one electronic coordinate
requires Q operations, Ne consecutive updates require NeQ
multiplications, which is the same computational cost of the
EPO update for the change of the positron’s coordinates. Thus,
the full configuration update will cost 2NeQ operations for
which Q is the length of the positronic basis defined in eq 6,
which can also be set to one and that in any case is lower than
the number of electrons. Again this means that the computa-
tional cost of the update of the EPO is negligible with respect
to the update of the electronic determinant.
In this work we will compare the results obtained with both

the PMO and the EPO based wave functions used in
combination with a novel Jastrow factor to accurately recover
the correlations between electron−positron pairs in the
electrostatic field of the nuclei. This Jastrow factor is described
in the next section.
3.3. Jastrow Factor. The bosonic Jastrow factor44

constructed in this work, that explicitly includes many body
correlations in the QMC wave functions, is inspired by the
general form introduced by Casula et al. in ref 62, as the linear
combination of five terms

J x x R r R r R r

r r r r R

( , ; ) exp ( , ) ( , ) ( )

( , ) ( , ; )

e p
c
en e

c
pn p

c
ee e

c
ep e p e p

3/4

̅ ̅ = { ̅ ̅ + ̅ + ̅
+ ̅ + ̅ ̅ } (9)

which can be classified as one-body terms, r R( ; )c
en e

̅ ̅ and
r R( ; )c

pn p ̅ , that are used to describe the Fermion-nucleus
cusps conditions, pure homogeneous two-body terms, r( )c

ee e
̅

and r r( , )c
ep e p

̅ , that describe the pair correlations between
electronic pairs and electron−positron pairs, and finally a
many-body (or inhomogeneous) term r r R( , ; )e p

3/4 ̅ ̅ that is
used to describe the Fermionic pair correlations in the field of
the nuclei.
The one-body Jastrow factors are written as the sums

f rr( ) ( )c
en

i

N

a

N

a
e

ia
1 1

e n

∑ ∑̅ =
= = (10)

f rr( ) ( )c
pn

i

N

a

N

a
p

ia
1 1

p n

∑ ∑̅ =
= = (11)

of functions that only depend on the relative distances ria
between the ith Fermion and the ath nucleus, and are used to
reproduce the nuclear cusp condition.
The functions used to describe the nuclear cusp condition

are different for electrons and the positron, due to the
corresponding attractive and repulsive nature of the
interactions. For this reason for the electron−nucleus cusp
we use the short-range function62

f r
Z

g( ) e ea
e

a
a

a

r

n

N

n
a r

1

a a n
a

ia
2∑= + ζ−

=

−

(12)

while for the positron−nucleus cusp we use the long-range
cusp62

f r
Z

r
( )

(1 )
ea

p
a

a

a a a n

N

n
a r

1

n
a

ia
2∑ γ= −

+
+ ξ

=

−

(13)

where Z(2 )a a a
1/4= is a factor depending on the nuclear

charge and a remodulating variational parameter a that can
depend on the atom: In all our calculations we fix this
variational parameter simply to one. The sums that appear in
the two equations are a linear combination of Gaussian
functions centered on the corresponding atom that is
modulated by a set of coefficients gn

a and γn
a and by the

corresponding exponents ζn
a and ξn

a, that depend on the atom
and are optimized.
The homogeneous two-body Jastrow factors that describe

the correlation between electronic pairs and electron−positron
pairs are also written as the sum of functions depending only
on the distances between particle pairs

f rr( ) ( )c
ee e

j i

N

ee ij
1

e

∑̅ =
> = (14)

f rr r( , ) ( )c
ep e p

i

N

ep ip
1

e

∑̅ =
= (15)

The functions used to describe the Fermionic cusps conditions
are different for the two types of particle pairs. For the
repulsive electronic pairs we use the functions

f r
b b r

g

b b r
g

( )

1
4 (1 )

e undis

1
2 (1 )

e dis
ee ij

p p
ij n

N

n
p r

a a
ij n

N

n
a r

1

1

n
p

ia

n
a

ia

2

2

∑

∑
=

−
+

+

−
+

+

ζ

ζ

=

−

=

−

l

m

ooooooooo

n

ooooooooo (16)

respectively for distinguishable (antiparallel spin) electrons and
undistinguishable ones (parallel spin). The variational
parameters bp and ba are related to the cusp functions and
are optimized independently.67 The additional linear combi-
nation of Gaussian type orbitals works as a remodulating factor
depending on the set of coefficients gn

p and gn
a and exponents ζn

p

and ζn
a that are optimized. For the attractive electron−positron

cusp we use the short-range cusp function of the form:

f r
b

h( )
1

2
e eep ij

br

n

N

n
r

1

ip n ip
2∑= + η−

=

−

(17)

where again b, the coefficients hn, and the exponents ηn are
optimized variational parameters.
Finally, the last nonhomogeneous term in the Jastrow factor

is a three/four body term, written as the linear combination of
products of two atomic orbitals:

r r R r r

r r

( , ; ) ( ) ( )

( ) ( )

e p

j i

N

q p
qp q i p j

i

N

q p
qp q i p

p

3/4
1 , 1

1 , 1

e

e

∑ ∑

∑ ∑

γ χ χ

ν ϖ ϖ

̅ ̅ =

+

> = =

= = (18)

in which the first group of elements describes the correlation of
two electrons in the field of one or two nuclei and the second
group of elements describes the correlation of the electron−
positron pairs in the field of one or two nuclei. Here χq(r) and
ϖq(r) are a set of atomic orbitals and γqp and νqp are a set of
coefficients that are fully optimized.
This Jastrow term is an extension to the one introduced for

pure electronic systems by Casula et al.62 and it is necessary to
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recover the dynamical correlation between Fermionic pairs,
suppressing also nonphysical charge fluctuations.68 Since the
Jastrow factor must be symmetric with respect to the exchange
of all the electrons, the γqp parameters satisfy the condition γqp
= γpq.
Also for simplicity, in this work the two atomic basis sets are

chosen to be identical, so that χq(r) = ϖq(r).
It is important to add that the presence of one positron does

not change the original computational cost of the purely
electronic dynamical Jastrow factor. In fact, by partially storing
intermediate matrix−vector operations, it can be shown that
the update of this Jastrow factor for the change of the
positronic coordinate requires QNe multiplications which is the
same computational cost of the update of the dynamical
Jastrow factor that describes correlation between electronic
pairs. Thus, the update of the dynamical Jastrow factor for the
change of all the Fermionic coordinates requires a number of
multiplications that is proportional to QNe

2 ∝ Ne
3, and

comparable to the computational cost required for Ne
consecutive updates of the electronic determinant and of its
inverse matrix.
3.4. Computational Details. As discussed in the previous

sections, to construct the electronic wave functions we have
used the AGP with a basis set of contracted Gaussian type of
orbitals (GTOs). In particular, for the H atoms we have used
3s1p Gaussian primitives contracted in the 1s1p orbitals, that
is, (3s1p)/[1s1p]. For Li we have used a basis set of (5s4p1d)/
[2s1p1d] contracted GTOs and for B, C, O, and F we have
used a similar basis set of (6s4p1d)/[2s1p1d] contracted
orbitals. These orbitals have been initialized before starting the
full optimization by maximizing the overlap of the primitives’
linear combinations together with the one-body cusp function
in eq 10, with the contracted orbitals from the Slater-type basis
of Bunge et al.69 For the many-body Jastrow factor term
described in eq 18, the χq(r) and ϖq(r) orbitals are assumed to
be the same. In particular, for the H atoms we have used
(3s2p) uncontracted GTOs, while for all the heavier atoms we
have added one uncontracted d orbital, using the total basis of
(3s2p1d) GTOs. Notice that during the optimization all the
orbitals’ parameters are relaxed.
Also, the basis set used to construct the PMOs (eq 5) or the

EPOs (eq 8) has been chosen to be simply made of contracted
GTO functions with the same number of primitives [5s1p1d]/
(1s1p1d). After the optimizations we have noticed that the
higher angular momenta p and d were associated with very
small coefficients, thus not contributing to the final wave
function, as expected.
Finally, for all the cusp functions in eqs 10,11, 14, and 15,

the number of additional Gaussian functions have been chosen
to be equal to N = 5.
Regarding the DMC calculations, we have chosen to

extrapolate to the continuum the energies obtained with
approximately 2000 walkers and with dt = [0.015, 0.010, 0.005,
0.001].

4. RESULTS AND DISCUSSION
4.1. Electron Affinities. As known from previous

computational investigations14 of the neutral first row atoms,
only Li and Be are known to bind with e+. On the other hand,
e+ has been found to bind also with some of the anions such as
H−, Li−, B−, C−, O−, and F−. To compute the energetic
stability of these positronic systems with QMC and to study
the behavior of the implemented wave functions, it is first

important to verify the convergence of the electronic wave
functions by computing the total energies and by evaluating
the electron affinity (EA) and the ionization potential (IP) for
the different atoms.
The values of the total energies, obtained using the AGP

wave function with the VMC and DMC methods are reported
in Tables S1 and S2 of the Supporting Information and
compared to the accurate single-determinant (SD) and
multideterminant (MD) calculations from refs 70 and 71. To
simplify the comparison, in Figure 1 we show the correlation

energy ratio recovered at the VMC level (panel a) and at the
DMC level (panel b) defined as E E

E E( )
HF

exact HF

−
−

, where the exact

reference corresponds to the most accurate nonrelativistic total
energies of atoms obtained by Chakravorty et al.72 that
estimated the correlation energy from experimental ionization
potentials and complete active space (CAS) calculations. The
differences in the energies in refs 70 and 71 are due to two
factors. For the SD wave functions the authors used different
basis sets and slightly different Jastrow factors. The differences
within the two MD results occur because while Brown et al.70

converged the energies as a function of the number of
configurations, including a number of determinants ranging
from 83 for Li to 499 for Ne, Buendiá et al.71 limited the
number of configurations including only selective excitations
involving 2p, 3s, 3p, and 3d orbitals.
Since the AGP wave function is a constrained MD

expansion, it is able to include up to double excitations
depending on the basis set. For this reason, the AGP energies
of the Li and Be atoms, the wave functions of which require the
inclusion of the nearly degenerate p orbitals, are comparable to
the most accurate MD calculations from Brown et al.70 For the
heavier atoms and anions, on the other hand, the AGP wave
function greatly outperforms the single determinant, and is
comparable with the results of Maldonado et al.71,74 that only
include a limited number of configurations. Given the

Figure 1. Correlation energy ratio defined as E E
E E( )

HF

exact HF

−
−

, between the

exact reference72 and the correlation energies recovered by the AGP
wave function, compared to the single-determinant (SD) and
multideterminant (MD) results from ref 70 and ref 73 with VMC
(panel a) and with DMC (panel b).
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aforementioned reasons, it is evident that the AGP gives results
that are in between the SD calculations and the MD ones, for
all the atoms and ions taken into consideration, and converges
toward the MD results for the lighter atoms, or for those atoms
in which the used MD space was kept small.
Although these results seem to point toward rather accurate

and converged estimations, some inconsistencies are observed
when looking at energies differences such as EAs and IPs
(Table 3S of the Supporting Information).
To the best of our knowledge a complete analysis of the EA

and the IP for SD and MD wave functions with QMC methods

has been done only by Maldonado, Buendiá, and co-workers74

and for this reason from now on we will only discuss the
comparison with their calculations.
Again to simplify the understanding of the results in Table 1

we report the relative error, defined as (Ecalc − Eexp)/Eexp,
between the calculated and experimental values in percentage.
It can be seen that for H, Li, Be, O, and F the values computed
with the AGP wave function have an accuracy within 5% of the
experimental value with VMC and within less than 1% with
DMC. Yet, for C and especially for B, the EA is greatly
underestimated. This same discrepancy can also be observed

Table 1. Values of the Relative Errors (In Percentage), Defined as (Ecalc − Eexp)/Eexp, for the Electron Affinities (EA) and
Ionization Potentials (IP) of the Various Atoms, Obtained with the AGP Wave Function and Compared with the Single-
Determinant (SD) and Multideterminant (MD) Results of ref 74a

VMC DMC

SD74 MD74 AGPb SD74 MD74 AGPb

EAH −0.52(3) 0.1(8)
EALi −36.1(3) −2.4(2) −4.5(2) −9.6(3) 0.2(2) −0.2(8)
EAB −15(1) −108(3) −82(2) 21.5(7) −44(1) −32(3)
EAC 2.1(3) −22.4(2) −14.8(6) 6.3(5) −8.0(2) −7(1)
EAO −11.0(4) −5(1) −6(1) −0.6(3)
EAF −0.5(3) 0.2(2) 1.3(2) 1.3(5)
IPLi −0.55(2) −0.14(2) −0.01(2) 0.01(2)
IPBe −5.48(5) −0.06(5) −0.11(3) −2.93(2) −0.03(1) −0.01(1)

aValues of the IPs and EAs are reported in Table 3S of the Supporting Information. bThis work.

Table 2. Nonrelativistic Total Energies of the Positron (e+) and the Positronium (Ps) Interacting with the Atomic Systemsa

e+Li(2S) e+Be(1S) PsH(1S) PsLi(1S) PsB(3S) PsC(4S) PsO(2P) PsF(1S)

VMC SP32 −7.525 10(10) −0.786 200(10)
VMC MP32 −7.530

180(10)
−0.788 230(10) −7.726

160(80)
VMC30 −7.498

200(30)
−24.765(2) −38.003 0(20) −75.145 0(30) −99.996 0(30)

VMC SD/PMO −24.840
35(12)

VMC SD/EPO −24.840
97(13)

VMC AGP/
PMO

−7.523 02(11) −14.657 7(33) −0.785 600(37) −7.722
950(85)

−24.845
635(81)

−38.067
27(37)

−75.280
46(81)

−100.021
99(67)

VMC AGP/
EPO

−7.525 66(80) −14.663
86(18)

−0.786 416(33) −7.723
921(87)

−24.846
154(81)

−38.068
00(39)

−75.283
66(53)

−100.024
90(58)

DMC SP32 −7.531
650(80)

−0.789 160(30)

DMC MP32 −7.532
290(20)

−0.789 150(40) −7.739
529(60)

DMC30 −7.737
600(40)

−24.875(1) −38.095
90(60)

−75.317
70(50)

−100.071
90(80)

DMC SD/PMO −24.873
89(26)

DMC SD/EPO −24.875
63(82)

DMC AGP/
PMO

−7.530 72(95) −14.668
57(28)

−0.789 01(13) −7.738 17(17) −24.877
96(83)

−38.096
80(78)

−75.327
39(20)

−100.070
88(49)

DMC AGP/
EPO

−7.530 94(23) −14.669
31(36)

−0.789 119 1(31) −7.738 04(41) −24.878
19(37)

−38.097
95(57)

−75.329
69(63)

−100.074
35(15)

CI −0.788 74(60)b −24.830 56c −38.053 62c −75.281 27c −100.001 817d

SVM −7.532 32328 −14.669 04228 −0.789 19676 −7.740 20877

Hylleras78 −0.789 196 714
7(42)

aIn parentheses we report the symmetry state of the electrons. All energies are reported in Hartree. AGP and SD are related to the electronic wave
function: they indicate respectively the antisymmetrized geminal power and the Slater determinant. SP, i.e., single-pairing, corresponds to one
antisymmetrized explicitly correlated pairing function from ref 32, while MP, i.e., multiple-pairing, corresponds to a linear combination of SP
functions. For H the authors use a linear combination of 28 SP functions, while for Li they use 111. bFCI extrapolation from ref 61. cFCI limit with
higher momentum corrections from ref 79. dMRCI calculation from ref 24.
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for the MD wave function of ref 74 and is explained by the
inconsistency between the multiconfigurational spaces of the
neutral atom and its anion. This occurs because, especially for
the AGP wave function, the addition of one electron removes
the possibility to include double p excitations in the expansion
of the anion, that are in fact present in the atom. As a
consequence, the wave function of the atom is more accurate,
and the energy difference between the two states is
underestimated. This inconsistency is also at the root of
what was observed with the AGP wave function for more
complex molecules in ref 75. A way to correct this
inconsistency and to verify its effect is to use for the boron
atom a single SD wave function that seems to give more
consistent results.
The VMC and DMC energies computed with the SD wave

function for B and B− are reported in Tables 1S and 2S of the
Supporting Information. Even if these SD energies are slightly
lower than those reported in ref 74, they give values for the EA
that are absolutely comparable, in fact we obtain 0.273(4) eV
for VMC and 0.341(8) eV with DMC (Table 3S of the
Supporting Information). This time while the VMC results are
quite accurate, the DMC results appear to overestimate the EA
by nearly 50% of its value. Thus, since the B atom remains the
most complicated system that requires careful attention, in the
next section, when computing its binding energy with the
positron, we will use both the SD and AGP wave functions in
order to compare the results.
4.2. Total Energies of Atomic−Positron System. Total

energies for the positronic atoms are given in Table 2 at VMC
and DMC levels employing the two positronic wave function
ansaẗze PMO and EPO, while as electronic wave function we
employed the AGP for all the atoms and the SD for the case of
PsB, which will be discussed later in detail in this section. We
compare our results with those previously obtained from VMC
and DMC by Bressanini et al.30,32 with different types of wave
functions. Additionally, we also report the most accurate values
present in literature obtained with other methods such as the
stochastic variational method (SVM),77,80,81 Multi-Reference
Configuration Interaction (MRCI)23,24,79 and Hylleraas
functions.78

As expected, the EPO wave function provides lower energies
because the dependency on the electron−positron distances
are included explicitly into the wave function, differently from
the PMO where these correlation effects are introduced only as
remodulating factors through the Jastrow term. Nevertheless,
both the EPO and PMO energies are comparable at the VMC
level and are virtually identical at the DMC level for these
atomic systems. This is because in atomic systems, where the
positronic orbital is spherically symmetric and localized around
the electronic charge, the atomic basis set expansion used in
the PMO becomes a reasonable approximation. This is clearly
not the case in molecules, as will be shown in the next section.
If we compare our results with those obtained by Bressanini

et al. in ref 30 for the PsLi, PsB, PsC, PsO, and PsF systems, we
can see that our VMC energies with both EPO and PMO wave
functions are always lower. This is explained by two facts. First,
in their VMC calculations the variational parameters of the
electronic wave function were optimized for the neutral atoms
and kept frozen in the positronic complex, thus optimizing the
positronic orbital but preventing the distortion in the
electronic density which is polarized by the positron. Second,
the authors only use a two-body Jastrow factor, compared to
our wave function that includes dynamical correlation effects of

the electron−positron pairs in the field of the nucleus, through
the dynamical Jastrow factor described in eq 18. Despite this,
their DMC energies are comparable to ours, indicating that
DMC is able to correct the electron−positron distribution,
since most likely the positron does not drastically change the
nodal surface of the electronic wave function.
The limitations of the wave function presented in ref 30

were fully discussed and improved by the same authors in a
subsequent publication.32 In their work, Bressanini and co-
workers proposed the use of a more accurate trial wave
function, written as the antisymmetrized product of two-body
pairing functions constructed between all the Fermionic or
nuclear degrees of freedom in an Hylleraas-type ansatz. They
construct the wave functions with only one of these
antisymmetrized pairing functions, single-pairing (SP), and as
linear combinations of many of these terms, multipairing
(MP), applying them to compute the binding energies of the
e+Li, PsH, and PsLi spherical systems at both the VMC and
DMC levels.
Interestingly, by comparing the SP results with our AGP/

EPO wave function we can see that at both the VMC and
DMC levels there is an agreement for both the e+Li and PsH
systems. This is because, the AGP/EPO includes the pair
correlation between all particles in a combination of Jastrow
and EPO function, and it can be thought of as an explicitly
correlated single pairing function.
On the other hand, the MP results obtained by Bressanini

and co-workers for the e+Li and PsLi systems are 5 mHa more
accurate at the VMC level and around 1−2 mHa more
accurate at the DMC level when compared to our AGP/EPO
wave function. Thus, in order to improve our variational
estimations, we would need to expand our variational ansatz in
a combination of many AGP/EPO Fermionic terms, which is
beyond the scope of this investigation.
Another proof of the accuracy of our approach can be found

by examining the e+Be system, for which our DMC energy is
exceptionally lower than the accurate value obtained with
SVM.77 This is explained by the numerical difficulties the
authors have faced to converge the ECG basis of 1275
functions. For this reason they decided to focus their efforts
into improving the frozen core SVM polarization wave
function which led to a bettering of the total energy prediction
for e+Be, obtaining the value of −14.6705(1) Ha which is
around 1 mHa lower than our DMC estimation. Finally, for
the anionic positronic atoms (PsB, PsC, PsO, PsF) the only
references present in the literature are the VMC and DMC
results of Bressanini et al. from ref 30 and the extrapolated FCI
energies of Saito in refs 23, 24, and 79. Regarding these last
results, it is worth mentioning that their estimated total
energies are 0.04 Ha higher than our DMC predictions on
average, probably due to the frozen core approximation
employed and to the fact that the CI expansion is written in
terms of single-particle atomic basis sets.
In summary, for e+Li, e+Be, PsH, and PsLi, our best results

obtained at the DMC AGP/EPO level are in good agreement
with the highly accurate approaches based on explicitly
correlated wave functions.32 Moreover, for PsB, PsC, PsO,
and PsF, since our VMC and DMC values are always lower in
energy with respect to the results previously published in the
literature,23,24,30,79 we can conclude that they are the best
energy references reported until now in the literature.

4.3. Positron Affinities and Positronium Binding
Energies with Atoms. Having compared the total energies
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of our systems, assessing the quality of the overall results, we
now study the binding energies of the positron, that is,
positron affinity (PA), and of the positronium, that is,
positronium binding energy (BEPs), with atoms.
The PA is related to the direct binding of the positron to the

electronic system, and it corresponds to the difference between
the total energies of the system without and with the positron
attached to it:

E E ePA X X X[ ] = [ ] − [ ]+ (19)

similar to electron affinity. The BEPs is related to the separation
of the electron/positron system into the electronic system with
one less electron and positronium (with a total energy of
−0.25 Ha); and is thus defined as the energy difference:

E E E eBE X X Ps XPs[ ] = [ ] + [ ] − [ ]+ +
(20)

Considering the above definitions, when both channels give
positive binding energies the positronic atom can be
considered energetically stable, on the contrary, when even
one of the two has a negative value this indicates that the
system is predicted to dissociate according to that channel.
In Table S4 of the Supporting Information we present the

computed binding energies for all the atomic systems studied
in this work using both dissociation channels in eq 19 and eq
21 at VMC and DMC levels employing the two positronic
wave function ansaẗze PMO and EPO. For comparison we
report in the same table also the best values present in the
literature, including those obtained with the stochastic
variational method (SVM),80,81 multireference configuration
interaction (MRCI),23,24,79 Hylleras functions,78 the predicted
values by Cheng et al.,13 the recommended values compiled by
Harabati et al.,14 and those obtained through the VMC and
DMC calculations done by Bressanini and co-workers.30,32

However, to simplify the discussion in the manuscript we
present in Figures 2 and 3 the PA and BEPs data as bar plots.

Considering the performance obtained for the total energies,
we assume that the best estimation, within those presented in
this work, are the bindings obtained at the DMC level with the
AGP/EPO wave function. On the basis of these calculations,
we can in fact see that all the electron/positron systems are
stable with respect to both the dissociation channels, except for
B− for which the BEPs is negative, predicting it to dissociate in
Ps and the neutral B atom. These binding energies are
comparable to the most accurate DMC,30,32 SVM,80,81 or
MRCI23,24,79 calculations present in the literature for some of
the systems.
Surprisingly, within the same QMC method, there are no

appreciable differences between the binding energies obtained

with the PMO or EPO wave functions. As discussed above, this
probably occurs because the positronic orbital is spherically
symmetric and centered around the atoms, making the atomic
basis set of the PMO wave function suitable to describe these
systems, when used in conjunction with our novel dynamical
Jastrow factor. We will see that this is not that case for
molecules.
The relevant differences can be found, on the other hand,

between the binding energies estimated at the VMC level and
those predicted by DMC. This is a reasonable result, since the
binding that we are measuring is dependent on the strong
correlation between the electronic cloud and a single positron.
If this electron−positron correlation effect is not exactly
described through the trial wave function (which is generally
the case also in pure electronic systems), the binding predicted
by VMC will be consistently underestimated.
In general though, VMC and DMC agree qualitatively well,

except for the cases in which the binding energies are quite
small, as for the BEPs of e

+Li PsLi, PsB, PsC, and the PA of
e+Be, for which in some cases the stability is inverted.
Within this group of systems, e+Li and e+Be are two of the

most challenging ones, since the rather weak positronic bond is
explained by Li and Be atoms’ low ionization potential, low
electron affinities, and large covalent radius.13 Fortunately, due
to the reduced number of Fermions, they have been studied
with the most accurate SVM methods80,81 that can serve as
references. If we compare our accurate DMC (AGP/EPO)
results with the SVM ones for the BEPs energy of e

+Li and the
PA energy of e+Be, we can see that the former are lower of
about 0.03 eV with respect to the latter. This is consistent with
the corresponding total energies that in our case are
compatible with the SP function,32 while Bressanini and co-
workers have shown the necessity to converge the energy with
a MP wave function of up to a linear combination of 111
pairing functions.32

Another special case is that of the PsB. This system is stable
with respect to the PA dissociation channel, but unstable
against the BEPs one. Moreover, as reported in the previous
section, due to the size consistency problem of the AGP or of

Figure 2. Positron affinities (PA) (panel a) and positronium binding
energies (BEPs) (panel b) of the e

+X systems computed with the PMO
and EPO wave functions using VMC and DMC methods. The results
are compared to other references in the literature.

Figure 3. Positron affinities (PA) (panel a) and positronium binding
energies (BEPs) (panel b) of the PsX systems computed with the
PMO and EPO wave functions using VMC and DMC methods. The
results are compared to other references in the literature. For clarity
purposes, the scale of the BEPs plot is intentionally chosen to cutoff
the underestimated VMC values from ref 30
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MR approaches in the description of the B atom and its anion,
the error in the estimation of the electron affinity can range
between 20% and 100% of the total value. As a consequence,
this affects the estimation of the BEPs energy introducing an
error of about 0.08 eV for the AGP wave function at the DMC
level (see Table S3 of the Supporting Information). For this
reason, we want to focus our attention to boron recomputing
the PA and the BEPs using also an SD wave function to
describe the electronic correlation. In Table 2 we compare the
total energies of the SD and AGP wave function, used in
conjunction with the PMO and EPO positronic ones at both
the VMC and DMC levels, and in Table S4 of the Supporting
Information we report the numerical values of the PA and
BEPs.
As expected, the PA are practically the same between all the

wave functions ansaẗze with VMC and DMC, since there is no
change in the number of electrons between the atomic species
in eq 19. On the contrary, the positronium dissociation
channel involves the removal of one electron, which can be
expressed in terms of the EA of the neutral atom as

BE X PA X EA X E PsPs[ ] = [ ] + [ ] + [ ] (21)

For this reason with the SD wave function the BEPs value is
about 200 meV higher with respect to the AGP with both
VMC and DMC. The BEPs DMC energy obtained with the
SD/EPO wave function is of −0.4080(32) eV which is only
0.05 eV lower than the predicted FCI extrapolation value and
more compatible with respect to the previous DMC
estimations.39 Qualitatively, we must point out that also with
the SD wave function PsB is still unstable with respect to the
BEPs dissociation channel.
In light of these results, we can suppose that a similar effect

is behind the underestimation of the binding energy observed
for the same BEPs channel in PsC, where our best DMC value
with AGP/EPO is 192 meV away from extrapolated FCI.79 In
fact, if we take a look at the electron affinity of carbon
(reported in Table S3 of the Supporting Information) we can
see that the error is about 200 meV for VMC and 100 meV for
DMC, which explains the discrepancy with the BEPs value
predicted by the extrapolated FCI.
In conclusion, since the positron or positronium affinities are

energy differences, we cannot argue that we actually obtain a
better estimation of those quantities, nevertheless our DMC
values are shown to be in good agreement with the other
references obtained with QMC and CI.23,24,32,79

4.4. Dissociation Channels of the e+·H2
2− Molecule. As

a first attempt to study molecular systems, we test the
performance of the different wave functions on the dissociation
channels of two hydrogen anions bound by one posi-
tron:18,19,61

e H

H PsH
H Ps

H Ps
2
2

2

2

· →
+
+

+

+ −

−

−

−

l
m
ooooo

n
ooooo (22)

In Figure 4 we gather all the potential energy surfaces (PES) of
the e+·H2

2− molecule as a function of the internuclear distance
between the hydrogen atoms, calculated at the VMC and
DMC levels with the AGP/PMO and AGP/EPO wave
functions, as well as the results previously reported in the
literature (see also Table S5 of the Supporting Information).
As discussed by Ito et al.18 and Bressanini19 the PES of the e+·
H2

2− molecule has two minima: the first minimum appears at an

internuclear distance equal to the equilibrium distance of the
two H atoms in the H2 molecule, which we referred as M1 in
panel a of Figure 4; the second minimum, which we define as
M2 in panel b of Figure 4, is observed at larger distances
between 5.5 and 6.5 Bohr and is found to be stable with
respect to the dissociation of e+·H2

2− in PsH and H−, yet, its
total energy is higher than the M1 minimum.
From Figure 4, it is clear that at the VMC level the

qualitative description of the PES strongly depends on the
variational ansatz. The least accurate representation of the
molecular dissociation is given by the wave function used by
Ito et al.,18 which is composed of the product between a Slater
determinant (for the electronic wave function), a PMO orbital
for the positron, both optimized at the Hartree−Fock level,
and a two body Jastrow factor that recovers correlation
between electron−electron, electron−nuclei, and electron−
positron pairs. Clearly, the two-body Jastrow factor, which is a
function that tends to one as the interparticle distances
increase, is not suitable to describe the long-range attraction
between positrons and electrons, that form bound states. On
the other hand, the most accurate wave function is the
correlated SP wave function used by Bressanini,19 which
explicitly includes two particle correlation effects and has been
used also for the PsH and PsLi and e+Li atomic systems
described in the section above.
If we focus on the M2 minimum in Figure 4b we can see

that our AGP/PMO wave function is better with respect to

Figure 4. Comparison between the VMC and DMC potential energy
surfaces of the e+·H2

2− around the M1 minimum (panel a) and around
second minimum M2 (panel b) obtained with the AGP/PMO and
AGP/EPO wave functions and with other wave functions presented in
the literature.
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Ito’s description, due to the combination of the full relaxation
of the variational parameters within the VMC framework, and
the use of the dynamical Jastrow factor that we introduce in eq
18. The AGP/EPO wave function on the other hand gives
results that are more accurate with respect to those of the
AGP/PMO, but does not match the accuracy of Bressanini’s
SP wave function, differently for what was obtained for the
atomic systems. Moreover, the estimated M2 energy minimum
of the AGP/EPO wave function is more accurate with respect
to that predicted by the AGP/MPO wave function which is
slightly shifted toward shorter distances by 0.2 Bohr.
Interestingly, all DMC curves are practically equal for the

M2 region, suggesting that the nodal surface is correctly
described by all the trial wave functions.
The results around the M1 minimum require further

discussion. Bressanini19 demonstrated that the M1 minimum
is actually the noninteracting state between the H2 molecule
and the Ps− anion. To describe this region at the variational
level, it is essential to have a wave function that can correctly
factorize as the product of the two noninteracting subspaces.
This is in fact the type of wave function that Bressanini uses to
describe this state in ref 19. This is clearly not the case for Ito’s
wave function, and for our proposed AGP/PMO. Con-
sequently, taking into account this fragmentation, it is clear
why in this case the EPO ansatz is again superior than PMO,
since the latter forces the positron to localize around the
nuclei, while the EPO gives enough flexibility for the positron
to adapt to the distribution of the electronic cloud. As a matter
of fact, the relaxation of the AGP/EPO can qualitatively
describe this region of space and is remarkably close to the
exact H2 PES rescaled by the energy of the Ps− anion; yet, also
this function cannot fully factorize to a product of the
noninteracting subsystems, and this explains the slight error
that we have at the VMC level, that disappears when using the
higher DMC level of calculation (see also Figure 5).
Following the stability analysis proposed by Bressanini,19 in

Figure 5 we plot the PES at the DMC level for the e+·H2
2−

system as a function of the internuclear distance between the
hydrogen atoms. In addition, we also included the PES of H2
shifted by the energy of Ps− (−0.262 Ha) as well as the PES of

H2
− shifted by the energy of Ps (−0.250 Ha) (see also Table S6

of the Supporting Information), that allow us to discuss the
vertical dissociation channels at each distance. In panel a of
Figure 5 it can be seen that around 3.5 bohrs the PES of H2 +
Ps− and of the e+·H2

2− positronic molecule intersect, thus e+·
H2

2− spontaneously dissociates in the H2 + Ps− fragments.
This second M2 minimum of the e+·H2

2− molecule, shown in
panel b, observed at larger distances, around 6.0 to 6.5 Bohr, is
found to be stable with respect to the dissociation in PsH and
H− from which it is separated by a potential barrier of 24 mHa,
and also against the vertical dissociations in H2 + Ps− or H2

− +
Ps. For this minimum we calculate the vibrational parameters
using perturbation theory82 as also explained in ref 83, through
which we obtained an equilibrium geometry of RHH = 6.367(5)
Bohr, a dissociation energy with and without zero point energy
corrections (ZPE) equal to D0 = 22.31(1) mHa and De =
23.35(1) mHa, respectively, ZPE corrections of 229(2) cm−1,
harmonic vibrational frequency of ωe = 461(3) cm−1, and a
first anharmonicity constant of xeωe = 6(1) cm−1. These are the
most detailed results, reported up until now in the literature for
the M2 minimum of the e+·H2

2− positronic molecule, and our
dissociation energy without ZPE only slightly differs from the
previous accurate predictions of Bressanini,19 of −0.2 mHa,
and from those of Ito et al.,18 by about 0.6 mHa.
The nature of this particular bond and of the positronic

bonds in general is still largely debated. In the literature, the
M2 minimum is referred to as a positronic covalent bond,17,61

since similarities are observed by comparing, for example, the
covalently bound Li2

+ cation (or e−Li2
2+) with the corresponding

e+Li2
2− positronic molecule. The two molecules were seen to

share properties such as equilibrium distances, vibrational
frequencies, and binding energies, as well as similarities in the
distributions of the electronic HOMO (for e−Li2

2+) and of the
positron (for e+Li2

2−) densities. Later, Goli and Shahbazian,17

using AIM analysis, confirmed that the dominant contribution
to the bonding is the positron density in between the atoms,
which acts as a mediator between the otherwise repulsive
anions that do not share any electrons. Furthermore, the
authors confirmed a recent study by Nascimento and co-
workers84 which demonstrated that there was no distinction

Figure 5. Potential energy surfaces around the M1 minimum of H2+Ps
− (panel a) and around the M2 minimum of e+·H2

2− (panel b) obtained at
the DMC level for the chemical systems consisting of two hydrogen atoms (H) plus the positronium anion (Ps−). The dissociation energy of this
system in H + H + Ps− fragments, equal to −1.262 Ha, is assumed to be the reference. In orange we show the potential energy curve of the H2
molecule shifted by the energy of Ps− (−0.262 Ha). The potential energy surface of the e+·H2

2− molecule is shown for the AGP/EPO (blue circles)
and for the AGP/PMO (full red circles). In green we report the potential energy surface of the H2

− anion shifted by the energy of Ps (−0.25 Ha).
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between the mechanism responsible for the formation of one-
and two-electron bonds. Despite this, for systems sharing
positron pairs, such as the (PsH)2 molecule studied in a recent
work by Bressanini,20 the author highlights relevant differences
with the corresponding electronic bond formation in H2 stating
that “It remains to be seen if the binding mechanism in (PsH)2
is the same as in the H2 covalent bond or it is a completely
different and new type of bond”.20 Moreover, we must add that
the bond in the e+·H2

2− molecule shows intriguing similarities
with a van der Waals minimum, such as the slow decay of the
interaction energy, where two noncovalently bound atoms are
energetically stabilized by a delicate balance between the Pauli
repulsion and the attractive dispersion effects. For this reason,
in the future it will be interesting to study in detail the
electronic properties and their response to an external
perturbation, which will shed a more complete light on the
bonding nature of positronic molecules.
For now, regarding the results presented in this section, we

can say that although at the DMC level both the AGP/EPO
and AGP/PMO ansaẗze agree in the description of the M2
minimum, it is evident that the AGP/PMO is overall less
accurate. In fact, around the M1 minimum the AGP/PMO is
not able to correctly reproduce the nodal surface of the
partitioned H2 + Ps− system, which on the other hand is better
described by the AGP/EPO wave function. Moreover, the
AGP/EPO is also able to give a good qualitative description of
the system at the level of VMC, due to the more efficient
description of the electron−positron correlation effects, also
enhanced by the novel dynamical Jastrow factor, which could
be suitable to describe loosely Ps or Ps− bound states as well as
more localized positronic molecular systems. Finally, at the
DMC level the AGP/EPO PES of the e+·H2

2− molecule has
been described with a similar accuracy obtained by
Bressanini19 using DMC applied to an explicitly correlated
ansaẗz. Thus, our accurate approach allows us to provide the
most detailed information regarding the vibrational properties
of the M2 minimum.

5. CONCLUSIONS
In the past decade, experimental evidence has accumulated for
the formation of metastable states between molecules and
positrons, raising interest in the understanding of the binding
mechanisms between positrons on the one hand and atoms
and molecules on the other. However, the description of such
metastable antimatter/matter states represents a difficult
challenge for quantum-chemical methods due to the need to
describe the strong attractive correlation effects between the
electronic cloud and the positrons. The main challenge for
quantum chemistry methods lies essentially in the employment
of atom-centered basis sets to describe the positronic orbitals.
Since the positron does not form bound states with the nuclei,
the natural basis would be expanding in terms of Ps orbitals,
which explicitly capture the correlation between electron−
positron pairs. In this respect, QMC methods have a strong
advantage since they are able to incorporate sophisticated wave
functions with the ability to explicitly include the correlation
effects between particles. Naturally, even in QMC one needs to
balance between simplicity and accuracy of wave functions that
can be extended to treat large molecular systems without
introducing prohibitive computational cost.
In this work we have presented a correlated wave function to

study the interaction of a positron with complex atomic and
molecular systems. The wave function is constructed as a

product of an electronic determinant, in this case the AGP or
the SD, a positronic orbital, built of electron−positron
correlation function (EPO), and a novel explicit Jastrow factor
that includes the correlation between electron−positron pairs
in the field of the nuclei. We have compared this approach with
the most commonly used methods in quantum chemistry, to
study the binding energies of the positron with different atomic
systems and with simple molecules for which accurate results
have been obtained in the literature.
For atomic systems, the comparison between our two wave

functions demonstrates the accuracy of the Jastrow factor and
its important role in the recovery of the necessary correlation
to obtain an excellent estimation of the binding energies at the
level of VMC. The EPO and PMO results are in fact
comparable at the VMC level and identical when doing DMC
calculations. This agreement between VMC and DMC is
explained by the isotropy of the positron wave function, which
is centered around the electronic charge and thus can be
represented correctly by a basis set composed of atom-
centered orbitals.
Importantly, for the heaviest atoms, such as B, C, O, and F,

the total energies of the positronic systems PsB, PsC, PsO, and
PsF presented in this work are the most accurate in the
literature so far and will serve as references for future
investigations. For the lighter atoms, such as H, Li, and Be,
we have shown that our approaches are comparable to the SP
wave functions used by Bressanini in ref 32, yet easier to
generalize also to heavier atoms and more complex molecules.
Regarding the positron and positronium affinities, the accuracy
analysis is not straightforward since these quantities are energy
differences and the variational principle cannot be used as a
guide; however, our DMC values are in excellent agreement to
other references present in the literature.
Clearly, for molecular systems the discrepancy between the

EPO and MPO approaches becomes more evident. As a matter
of fact, at the VMC level the dissociation curves of the e+(H−)2
molecular system, computed with the EPO and PMO wave
functions, show a discrepancy in energies of about 0.005 Ha in
favor of the former, and more importantly a different structural
M2 minimum. Through the EPO wave function, using a dense
grid of points, we were able to reconstruct the PES of the M2
minimum and report accurate spectroscopic properties for the
e+(H−)2 molecule.
In summary, the wave function ansatz proposed in this work

has been shown to be efficient in reaching a quantitative
description of the binding properties for positronic atoms and
molecules with rather small basis sets and lower computational
effort with respect to the converged limits of traditional
quantum-chemistry approaches. Moreover, the presented wave
function is general enough to be applied to larger molecular
compounds, taking advantage of the scalability of the QMC
methods, paving the way to a systematic and computationally
feasible study of large positronic molecular compounds.
Furthermore, the EPO wave function will serve as the basis
for the implementations of more complex representations,
which are necessary to describe systems of many-electrons and
many-positrons, such as the extension of the Pfaffian wave
function.85 For these reasons, our method can be applied in the
study of binding mechanisms for a variety of positronic
systems, including also the analysis of their electronic and
response properties, which are fundamental to shed light onto
the physics of these metastable chemical compounds, and to
stimulate further experimental studies.
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