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Inflammatory processes described in Parkinson’s disease (PD) and its animal models appear to be important in the progression
of the pathogenesis, or even a triggering factor. Here we review that peripheral inflammation enhances the degeneration of the
nigrostriatal dopaminergic system induced by different insults; different peripheral inflammations have been used, such as IL-1β
and the ulcerative colitis model, as well as insults to the dopaminergic system such as 6-hydroxydopamine or lipopolysaccharide.
In all cases, an increased loss of dopaminergic neurons was described; inflammation in the substantia nigra increased, displaying a
great activation of microglia along with an increase in the production of cytokines such as IL-1β and TNF-α. Increased permeability
or disruption of the BBB, with overexpression of the ICAM-1 adhesion molecule and infiltration of circulating monocytes into
the substantia nigra, is also involved, since the depletion of circulating monocytes prevents the effects of peripheral inflammation.
Data are reviewed in relation to epidemiological studies of PD.

1. Introduction

Parkinson’s disease (PD) is the second most common aging-
related neurodegenerative disease after Alzheimer’s disease
(AD). The main symptom of PD is a movement disorder
called Parkinsonism (muscle rigidity, akinesia, and resting
tremor) caused by dopamine (DA) deficiency in the striatum
due to DA neuron degeneration in the substantia nigra
(SN). Although a small percentage of PD is familial (fPD),
most is sporadic (sPD), associated with aging and with no
hereditary history. Aetiology of PD probably involves both
environmental agents and genetic risk factors [1–3]. The
implication of inflammatory process in PD is accepted, since
many inflammatory marks have been described in PD and
its animal models (for a review of neuroinflammation in PD,
see [4]). Consequently, neuroinflammation is now thought
to be fundamental for, or even a triggering factor of, the
progression of PD pathogenesis.

Activated microglia and reactive human leukocyte
antigen-DR (HLA-DR)-positive microglia were found in
the SN pars compacta (SNpc) [5, 6] in the postmortem
analysis of PD patients. Immunohistochemical studies have
shown many activated microglial cells in neurotoxin-treated
SNpc in various animal PD models [7], suggesting the
presence of inflammatory processes [8–12]. Moreover, levels
of proinflammatory substances such as cyclooxygenase 2
(COX2) and cytokines including interleukine-1 beta (IL-
1β), interferon-gamma (IFN-γ), and tumour necrosis factor-
alpha (TNF-α), are found to be high in postmortem PD
brains [13–17]. Similarly, 6-hydroxydopamine (6-OHDA)
and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
animal PD models showed increased levels of these
inflammatory mediators [10, 18–21], which are secreted
from microglia, neurons, and astrocytes [22–25]. There-
fore, these molecules may be actively involved in disease
progression.
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Several studies have tried to correlate polymorphisms
in the promoters of several cytokine genes to the risk of
developing PD [26–31]. Pattarini et al. [32] have shown
protection against MPTP toxicity-measured as attenuation of
dopamine depletion in the striatum-after genetic ablation of
either TNF-α or its receptors Tnfrsf1 and Tnfrsf2 [18, 21, 33,
34], although neither genetic ablation nor pharmacological
manipulation of TNF-α prevents neuronal loss in the SNpc
[18, 35, 36]. On the contrary, Il-6 knockout mice are
more sensitive to MPTP toxicity [37], which could be in
agreement with the neuroprotective effect described for IL-
6 [38]. Clinical studies on chronic users of nonsteroidal
anti-inflammatory drugs (NSAIDs) suggest that some of
these agents could lower the incidence of PD [39–42].
However, no such association was found in other studies
[43, 44], although this preventive effect has been described
in experiments with animals [45–47]. In the MPTP model
of PD [48], the inactivation of microglia also showed to be
neuroprotective.

Animal models of degeneration of the nigrostriatal
dopaminergic system have been developed by intranigral
injection of proinflammogens [11, 49–60]. Furthermore,
other features support the implication of inflammation in
the development or progression of PD. Chronic traumatic
brain injury associated with boxing has been etiologically
linked to PD with the well-known “punch-drunk syndrome”
or “dementia pugilistica” that sometimes develops in boxers
as a result of long-term subclinical concussions [61–66]. This
is in agreement with the fact that inflammation through
microglial activation accompanies the CNS tissue’s response
to injury (for review see Loane and Byrnes [67]).

The brain is considered an immunologically privileged
organ, free from immune reactions, since it is protected
by the blood-brain barrier (BBB). However, accumulating
findings have revealed that immune responses can occur
in the brain, especially because of microglial activation.
These cells are known to produce proinflammatory cytokines
and a relationship with the peripheral system has been
suggested. Moreover, it is known that neurovascular func-
tions are altered in aging and neurodegenerative diseases,
leading to abnormal states such as increased BBB perme-
ability, decreased nutrient supply, faulty clearance of toxic
molecules, and failure of enzymatic function [68]. Moreover,
several studies on PD patients and animal models suggest a
pathogenic link between BBB disruption and DA neuronal
death. Positron emission tomography (PET) and histological
studies on PD patients revealed dysfunction of the BBB
transport system [69] as well as alteration of blood vessels
in the midbrain of PD patients [70]. In addition, levels
of vascular endothelial growth factor (VEGF) and pigment
epithelium-derived factor (PEDF) that induce structural
changes in blood vessels were higher in PD patients and
the MPTP model [71]. Interestingly, injecting VEGF in
the SN disrupted BBB and induced DA neuronal death
in the ventral mesencephalon [72]. In addition, increased
BBB permeability was observed in the MPTP [73] and
lipopolysaccharide (LPS) models of PD [74]. These results
indicate that BBB disruption is somehow related to neuronal
cell death and neuroinflammation in PD. Moreover, the

presence of T lymphocytes in the midbrain of PD patients
suggests that the potential role of infiltrated peripheral cells
is related to the pathogenesis of PD [75]. In the model
of LPS-induced inflammation, neutrophils and monocytes
infiltrate into the SN region, where they play an important
role in neuroinflammation [76]. Brochard et al. [77] reported
that many CD4- and CD8-positive cells were detected
postmortem in PD patients. In particular, the cytotoxic
effects of T cells showed that CD4-deficient mice were
resistant to MPTP neurotoxicity in the SN. In addition, the
presence of Iba-1 positive cells in disrupted blood vessels
indicates that neuroinflammation might contribute to the
infiltration of peripheral immune cells and leakage of the
BBB in the SN. Taken together, these results suggest that
penetration of immune cells plays an important role in the
degeneration of DA neurons in PD.

Peripheral inflammation could also have consequences
on the degenerative process of DA neurons. There are many
pathological circumstances in which peripheral inflamma-
tion is a common symptom. Epidemiological studies have
shown that incidence of idiopathic PD is about 50% lower
in chronic users of NSAIDs or COX inhibitors than in
age-matched nonusers [39, 40, 78]. This could be related
to inflammation inhibition in the CNS, but also to the
inhibition of peripheral inflammation. Moreover, the role
of peripheral inflammation in different neurodegenerative
diseases has become evident in recent years. The probability
of suffering AD doubles in elderly individuals exposed to
systemic inflammation [79]. Furthermore, induction of a
systemic inflammatory response led to reactivation in animal
models of multiple sclerosis [80]. Strang [81] described
the increased prevalence of peptic ulcer prodromal to idio-
pathic Parkinsonism. This was independently produced by
Helicobacter or not [82]. Systemic inflammation sensitized
microglia to switch to an overactivated proinflammatory
state in a model of prion disease [83]. Here, we review the
possibility that peripheral inflammation could enhance the
degeneration of the nigrostriatal dopaminergic system and
thus it would be involved in the incidence of PD.

2. Inflammation Increases
the Degeneration of the Dopaminergic
System Induced by an Insult

First, we must note that inflammation is capable of increas-
ing the degeneration of the dopaminergic system induced by
different insults.

2.1. In Vitro Studies. Gao et al. [84, 85] have shown that low
doses of neurotoxin (rotenone or MPTP) and inflammogen
LPS synergistically induced a progressive and selective degen-
eration of dopaminergic neurons in mesencephalic neuron-
glia cultures. They showed that glia is required for this effect;
in addition, they also showed that the effect was produced
by a synergistic increase in NO and the superoxide free
radical produced by NADPH oxidase. Similar results were
described by Long-Smith et al. [86] using the cytokine-
rich conditioned medium (CM) from LPS-treated rat
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glial-enriched cortical cultures and 6-OHDA. They also
showed that IL-1β in the CM mediated the increase in
neuronal death since IL-1 receptor (IL-1R1) was located
in dopaminergic neurons and its blockade prevented this
effect. However, the authors also pointed out that many
other cytotoxic factors such as TNF-α—and indeed some
cytoprotective ones, may also be in the medium. Zhang et
al. [87] also showed that combinations of MnCl2 and LPS, at
minimally effective concentrations when used alone, induced
synergistic and preferential damage to DA neurons in rat
primary neuron-glia cultures. These authors also showed
that this effect could be produced by a significant increase in
TNF-α and IL-1β release along with the increased production
of reactive oxygen species (ROS) and NO. These effects were
attenuated by pretreatment with anti-inflammatory agents,
such as minocycline and naloxone.

2.2. In Vivo Studies.. Koprich et al. [88] induced a nontoxic
inflammation in the SN, injecting a non-DA-toxic dose of
LPS within the SN followed by injecting a low dose of 6-
OHDA in the striatum, demonstrating that dopaminergic
cell loss increased significantly. The authors identified IL-
1β as a potential mediator of the effect, and were able to
overcome it by the administing an IL-1R1 antagonist. Similar
results have been also described by Godoy et al. [19] who
used a similar method, also showing that inflammation
induced by a low dose of LPS in SN produced a significant
increase in the degeneration of DA neurons in SN induced
by 6-OHDA compared with 6-OHDA alone. Moreover, this
effect was overcome by dexamethasone (DEX), a well-known
anti-inflammatory steroid. These results show that inflam-
mation is able to enhance the degeneration of dopaminergic
neurons induced by several insults.

3. Peripheral Inflammation Enhances
the Degeneration of the Nigrostriatal
Dopaminergic System

It is important to know whether peripheral inflammation, a
very common health problem, could affect the degeneration
of nigrostriatal dopaminergic neurons. Godoy et al. [19]
induced a peripheral-like inflammatory state by injecting
an adenoviral vector expressing IL-1β (or β-galactosidase
as control) in the tail vein. This model was used to study
the effect of peripheral inflammation on the nigrostriatal
dopaminergic neurodegeneration induced by injecting 6-
OHDA in the striatum. The authors found a statistically
significant decrease in the number of TH-positive cells in
the SN of the animals treated with 6-OHDA/Ad IL1biv in
comparison with the other groups. These data showed that
systemic IL-1 expression exacerbates, but does not directly
elicit, neurodegeneration in the SN. This effect is produced
by an increase in inflammation in SN as has been pointed out
by the great reactivation of microglia (stage 4 morphology)
found along with other parameter studies. This is the first
description of the influence of peripheral inflammation
on the degeneration of nigrostriatal dopaminergic system
induced by an insult (6-OHDA). Similarly, Mangano and

Hayley [89], injecting low amounts of LPS in the SN and
the administration of the pesticide paraquat (which has been
reported to provoke DA loss) showed a greater loss of TH-
positive neurons in SN after two days.

Villarán et al. [90] studied the effect of peripheral
inflammation on the degeneration of the nigrostriatal
dopaminergic system induced by injecting LPS within the
SN. The Ulcerative Colitis model (UC, one of the two
major forms of gastrointestinal dysfunction) induced by
dextran sodium sulphate (DSS) [91] was used as peripheral
inflammation model; dextran sulphate provides an easy
and well-characterized model that shares most features
of human UC at structural, ultrastructural and clinical
levels [92], including peripheral inflammation. The authors
found a decrease in the number of TH-positive neurons in
the animals with LPS-treated UC, doubling that found in
animals treated with LPS. These results are in agreement with
those described by Pott Godoy et al. [93], who studied the
effect of peripheral inflammation (intravenous injection of
adenovirus expressing IL-1β or β-galactosidase) on central
inflammation (injecting adenovirus expressing IL-1β into
the striatum). They found that chronic, systemic IL-1β
expression exacerbated the neurodegeneration induced by
IL-1β expression in the SN.

4. Mechanisms by Which Peripheral
Inflammation Could Enhance
the Degeneration of the Nigrostriatal
Dopaminergic System Induced by Insults

As has been described by Gao et al. [84, 85] in studies
using primary mesencephalic neuron-glia cultures as in
vitro model of PD, participation of microglia is required
for the induction of the synergistic neurotoxicity induced
by inflammation (LPS) on the toxic effect of MPTP or
rotenone. This suggests that inflammation (as the reactiva-
tion of microglia and secretion of many proinflammatory
compounds) could be the cause of the synergistic process.
In this context, they described that the release of superoxide
free radical and the production of intracellular ROS was
synergistic. Since this effect does not occur when NADPH
oxidase-deficient (gp91phox−/−) mice were used, they
also showed that it was catalyzed by NADPH oxidase, an
enzyme that seems to be a major source of extracellular
superoxide production in microglia. This proposal is in
agreement with Godoy et al. [19] who described that stage
4 microglia and MHC II expression were associated with the
exacerbation of neurodegeneration and motor symptoms.
Similarly to Koprich et al. [88], these authors proposed
that microglial activation towards a proinflammatory phe-
notype that increases IL-1β secretion is responsible for the
synergistic effect. They pointed out that IL-1β is the cause
of this effect, since glucocorticoid treatment and specific
IL-1 inhibition overcome these effects. This proposal is
also supported by an in vitro study in which IL-1 directly
exacerbated 6-OHDA-triggered dopaminergic toxicity. This
is also supported by Koprich et al. [88], who showed that
the systemic administration of IL-1ra was able to reverse
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the vulnerability produced by LPS and therefore eliminate
the contribution of 6-OHDA to DA cell death. This is in
agreement with Godoy et al. [19], who also proposed that
IL-1β is responsible for the synergistic effect seen in the
animal model of chronic systemic inflammation produced
by injecting an adenoviral vector expressing IL1β (or β-
galactosidase as control) in the tail vein. They concluded that
IL-1β could be acting directly on neurons, and also indirectly
through NO. Furthermore, this is also in agreement with
Ferrari et al. [94], who showed that chronic expression of
IL-1β in adult rat SNpc using a recombinant adenovirus
caused the death of dopaminergic neurons after three weeks.
Mangano and Hayley [89] also suggested that the increase
in inflammatory cytokines IL-6, IL-2, TNF-α, and IFN-γ
was responsible for this effect. Villarán et al. [90] showed
that the loss of TH-positive neurons induced in UC-LPS
animals was produced along with a significant increase in
microglial activation, and almost doubled that produced in
animals treated with LPS alone. Moreover, it is worth noting
that the authors found a significant increase in many of the
cytokines studied in the animals with UC, such as TNF-α,
IL-1β, and IL-6. This effect was increased in the UC-LPS
animals. These results could be in agreement with Godoy
et al. [19], especially regarding the increase in cytokines, in
spite of their being unable to distinguish the effect of each
in relationship to the degeneration of DAergic neurons. In
this work, the authors also found a significant increase in
inducible nitric oxide synthase (iNOS), which could also be
involved in the effect of peripheral inflammation, which in
turn could be in agreement with Cunningham et al. [83]
who found that IL-1 could exacerbate disease symptoms in
a prion disease model. Moreover, the relationship between
these cytokines is worth noting. Koprich et al. [88] described
that their model’s suppression of LPS sensitivity, produced
by the systemic treatment with IL-1ra, also produced a
reduction in the levels of the proinflammatory cytokines
IFN-γ and TNF-α in the SN, supporting the cross-regulation
between them, as had been previously pointed out. TNF-
α is also toxic to DA neurons when injected into the rat’s
brain, but the toxicity is greater when TNF-α and IL-1β
were injected together [95]. A study using IL-1β and TNF-
α-neutralizing antibodies showed that approximately 50% of
the LPS-induced DA neuronal cell death in primary cultures
of rat midbrain was mediated by the production of these
two cytokines [96]. The implication of TNF-α signalling in
the destruction of SN DA neurons in animal models of PD
have also been reported [18, 21, 36, 97]. Moreover, TNF-α
contributed to the nigrostriatal neurodegeneration provoked
by several DA insults [18, 21, 33, 34, 48, 98, 99]. Recently,
De Lella Ezcurra et al. [100] have reported that chronic
expression of low levels of TNF-α by adenoviral expression
in the SN elicits progressive neurodegeneration, delayed
motor symptoms and microglia/macrophage activation. All
these data suggest that the increase in the inflammatory
parameters in the periphery (blood) as a result of peripheral
inflammation induced the increase in inflammation in SN
and consequently the synergistic effect on the nigrostriatal
dopaminergic system. The mechanism is not well known,
but it is possible to suggest that at least some of these

cytokines could enter. Circulating IL-1β may activate central
neurons in a direct manner, especially in regions where BBB
is deficient [101]. Furthermore, blood-borne IL-1β seems
to stimulate the synthesis of prostaglandin E2 in central
vessels, which can then diffuse into brain parenchyma to
activate neurons in the SNC [102]. It should be also taken
into account that the increase in BBB permeability, as well
as its rupture, has been described as consequence of some
peripheral inflammatory processes; so, disruption of the BBB
has been described during TBS colitis [103, 104]. Reyes
et al. [105] have shown that peripheral thermal injuries
produced an increase in BBB permeability and rupture. In
vitro, these effects have been proved to be produced by
TNF-α, IL-1β, and IL-6 through the COX pathway [106]. In
vivo, upregulation of TNF-α and IL-1β, as well as promoted
blood-borne inflammatory cell adherence and infiltration,
may be responsible [107–109]. Many studies have shown that
cytokines may play an important role in the alteration of BBB
function [109–112]. There is no agreement in the reports on
rupture or increased permeability of the BBB in PD [113–
115]. However, PET and histological studies on PD patients
have shown dysfunction in the BBB transporter system [69]
and alteration of blood vessels [70] in the midbrain of PD
patients. Additionally, the levels of VEGF and PEDF that
induce structural changes in blood vessels increased in PD
patients and the MPTP model [71]. Moreover, Rite et al. [72]
showed disrupted BBB and induced DA neuronal death in
the ventral mesencephalon after injecting VEGF within the
SN. All these data allow us to suggest that these circumstances
could favour conditions in which peripheral cytokines were
able to enter the CNS.

The degenerative processes of the nigrostriatal DAergic
system in PD could be related to McGeer’s description of a
massive number of cytotoxic T cells (Tc) in the SN of patients
with PD [75], along with descriptions that the density of
IFN-γ-positive cells was markedly higher in brains of patients
with PD [116]. Both facts suggest that the recruitment of T
cells to the brain could be associated with the nigrostriatal
pathway injury in PD. This possibility has been confirmed
by Brochard et al. [77], who described that CD8+ and
CD4+ T cells, but not B cells, invaded the brain during
the course of neuronal degeneration in the MPTP animal
model of PD. The effect of these cells was reinforced by the
fact that the MPTP-induced dopaminergic cell death was
markedly attenuated in the absence of mature T lymphocytes
in two different immunodeficient mice strains (Rag1−/−
and Tcrb−/− mice). However, there was no protection
in mice lacking CD8. The implication of these cells was
strongly supported, since the authors also found that both
CD8+ and CD4+ T cells accumulated markedly in the SNpc
of PD patients. These data indicate that T cell-mediated
dopaminergic toxicity is almost exclusively mediated by
CD4+ T cells. The authors also point out that the lymphocyte
infiltration into the brain is not a passive phenomenon,
suggesting that the activation of microglia along innate
neuroinflammatory processes with the modification of the
local microenvironment could be involved. They found
the upregulated expression of the intercellular adhesion
molecule-1 (ICAM-1) adhesion molecule on both capillaries
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and glial cells, which may participate in the attachment of
leukocytes to the vascular endothelium and their diapedesis
[117]. In this context, Villarán et al. [90] has shown the
effect of peripheral inflammation (UC) on the infiltration
of circulating monocytes in the SN using flow cytometry
analyses. They found that monocytes infiltration into the SN
increased in the UC-LPS animals compared with the animals
treated with LPS alone. Moreover, they showed the reversion
of most of the deleterious effects of peripheral inflammation
on microglial activation, BBB disruption, astrocytes loss,
and degeneration of nigral dopaminergic neurons induced
by LPS after using clodronate encapsulated in liposomes
(ClodLip), which produced a peripheral macrophage deple-
tion lasting 5 days in blood, liver, and spleen of normal rats
and mice [118–120]. Taken together, these results suggest
that peripheral inflammation induced by UC contributes to
dopaminergic degeneration; the activation of macrophages
seems to play some role, since the destruction of this
peripheral leukocyte type by ClodLip abolishes the damaging
effects associated with UC in the ventral mesencephalon.
Brochard et al. [77] suggested that the overexpression of
the ICAM-1 adhesion molecule could be involved in the
active migration of these cells. Villarán et al. [90] also found
a significant increase in ICAM-1 in the SN of UC-LPS
animals. It is also interesting to note that the overexpression
of ICAM-1 was also described in the SN of patients with
PD and in MPTP-intoxicated monkeys [121], supporting a
role for immune regulation outside the CNS and the possible
implication of peripheral inflammation.

All these data show that peripheral inflammation could
enhance the degeneration of the nigrostriatal system, previ-
ously induced by an insult. Therefore, PD symptoms could
appear earlier, increasing the incidence of the disease. An
increased prevalence of peptic ulcer prodromal to idiopathic
Parkinsonism has been described [81, 122]. This prompted
some authors to suggest a prominent role of inflammation in
the gastrointestinal tract in the aetiology and pathogenesis
of idiopathic Parkinsonism, including a possible role for
Helicobacter pylori infections [82, 123]. This infective process
is the most prevalent in the world, affecting approximately
50% of the population [124], and it is considered the
causative agent of many gastrointestinal and extradigestive
conditions. Colonization of gastric mucosa by H. pylori is
accompanied by an inflammatory response associated with
gastric mucosal damage through the activation of polymor-
phonuclear neutrophil leukocytes [125] and inflammatory
infiltration of lymphocytes, plasma cells, and macrophages
in the stomach tissue [126–128]. Also described was the
production of proinflammatory factors such as IL-8, IL-1,
and TNF-α [115, 129, 130].

It should not be ignored that a high peripheral inflam-
mation could induce the degeneration of the nigrostriatal
system alone and also that peripheral inflammation could
produce a special sensitivity to other dopaminergic insults.
An increase in PD was reported following the Spanish flu
in 1918 [131]; however, the viral RNA is reported absent
from brain samples of encephalitis lethargica patients from
1916 to 1920 [132]. It is conceivable that the massive
immune response or “cytokine storm” [133] created by the

virus initiated inflammation in the CNS; also, the great
peripheral inflammation could have affected the nigrostriatal
dopaminergic neurons. The inflammation produced by a
single injection of a large dose of LPS into the periphery
has been shown to produce inflammation in the brain,
resulting in significant DA neuron loss in the SN [134].
Villarán et al. [90] also reported a decrease in TH positive
neurons in the SN in animals with UC after injecting vehicle
within this structure. The specific sensitization was reported
by Ling et al. [135], who showed that prenatal exposure
to LPS increased DA cell loss following adult exposure to
6-OHDA.

5. Conclusions

Our aim was to point out that inflammation is able to
enhance the damage to DAergic neurons and, more impor-
tantly, that peripheral inflammation is also able to produce
a synergistic increase in the effect produced by any insult in
the nigrostriatal dopaminergic system, resulting in a greater
loss of DA neurons. Consequently, this effect increases the
progression rate of PD. The effect of peripheral inflammation
seems to be produced through a significantly increased
inflammation in the SN. This could be produced by some of
the cytokines that increase in blood, such as IL-β and TNF-
α, directly or indirectly through its transport to the CNS
(SN). Moreover, these effects could be also accompanied by
the recruitment of peripheral monocytes that also directly
increase the inflammation process in the SN. The implication
of peripheral inflammation could explain some epidemio-
logical data on the incidence of PD, and probably also the
effect of chronic anti-inflammatory treatments. These effects
should be taken into account in the progression of PD.
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increases vulnerability to inflammation in the rat prefrontal
cortex,” The Journal of Neuroscience, vol. 26, no. 21, pp. 5709–
5719, 2006.

[57] M. Tomás-Camardiel, I. Rite, A. J. Herrera et al., “Minocy-
cline reduces the lipopolysaccharide-induced inflammatory
reaction, peroxynitrite-mediated nitration of proteins, dis-
ruption of the blood-brain barrier, and damage in the nigral
dopaminergic system,” Neurobiology of Disease, vol. 16, no. 1,
pp. 190–201, 2004.

[58] M. D. C. Hernández-Romero, S. Argüelles, R. F. Villarán
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