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Single-cell multi-omics identify novel regulators
required for osteoclastogenesis during aging

Hao Li,1,7 Wan-Xing Xu,2,7 Jing-Cong Tan,2,7 Yue-Mei Hong,2 Jian He,2 Ben-Peng Zhao,2 Jin-An Zhou,2

Yu-Min Zheng,4,5 Ming Lei,3 Xiao-Qi Zheng,2 Jun Ding,4,5,* Ning-Ning Liu,2,* Jun-Jie Gao,1,6,*

Chang-Qing Zhang,1,* and Hui Wang2,8,*
SUMMARY

Age-related osteoporosis manifests as a complex pathology that disrupts bone homeostasis and elevates
fracture risk, yet the mechanisms facilitating age-related shifts in bone marrowmacrophages/osteoclasts
(BMMs/OCs) lineage are not fully understood. To decipher thesemechanisms, we conducted an investiga-
tion into the determinants controlling BMMs/OCs differentiation. We performed single-cell multi-omics
profiling on bone marrow samples from mice of different ages (1, 6, and 20 months) to gain a holistic un-
derstanding of cellular changes across time. Our analysis revealed that aging significantly instigates OC
differentiation. Importantly, we identified Cebpd as a vital gene for osteoclastogenesis and bone resorp-
tion during the aging process. Counterbalancing the effects of Cebpd, we found Irf8, Sox4, and Klf4 to
play crucial roles. By thoroughly examining the cellular dynamics underpinning bone aging, our study un-
veils novel insights into the mechanisms of age-related osteoporosis and presents potential therapeutic
targets for future exploration.

INTRODUCTION

Aging has emerged as a significant socioeconomic and scientific concern in recent times.1 With advancing age, various physiological and

pathological processes undergo systemic changes that affect all organs and tissues, including the skeletal system. Among the numerous

age-related alterations, progressive bone loss stands out as a prominent feature, leading to the development of osteoporosis in the elderly

population. This disorder not only hampers daily activities but also elevates the risk of fractures, resulting in increased morbidity, mortality,

and diminished quality of life, which escalating healthcare expenditures.2

Age-related osteoporosis is now acknowledged to involve a series of interconnected factors, including heightened bone resorption by

osteoclasts (OCs), reduced bone mineral density (BMD), compromised bone microarchitecture, and impaired regenerative capacity. These

changes reflect an imbalance in bone homeostasis, with a shift toward enhanced bone resorption orchestrated by activatedOCs.3–5 Excessive

osteoclastogenesis and hyperactivity of OCs constitute primary concerns in the pathogenesis of age-related osteoporosis.6–8

In recent years, numerous studies have highlighted the role of macrophage colony stimulating factor (M-CSF) and receptor activator of

nuclear factor kB (NF-kB) ligand (RANKL) in initiating osteoclastogenesis in the bone marrow.9 Subsequent to this initiation, a sequence

of events occurs involving the proliferation, activation, and fusion of bone marrow monocytes (BMMs), which are finely regulated by various

factors.10 The culmination of this process results in the formation of mature OCs with the ability to degrade bone tissue through the action of

proteases and acids, including tartrate-resistant acid phosphatase (TRAP), and cathepsin K (CTSK).11,12 During the aging process, it has been

observed that BMMs/OCs become overactivated, which may be attributed to low-grade chronic inflammation commonly referred to as ‘‘in-

flammaging’’.13–16 Additionally, components of the cellular senescence-associated secretory phenotype (SASP), such as IL-6 and TNF-a, have

proinflammatory properties and can stimulate the maturation and activation of OCs.17,18 Inhibition of SASP production has been shown to

increase bone mass, enhance bone strength, improve bone microarchitecture, and counteract bone loss in aged mice.19–21 Furthermore,

treatment of aged mice with senolytic drugs, such as dasatinib and quercetin, which eliminate senescent cells, has been demonstrated to

reduce OC formation and bone loss, enhance mineral reabsorption and thickness, and significantly improve trabecular and cortical bone mi-

croarchitecture. Despite these findings, intrinsic changes in BMMs/OCs and their impact on OC differentiation during aging have received
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Figure 1. Natural aging and progeria precipitates significant bone loss and activated osteoclastogenesis

See also Figure S1 and Tables S1–S5.

(A) Representative sectional images of micro-CT scanning of distal femur from 6 m, 20 m wild type mice and 6 m Terc�/� mice.

(B) Reconstruction model of femoral cortical bone from young (6 m WT) and aged (20 m WT and 6 m Terc�/�) mice (left).

(C) Cortical bone parameters of micro-CT scanning (right) revealed modest changes in femoral cortical bone between young and aged samples.

(D) Reconstruction model of femoral trabecular bone from young (6 m) and aged (20 m) mice (left).

(E) Trabecular bone parameters of micro-CT scanning (right) revealed evident bone loss in trabecular area in aged mice.

(F) TRAP staining of distal femoral sections from young and aged mice. More TRAP+ cells are found in trabecular area from aged mice (left).

(G) Pits array of bone slices by SEM, as each pit’s area is recorded, showed in vitro-cultured OCs from aged mice (6 m Terc�/�) formed more and bigger mature

cells (right).

(H) Heatmap of bulk RNA-seq analysis of BMMs transcriptome. 46 differential expression genes are identified to be activated or suppressed between aged and

young groups in WT and Terc�/� mice with RANKL stimulation (FULL: 8-day RANKL stimulation or total mature).

(I) Pathway enrichment analysis through comparing 6 m and 20 mWT (top) or 6 m KO group (bottom). Top 25 pathways are listed. In each figure, the direction of

effect (down/up-regulation) relates to the effect seen in the 20mWTor 6m KOgroup. Data are shown asmeanG s.e.m. n = 12 (7WT and 5 KO) for 6m; n = 4 (WT)

for 20m. For (C) and (E), each dot represents a single individual. p values were determined by two-tailed Student’s t test. Labels of Y axis in (C) and (E) (parameters

of bone structure obtained from micro-CT scanning) have been defined further: cortical bone: Po (%): total porosity; Es.Pm (mm): endosteal perimeter; Ps.Pm

(mm): periosteal perimeter; Ct.Ar (mm2): cortical bone area; Tt.Ar (mm2): total cortical bone area. Trabecular bone: BV/TV (%): bone volume fraction; Tb.N

(1/mm): trabecular number; Tb.Th (mm): trabecular thickness; Tb.Sp (mm): trabecular separation.
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limited attention. Moreover, due to the complexity of BMMs fusion and the heterogeneity of BMMs/OCs, the precisemechanisms underlying

OC differentiation and activation during aging remain incompletely understood.

Emerging techniques such as single-cell RNA sequencing (scRNA-seq) have provided unprecedented opportunities to investigate cellular

dynamics during the aging process, particularly the association between cellular states and OCs, as well as the changes occurring in their

progenitors over time. For instance,Mo et al. identified a slow-cycling bonemarrow sub-population expressingNotch3, which exhibited close

association with vasculatures and key transcriptional networks promoting osteo-chondrogenic differentiation.22 Yahara et al. uncovered an

OC precursor population derived from erythromyeloid progenitors (EMPs), contributing to postnatal bone remodeling.23 Ambrosi et al.

linked functional decline to reduced transcriptomic diversity in skeletal stem cells of aged mice, thereby contributing to alterations in the

bone marrow niche.24 Tsukasaki et al. identified Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (Cited2)

as amolecular switch triggering terminal OCdifferentiation.25 Shao et al., through the integration of scRNA-seq and bulk RNA-seq data, iden-

tified 11OCdifferentiation-related genes (ODRGs) that predictOC survival.26While unimodal scRNA-seq data provides valuable insights into

OC cellular dynamics during aging at the transcriptomic level, it fails to capture cellular dynamics in other modalities such as genetic muta-

tions. Hence, the application of single-cell multi-omics techniques holds promise in comprehensively studying cellular dynamics associated

with OCs during the aging process and identifying potential targets for anti-aging interventions.

In this study, we employed a single-cell multi-omics approach to explore the mechanisms underlying the overactivity of OCs and the dif-

ferentiation and maturation of OCs during aging. Our focus was to profile the changes in BMMs and OCs during the aging process and to

investigate the direct impact of aging onOCs and their precursors.We demonstrated that BMMswith dysfunctional telomerase, a hallmark of

aging, exhibited a heightened propensity to differentiate into more active OCs, leading to excessive bone resorption and noticeable bone

loss in murine models. Moreover, through further single-cell multi-omics analysis, we identified novel subpopulations of BMMs/OCs associ-

ated with overactivated osteoclastogenesis during aging. These findings provide novel insights into the maintenance of skeletal tissue ho-

meostasis in aged individuals and enhance our understanding of the physiological behavior of BMMs/OCs. Additionally, the identification

of novel regulators of OC differentiation and markers for distinct subpopulations from the single-cell multi-omics data holds promise for

the development of therapeutic interventions targeting age-related osteoporosis. By shedding light on the underlying mechanisms driving

OCmaturation and bone loss during aging, our study contributes to the growing body of knowledge aiming at combating age-related skel-

etal disorders and improving the quality of life for the aging population.
RESULTS
Terc deficiency induces natural aging-like bone loss phenotypes

OCs play a crucial role in bone resorption, and previous studies have reported that overactivity of OCs is associated with age-related oste-

oporosis.27 To investigate the bone loss phenotypes during natural aging and assess OC activity, we utilized 20-month-old wild-type

(20mWT)mice as the aging group and 6-month-old (6mWT)mice as the young control. Micro-CT scanning and TRAP staining of distal femur

sections confirmed decreased trabecular bone volume and activated osteoclastogenesis in long bone tissue from naturally aged mice

(Figures 1A–1F) with only modest changes in cortical bone in aged mice compared to young mice (Figures 1B and 1C).

Genome instability is known to contribute to aging, and telomeres, crucial for maintaining genome stability, can be elongated by telome-

rase. Previous studies28,29 have utilized telomerase-deficient mice (Terc�/�) to investigate themechanisms underlying bone aging. Therefore,

in this study, we bred 6-month-old Terc�/� (6 m KO) male mice to explore the presence of bone loss phenotypes and the mechanisms of OC

formation and activation under conditions of telomerase dysfunction. Micro-CT analysis of long bones revealed evident bone loss in Terc�/�

mice compared to their wild-type counterparts. Similar to themorphological analysis of long bones in naturally agedmice, bone sections from

Terc�/� mice exhibited severe trabecular bone loss with cortical bone remaining unchanged between KO and WT mice (Figures 1A–1E;

Table S1). Histological analysis of distal femur using TRAP staining showed more TRAP positive cells presenting in aged mice and further
iScience 27, 110734, September 20, 2024 3



Figure 2. Different osteoclast progenitor cell populations were identified based on the single-cell transcriptome analysis of bone marrow cells from

aging wild-type and Terc�/� mice

See also Figure S2 and Table S6.

(A) The bonemarrow cells from 1m, 6m, 20mWT, and 1m, 6m Terc�/�mice were profiled with single-cell RNA-seq and DNA-seq. n= 8 (4WT and 4 KO) for 1m;

n = 8 (4 WT and 4 KO) for 6 m; n = 4 (WT) for 20 m.

(B) is the UMAP plot that presents the cell clusters obtained from Leiden clustering.

(C) All the obtained clusters were annotated with the cell type information by comparing the top differential genes (signature genes) associated with each cluster

with known cell type markers.
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Figure 2. Continued

(D) Shows the cells from different libraries.

(E) Shows the cell compositions of 6 m WT, 20 m WT, and 6 m KO.

(F) List the UMAP plots for selected markers genes that we used for the cell type annotation.
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confirmed overactivated osteoclastogenesis in KOmice (Figure 1F; Table S2). Subsequently, we harvested bonemarrow tissue frommice and

cultured BMMs/OCs in vitro on bone slices to observe differences in OC maturation and function between WT and KO mice. Analysis of the

bone slice pits revealed that OCs cultured from KO mice formed larger single pit areas, indicating increased osteoclastogenesis and bone

resorption function in BMMs and OCs from progeria mice (Figure 1G; Table S3). Thus, Terc deficiency stimulates the formation of OCs,

contributing to the trabecular bone loss phenotypes.

To delve into the implications of Terc deficiency in aging, we analyzed gene expression levels in BMMs across five different cohorts:

1-month-old (1 m) WT, 1 m knockout (KO), 6 m WT, 6 m KO, and 20 m WT mice. We were unable to obtain 20 m KO mice due to their

low survival rate associated with Terc deficiency. In this assessment, we recognized 46 differentially expressed genes (DEGs) showcasing

consistent regulation. A total of 12 DEGs were upregulated and 34 downregulated in the 6 m KO and 20 m WT groups, compared to the

6 m WT group serving as control (Figure 1H; Table S4). Of these 46 DEGs, 24 were significantly differentially regulated (either up or down-

regulated) in the 6mKOgroup relative to the 20mWTgroup. In another interesting trend, 36 genes in the 1mKOgroup showed significantly

differential regulation when compared to the 1 mWT group. These genes followed the same pattern of regulation as observed in the 6m KO

and 20 m WT groups.

To understand the functional implications of these Tercdeficiency-associatedDEGs, we conducted functional enrichment analysis through

ToppGene Suite.30 This involved comparisons between the 6 mWT and 20 mWT mice (Figure 1I top; Figure S1 top; Table S5) as well as the

6 m KOmice (Figure 1I bottom; Figure S1 bottom; Table S5). Our analysis of the top 25 enriched pathways revealed a significant downregu-

lation in pathways tied to collagen synthesis and senescence in the 20 mWTmice. These pathways included collagen biosynthesis andmodi-

fying enzymes, assembly of collagen fibrils and other multimeric structures, and genes encoding collagen proteins. Additionally, there was a

prominent decrease in the lysosomeandOCdifferentiation pathways in the 6mKOmice, implying an agedphenotype. Intriguingly, we noted

high expression of cell cycle-related pathways in both the 20 m WT and 6 m KO groups.

Our extensive transcriptome analysis of bonemarrow derived from young and agedmice, along with phenotype confirmation, reveals the

adverse impact of Terc deficiency during aging, which in turn, results in an increased formation and activity of OCs.
Single-cell RNA-seq identifies different cell populations in WT and Terc�/� bone marrow samples during aging

In this study, we aimed to investigate the changes in BMMs and OCs during the aging process through bioinformatics analysis and then vali-

date our observations by experiments (Figure 2A). To explore the changes in cellular classification, we performed scRNA-seq on a total of

25,904 cells from young, healthy old, and mutant old mice after quality control. Our analysis of bone marrow cells from 1 m to 20 m WT

and KO mice identified 35 distinct cell populations (clusters) (Figures 2B and S2A; Table S6), which were further annotated based on known

markers in the CellMarker database,31 characterizing them into different cell types including hematopoietic stem cells, CMPs (common

myeloid progenitors), GMPs (granulocyte-monocyte progenitors), natural killer cells, CLPs (common lymphoid progenitors), B cells, erythroid

cells, Ly6g+Mmp9- monocytes, and Mmp9+ BMMs (Figure 2C).

Our results showed cell population of Mmp9+ BMMs increased with aging (Figure 2D; Figure S2B) specifically more Mmp9+ BMMs were

identified in 6 m KO than those in 20 mWT. Furthermore, the proportion of Mmp9+ BMMs in 6 m KO (63.07%) was larger than that in 20 mWT

(58.36%) (Figure 2E). The proportion of Ly6g+Mmp9- monocytes was increased in 6 m KO and 20 mWT compared to 6 mWT, while the pro-

portion of CMP andGMPwas decreased. These findings revealed a trend toward increased BMMs differentiation in agedmice, specifically in

6 m KO and 20 m WT mice, compared to their young counterparts. Moreover, we also observed 21 Terc-associated genes significantly up/

downregulated in 6 m KO and 20 m WT groups (Figure S2C). These observations were consistent with our previous findings from bulk RNA

sequencing that showed OC differentiation from BMMs was affected during both natural and induced aging (Terc�/�). The markers that we

used to annotate cell types are shown. Here, H2-k132 was employed to mark all the cells involved in OC differentiation, H2-q7 was the marker

of hematopoietic stem cells; Cd79a33 marked CLP; Elane,34 Ms4a4, and Mpo34 marked cells in transition period of CMP and GMP; Cpox33

marked erythroid cells. Specifically, Ly6g and Mmp9 were employed to mark the BMM progenitors for OCs32,35 (Figure 2F).

Our findings highlight distinct cell populations and changes in OC cell differentiation that occur during the aging process and also reveal

the cellular dynamics of murine bonemarrow samples, which lay foundation of explorating themolecularmechanisms underlying aging in this

tissue.
Cellular trajectory inference identified the dynamic cell population for osteoclast differentiation in mouse bone aging

To assess the differentiation dynamics within bone marrow cell clusters during the aging process, we employed RNA-velocity analysis

(scVelo36) to construct an overall cellular trajectory. Clear transcriptional dynamics within the cell clusters was depicted (Figure 3A), with cluster

16 showing unique movement toward mature OCs. The progression from cluster 16 to cluster 17, cluster 2, and finally cluster 12 indicates the

key steps involved in OC differentiation. Furthermore, we observed a lineage progression fromGMP to Ly6g+Mmp9- monocytes, followed by

further development into Mmp9+ BMMs, revealing the origin of OCs. Additionally, the lineage reconstruction technique, partition-based

graph abstraction (PAGA37), was employed to capture the characteristics of multi-lineage cell differentiation and connectivity within
iScience 27, 110734, September 20, 2024 5



Figure 3. The cellular trajectory reconstructed from mouse bone marrow aging single-cell RNA-seq data

(A) The RNA-velocity plot that we got from the single-cell RNA-seq data, which infers the cellular trajectory based on RNA velocity.

(B) A cellular trajectory (graph) inferred from the single-cell RNA-seq data by PAGA. This trajectory inference is based on the expression difference between cells,

which is complementary to the RNA velocity based trajectory.

(C) Presents a cellular trajectory predicted by SCDIFF (version 2.0), which integrates the RNA velocity-based trajectory with the expression based trajectory

(by PAGA). In the combined trajectory, we identified a key cellular transition stage for osteoclast cell differentiation (Cluster 16, 17, 2, and 12), which is

marked in green in the plot.

(D) Shows the gene expression of top predicted transcription factors across different cell clusters of the osteoclast cellular trajectory.

(E) Shows the top signature genes associated with each of those clusters.
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subcluster populations, based on the differences in cell expression (Figure 3B). The likelihood of the transitions between cluster 16, 17, 2, and

12 is relatively strong (edge confidence > 0.2), and a sequential trajectory from cluster 16 to cluster 12 is observed.

To further elucidate theOC cell differentiation process, we utilized SCDIFF2,38 a single-cell trajectory inferencemethod that we previously

developed, which combines RNA velocity results with expression-based trajectory inferred fromPAGA. This analysis identified a crucial devel-

opmental stage from cluster 16 to cluster 12 in OC cell differentiation (Figure 3C). The reconstructed trajectories also revealed transcription

factors (TFs) that modulate the cellular trajectories (Figure 3D). Furthermore, we dissected the marker gene expression patterns associated

with the transition stages of the subclusters. Themarker genes related to different cell clusters (Figure 3E) showed high expression in the early

stage and contrasting patterns in the terminal stage of OC differentiation. Collectively, these results revealed a cellular trajectory of OC dif-

ferentiation during aging, which derived from CMP, GMP to Ly6g+Mmp9- monocytes, and further to Mmp9+ BMMs.
Gene regulatory networks identified key regulators that modulate osteoclast differentiation

To gain further insights into how gene regulatory networks in the bone marrow are altered during aging, we utilized the SCDIFF2 method to

examine the OC and its progenitors and identified TFs involved.
6 iScience 27, 110734, September 20, 2024



Figure 4. Gene regulatory network inference from the single-cell RNA-seq data identifies 4 key regulators that modulate the critical cellular transitions

to OCs

See also Figure S3.

(A) The cellular state transitions (tree) from the progenitors to the BMMs and the transcription factors underlying each of the edges, identified by SCDIFF2.

(B) The gene regulatory network reconstructed by the iDREM tool shows thatCebpd, Sox4, and Irf8 are regulating the gene expression dynamics between cluster

16 to cluster 12, the critical state transitions from the progenitors to BMMs.

(C) The log-normalized expression of the 4 predicted key regulators (Cebpd, Irf8, Sox4, and Klf4) are monotonically changing along with the trajectory.

(D) The expression changes of top predicted transcription factors along with the trajectory.

(E)Top differential genes associated with the critical cellular state transitions for OCs.
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In addition to the trajectory inference analysis discussed earlier, SCDIFF2 can identify critical regulators that govern cellular trajectories.

We identified a list of TFs that modulate OC cell differentiation within clusters 16, 17, 2, and 12 (Figure 4A). Examples of these regulators

include Cenpa, Irf8, Gabpa, and Cebpe, all of which exhibited cluster-specific enrichments along the OC differentiation trajectory. Notably,
iScience 27, 110734, September 20, 2024 7



ll
OPEN ACCESS

iScience
Article
Sox4, Klf4, Irf8, and Cebpd were predicted to be key regulators of OC differentiation. While some of these TFs have been previously studied

and shown potential links to OC differentiation during aging, direct evidence supporting their roles in the activation of osteoclastogenesis

during aging is currently lacking. For instance, Klf4 expression disruption in aged macrophages is associated with the disruption of circadian

innate immune homeostasis.39 OC differentiation is stabilized by DNA methylation at Irf8mediated by DNA methyltransferase 3a (Dnmt3a),

which suppresses Irf8 gene expression.40 It has also been reported that HnRNP A2 acts as a coactivator with nuclear TFs cRel and Cebpd for

Ctsk promoter activation under hypoxic conditions.41 Furthermore, using the interactive dynamic event minor (iDREM42) approach that we

developed, we identified key regulators. All four selected TFs were captured by the iDREM-based gene regulatory network inference, further

confirming their roles in modulating OC differentiation during the aging process.

By integratingmRNAexpression data and time-series single-cell RNA transcriptomic data, we visualized the predicted paths (a, b, c, and d)

based on different combinations of genes, with the top related genes also listed (Figure 4B left andmiddle). Path a and b exhibited increased

genes’ expression, while path c and d were on the contrary. It was also identified the significant up or downregulation of top related genes’

expression within trajectory from cluster 16 to cluster 12 (Figure 4B middle). Specifically, Cebpd acted as a controller of paths a and d, while

Sox4 regulated path a and Irf8 was involved in path c (Figure 4B right). These three TFs displayed distinct trajectory regulation patterns, and

we further quantified their absolute expression levels in the four clusters. We observed an increasing trend of Cebpd expression during OC

differentiation, while the remaining TFs exhibited the opposite pattern (Figure 4C). Moreover, these four TFs also exhibited important reg-

ulatory effects in RNA trajectory inference. It is showed the four key TFs and other top predicted TFs’ average expression level and cell fraction

in each cluster along trajectory (Figure 4D). We observed significant upregulation of Cebpd and downregulation of Sox4, Irf8, and Klf4. To

elucidate the TFs controlling cellular trajectories, we identified TFs that were enriched in different clusters, noting their high expression in

cluster 16 and decreased expression in clusters 17, 2, and 12 (Figure 4E). Additionally, we determined the cell composition of the four clusters

and found that aged cells (20 m WT and 6 m KO) predominantly populated this OC-committed trajectory (Figure S3A). Cluster 17, 2, and 12

exhibited significant enrichment of aged cells, while cluster 16 was significantly enriched in 6 mWT cells (Figure S3B). Throughout the trajec-

tory, the expression levels of Terc-related genes generally decreased (Figure S3C). These results elucidate the gene regulatory networks that

control cellular trajectories and highlight four important TFs (Sox4, Irf8, Cebpd, and Klf4) that modulate the age-induced OC differentiation.

Single-cell DNA-seq analysis show the mutation feature of osteoclastogenesis process during mouse bone marrow aging

To investigate whether the genetic mutation is associated with OCs, we implement whole genome sequencing (WGS) and identified single-

nucleotide variants in five age groups (1 m WT, 1 m KO, 6 m WT, 6 m KO, 20 m WT). As expected, more candidates somatic SNVs were de-

tected in KO group (average 8802 per cell) than WT groups (average 1374 per cell). The number of SNVs of 6 m KO group was relatively

larger than that of 6 mWT group (p = 0.097). Similarly, the number of SNVs of 1m KOgroupwas significantly larger than that of 1 mWT group

(p= 0.0014). The number of SNVs between 20mWTgroup and 6mKOwas significantly different (p= 0.031) (Figure 5A; Table S7). This finding

suggested that Terc deficiency induced more genetic mutations. We also analyzed the point mutation spectra in these 5 age groups. We

found high contribution of C>T transitions in each group and the contribution was increased with age (Figure 5B; Table S7). Previous study

has reported that these mutations are known to be accumulated during aging, which are induced by DNA methylation.43 However, in our

result, the contribution of C>T in 6 m KO group was significantly lower than that in 6 m WT. T>C contribution was the opposite, suggesting

that Terc depletion reduced C>T transitions but induced T>C transitions. The SNPs identified between 6 mWT and 6 m KO are similar to the

ones between 20 mWT and 6 m KO, which are distinct from the SNPs detected between 1 mWT and 1 m KO (Figure 5C; Tables S8–S10). In

addition, the genes associated with those SNPs were significantly enriched with OC differentiation and IL6-mediated pathways (p < 0.05),

which indicates that the osteoclastogenesis process is significantly affected by the aging relevant mutations (Figure 5D; Figure S3D).

Together, these results revealed that the genetic mutations are strongly associated with OC differentiation during aging.

Cell-cell interaction inference and the reconstructed signaling network support the identified regulators for

osteoclastogenesis during aging

To gain insights into the intercellular communication within the bonemarrow, we employed the CellChat approach, which infers and analyzes

cell-cell interactions involving ligands, receptors, and cofactors.44 By computing the number of inferred interactions between each cell type

and the rest of the cell populations, we identified strong interactions between CMP-GMP andGMP-Mmp9+ BMMs (Figure 6A). Notably, CMP

andMmp9+ BMMs exhibitedmore interactions compared to that of CMP with other groups, emphasizing the OC cellular trajectory from the

progenitor (GMP) to the highly activated BMMsduring aging. Furthermore, we quantified the likelihood of different signal inputs and outputs,

and we found the most significant interaction in the GMP-Mmp9+ BMMs and Ly6g+ Mmp9- monocyte-Mmp9+ BMMs was Anxa1-Fpr2

pair(p < 0.05, Commun.Prob =max) (Figure 6B). The second significant one was C3-(Itgam+Itgb2). We assessed the expression of the recep-

tors in Figure 6B, revealing 6 of them including Fpr2, Itgam, and Itgb2 were high expressed in Mmp9+ BMMs, which is consistent with the

strong interactions predicted in Figure 6B (Figure 6C). Previous studies45,46 showed that Anxa1 was an agonist of Fpr2, and Anxa1-Fpr2

together inhibitedOCdifferentiation. However, other researchers reported thatC3 stimulated osteoblast differentiation.47,48 Itgamwas posi-

tively regulated during bone resorption,49 and Itgb2 was identified as upregulated DEG related to osteoarthritis.50 In our study, the expres-

sion of them were increased along with OC differentiation trajectory, which means that the stimulation effect should be greater than the in-

hibition effect. As a result, osteoclastogenesis was promoted.

To further explore the interactions between ligands, receptors, and TFs, we constructed a signaling network (Figure 6D; Table S11). Signa-

ture gene Akt1 was inferred as the hub gene that located in center of the network. Akt1 is often known as protein kinase B, whose activation
8 iScience 27, 110734, September 20, 2024



Figure 5. Genetic mutation inference from single-cell DNA-seq data supports the change of osteoclastogenesis during aging

See also Figure S3 and Tables S7–S10.

(A) Number of somatic SNVs per cell in five age groups.

(B) Contribution of the indicated six mutation types to the point mutation spectrum for the five age groups.

(C) A heatmap of mutation score (see STAR Methods for details) associated with the SNPs detected in the proximity of genes. The SNPs identified between 6 m

WT vs. 6 m KO are similar to the ones between 20 m WT and 6 m KO, which are distinct from the SNPs detected between 1 m WT and 1 m KO.

(D) Pathway enrichment analysis suggests that the genes associated with those SNPs are significantly enrichedwith osteoclast differentiation, which indicates that

the osteoclastogenesis process is significantly affected by the aging relevant mutations. Data are shown asmeanG s.d. n= 6 (3WT and 3 KO) for 1m; n= 8 (4WT

and 4 KO) for 6 m; n = 4 (WT) for 20 m. For (A), each dot represents a single individual. p values were determined by two-tailed Student’s t test.
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relies on the PI3K pathway. Previous study has reported PI3K/AKT pathway was involved in metabolism, aging51 and osteoblast differentia-

tion.52 The four TFs located in the inner circle (Sox4) and the outer circle (Irf8, Cebpd, and Klf4), exhibited the direct and indirect relationship

with Akt1. It had been reported Sox4, Irf8,Cebpd, and Klf4 played a role in tumorigenesis and associated with dysregulation ofAkt1.53–56 The

four TFs might be involved in the process of aging. We also observed that the ligand-receptor interactions are strongly associated with Akt1

and the four core TFs, as evidenced by multiple gene-TF relationships. Our findings suggest the crucial roles of the four identified TFs in the

aging process.We then performed pathway enrichment of genes in the network and found they were significantly enrichedwith aging related

pathways such as PI3K-Akt-mTOR pathway,51 TNF-a- NF-kB pathway,57 and IL6-JAK-STAT3 pathway mentioned previously (p < 0.05)

(Figure 6E).

The results of our analysis revealed strong interactions between CMP-GMP andGMP-Mmp9+ BMMs underscore theOC cellular trajectory

during aging. Moreover, the identification of specific ligand-receptor interactions, such as Anxa1-Fpr2, and the expression profiles of recep-

tors and TFs identified signaling network that governs the aging process. These findings further emphasize the importance of the four TFs in

the aging-associated cellular dynamics within the bone marrow.
iScience 27, 110734, September 20, 2024 9



Figure 6. Cell-cell interaction analysis infers potential critical ligand-receptors associated with aged-induced osteoclastogenesis

See also Table S11.

(A) The cell-cell interactions between different cell populations inferred by cellchat.

(B) The top ligand-receptors predicted between different cell populations.

(C) Gene expression of different receptors across different cell populations.

(D) Signaling network that connects the inferred receptors and key transcription factors that modulate the aged-induced osteoclastogenesis. Red, green, and

blue square indicate ligand-receptors, signature genes, and TFs, respectively.

(E) Shows the top 20 enriched pathways of genes in (D).
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Experimental validation of the effect of key translational factors on regulating osteoclastogenesis of in vitro BMMs

To validate the effects of the candidateTFs identified in our single-cell sequencing analysis, we utilizedRNA interference (RNAi) to knock down

the fourTFs in vitro-culturedBMMs.Weobserved that theexpressionofCebpd increased in agedBMMs,while theexpressionof Irf8,Sox4, and

Klf4 decreased during aging. Therefore, we knocked down Cebpd in BMMs derived from 20 mWTmale mice, while Irf8, Sox4, and Klf4 were

knocked down in BMMs derived from 6 mWT male mice using a shRNA-lentivirus system with the zsGreen reporter (Figure S4).

To assess the effects of TF knockdown onOCdifferentiation, wemeasured the expression of TRAP and CTSK, which are canonical markers

of mature OCs, using RT-qPCR before and after 3 and 8 days of RANKL stimulation. These time points represent sequential stages of OC

differentiation. Our results showed that the expression of TRAP and CTSK decreased in TF knockdown BMMs from 20 mmice and increased
10 iScience 27, 110734, September 20, 2024
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Figure 7. Validation of the effects of key translational factors on regulating osteoclastogenesis of in vitro BMMs

See also Figure S4 and Tables S12–S15.

(A) The expression of TRAP and CTSK, the canonical makers of mature OC, were measured by RT-qPCR before and after 3 days and 8 days the stimulation of

RANKL, which are sequential time points along the differentiation of OC. The expression of TRAP and CTSK increased in TFs knockdown BMMs of 6 m and

decreased in TFs knockdown BMMs of 20 m mice after 8 days stimulation of RANKL. The two upper plots showed the expression of CTSK and the lower

plots showed the expression of TRAP; the two plots on the left demonstrated results from 20 m mice while the other two plots on the right showed the

results from 6 m mice.

(B) Pits array analysis by SEM scanning showed smaller pits formed by aged (20 m) TF knockdown BMMs and bigger pits formed by young (6 m) TF knockdown

BMMs.

(C–E) Images and representative inserts of TRAP staining of in vitro-culturedOC. TFs knockdown BMMs generatedmore TRAP positive cells in young (6m) BMMs

after Irf8, Sox4, andKlf4were knocked down. On the contrary, aged (20m) BMMs couldn’t formmatureOCs afterCebpdwas blocked. Data are shown asmeanG

s.e.m. In (A), n = 116 (26 Scr, 36 Cebpd, 18 Sox4, 18 Irf8, 18 Klf4) for TRAP group; n = 116 (26 Scr, 36 Cebpd, 18 Sox4, 18 Irf8, 18 Klf4) for CTSK group, each dot

represents a single individual. In (B), n= 10 (1 Scr, 2Cebpd) for 20mgroup; n= 7 (1 Scr, 2 Sox4, 2 Irf8, and 2 Klf4) for 6mgroup. In (D), n = 9 (3 Scr, 6Cebpd) for 20m.

In (E), n = 28 (4 Scr, 8Sox4, 8 Irf8, 8 Klf4) for 6 m, each dot represents a single individual. p values were determined by two-tailed Student’s t test. ‘‘Scr’’ stands for

scramble.
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in TF knockdown BMMs from 6 m mice after 8 days of RANKL stimulation (Figure 7A; Tables S12 and S13). Additionally, pits array analysis

revealed that aged BMMs formed smaller pits after Cebpd knockdown, while young BMMs with TF knockdown formed larger pits (Figure 7B;

Table S14). Furthermore, TRAP staining of in vitro-cultured OCs confirmed that blockage of Cebpd in aged BMMs prevented the generation

of mature OCs, whereas knockdown of Irf8, Sox4, and Klf4 in young BMMs led to an increased number of mature OCs. (Figures 7C–7E;

Table S15). Collectively, our findings confirm that Cebpd promotes osteoclastogenesis and bone resorption during aging, while Irf8,

Sox4, and Klf4 inhibit these processes. The knockdown experiments provide functional validation for the roles of these TFs in regulating

OC differentiation and bone resorption dynamics during aging.
DISCUSSION

In this study, we comprehensively profile the cellular states of bone marrow cells with single-cell multi-omics techniques, which enables the

deep examination of different cell populations of bonemarrow cells along with the aging process. Specifically, we clustered and annotated all

the cells based on the single-cell RNA-seq measurements across different age groups (WT 6 months, WT 20 months, Terc�/� 6 months). We

also demonstrated that the dysfunction of the telomerase can induce aged-related osteoporosis. As showed in the joint single-cell RNA-seq

analysis, the OC differentiation in Terc�/� mice is significantly enhanced compared to its WT counterparts. As a result, 6-month Terc�/� mice

show more evident bone aging phenotypes than 20 m wild-type mice.

Telomere and telomerase have gained increasing concern because telomere attrition and telomerase dysfunctions accelerate the speed

of aging.58 One of the first and best characterized mechanisms of aging is genome instability caused by telomere complex dysfunction.59

Animal models with dysfunctional telomerase have been extensively used to explore the mechanism of aging and age-related diseases.

The phenotypes of osteoporosis was observed and confirmed in an accelerated model of aging in mice where WS helicase and telomerase

were genetically removed.60 It was later reported that single mutation in the telomerase gene (Terc) and double mutants of WS helicase and

telomerase (Wern�/�Terc�/�) showed accelerated age-related osteoporosis.29 Mutations of telomerase complex genes are also associated

with the phenotype of osteoporosis.61 These studies suggested the dysfunctions of the telomerase can induce aged-related osteoporosis. It

has been revealed that telomerase has telomere length independent functions. The telomerase protein subunit is reported to regulate the

expression of several genes including NF-kB, Myc, SF1, VEGF, and DNAmethyltransferases, and most relevant to the regulation is inflamma-

tion.62 However, the link between telomerase dysfunction and osteoporosis and the mechanisms of regulation of BMMs/OCs differentiation

and maturation during aging is not fully elucidated.

Through enrichment pathway analysis of different cell populations across different age groups, we identified dynamic cellular changes of

BMMs/OCs during the aging process. Further examination of these dynamic cell populations revealed that the OCs differentiation substan-

tially shifted during aging. Single-cell trajectory as well as the underlying gene regulatory and signaling network inference analyses identified

critical TFs to dictate OCs differentiation. The identified TFs are differentially expressed as demonstrated in the reconstructed gene regula-

tory network. From single-cell DNA-seq data, we identified significant mutationDEGs between different aging groups. These genes (found in

aged but not in adult mice) were enriched with the functions in OC differentiation, which supports our discovery that OC differentiation is

substantially altered during the aging process. Finally, we validated our model predictions with in vitro knockdown experiments. A list of

four TFs (Klf4,Cebpd, Irf8, and Sox4) out of themodel top predictions was selected for experimental validation. Knocking down the predicted

four TFs, respectively, has disrupted the differentiation of OC cells, which demonstrates the potential of these identified TFs in manipulating

the cell fates of OCs. To our best knowledge, our study is the very first one that verifies the roles of the four TFs in regulating osteoclasto-

genesis during the aging process. The identification and validation of those four novel regulators clearly demonstrate the power of the sin-

gle-cell multi-omics and also suggests potential interventions targets of age-related osteoporosis.
Limitations of the study

This study observed that theOCdifferentiation is significantly enhanced during aging in Terc�/�mice. However, the link between telomerase

dysfunction and age-related osteoporosis is not fully elucidated. The possible explanation about this problem is that aging alters the
12 iScience 27, 110734, September 20, 2024
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microenvironment of bone marrow, which causes the expression changes of these four TFs. While the other possibility is that telomerase has

telomere length independent functions, which have direct interactions with the four key TFs in BMMs/OCs. These mechanisms need further

investigations. Moreover, the single-cell DNA-seq measurements performed in this study remains relatively low-resolution. We plan to in-

crease the scale of single-cell DNA-seq and another single-cell omic measurement (e.g., single-cell ATAC-seq) to enable a more accurate

and comprehensive single-cell profiling of the bone marrow during the aging process. Finally, the effects of these four TFs on BMMs/OCs

during aging should be experimentally verified in vivo. We plan to develop corresponding animal models to conduct further studies for eluci-

dating the mechanism.
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62. Ségal-Bendirdjian, E., and Geli, V. (2019).
Non-canonical Roles of Telomerase:
Unraveling the Imbroglio. Front. Cell Dev.
Biol. 7, 332. https://doi.org/10.3389/fcell.
2019.00332.

63. Love, M.I., Huber, W., and Anders, S. (2014).
Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2.
Genome Biol. 15, 550. https://doi.org/10.
1186/s13059-014-0550-8.

64. Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018).
fastp: an ultra-fast all-in-one FASTQ
preprocessor. Bioinformatics 34, i884–i890.
https://doi.org/10.1093/bioinformatics/
bty560.

65. Wolf, F.A., Angerer, P., and Theis, F.J. (2018).
SCANPY: large-scale single-cell gene
expression data analysis. Genome Biol. 19,
15. https://doi.org/10.1186/s13059-017-
1382-0.

66. La Manno, G., Soldatov, R., Zeisel, A., Braun,
E., Hochgerner, H., Petukhov, V.,
Lidschreiber, K., Kastriti, M.E., Lönnerberg,
P., Furlan, A., et al. (2018). RNA velocity of
single cells. Nature 560, 494–498. https://doi.
org/10.1038/s41586-018-0414-6.

67. Kim, D., Paggi, J.M., Park, C., Bennett, C., and
Salzberg, S.L. (2019). Graph-based genome
alignment and genotyping with HISAT2 and
HISAT-genotype. Nat. Biotechnol. 37,
907–915. https://doi.org/10.1038/s41587-
019-0201-4.

68. Dong, X., Zhang, L., Milholland, B., Lee, M.,
Maslov, A.Y., Wang, T., and Vijg, J. (2017).
Accurate identification of single-nucleotide
iScience 27, 110734, September 20, 2024 15

https://doi.org/10.1242/dmm.014928
https://doi.org/10.1242/dmm.014928
https://doi.org/10.1093/nar/gkp427
https://doi.org/10.1093/nar/gky900
https://doi.org/10.1093/nar/gky900
https://doi.org/10.1038/s41556-018-0121-4
https://doi.org/10.1038/nature25741
https://doi.org/10.1038/nature25741
https://doi.org/10.1172/jci.insight.145108
https://doi.org/10.1172/jci.insight.145108
https://doi.org/10.3389/fimmu.2019.01611
https://doi.org/10.3389/fimmu.2019.01611
https://doi.org/10.1038/s41587-020-0591-3
https://doi.org/10.1038/s41587-020-0591-3
https://doi.org/10.1186/s13059-019-1663-x
https://doi.org/10.1186/s13059-019-1663-x
https://doi.org/10.1101/gr.225979.117
https://doi.org/10.1101/gr.225979.117
https://doi.org/10.1038/s41590-021-01083-0
https://doi.org/10.1038/nm.3815
https://doi.org/10.1038/nm.3815
https://doi.org/10.1111/nyas.12709
https://doi.org/10.1371/journal.pcbi.1006019
https://doi.org/10.1371/journal.pcbi.1006019
https://doi.org/10.1038/s41580-018-0020-3
https://doi.org/10.1038/s41580-018-0020-3
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1111/bph.12768
https://doi.org/10.1111/bph.12768
https://doi.org/10.1038/s41467-022-31646-0
https://doi.org/10.1038/s41467-022-31646-0
https://doi.org/10.1002/jbmr.2187
https://doi.org/10.1002/jbmr.2187
https://doi.org/10.1182/blood-2010-01-263590
https://doi.org/10.1182/blood-2010-01-263590
https://doi.org/10.1128/IAI.00552-16
https://doi.org/10.1128/IAI.00552-16
http://refhub.elsevier.com/S2589-0042(24)01959-X/sref50
http://refhub.elsevier.com/S2589-0042(24)01959-X/sref50
http://refhub.elsevier.com/S2589-0042(24)01959-X/sref50
http://refhub.elsevier.com/S2589-0042(24)01959-X/sref50
http://refhub.elsevier.com/S2589-0042(24)01959-X/sref50
https://doi.org/10.1016/j.jgg.2021.11.005
https://doi.org/10.1242/jcs.042770
https://doi.org/10.1242/jcs.042770
https://doi.org/10.1186/s12883-014-0207-y
https://doi.org/10.1186/s12883-014-0207-y
https://doi.org/10.1186/s12943-019-1080-5
https://doi.org/10.1186/s12943-019-1080-5
https://doi.org/10.18632/oncotarget.23713
https://doi.org/10.18632/oncotarget.23713
http://refhub.elsevier.com/S2589-0042(24)01959-X/sref56
http://refhub.elsevier.com/S2589-0042(24)01959-X/sref56
http://refhub.elsevier.com/S2589-0042(24)01959-X/sref56
http://refhub.elsevier.com/S2589-0042(24)01959-X/sref56
http://refhub.elsevier.com/S2589-0042(24)01959-X/sref56
http://refhub.elsevier.com/S2589-0042(24)01959-X/sref56
http://refhub.elsevier.com/S2589-0042(24)01959-X/sref56
http://refhub.elsevier.com/S2589-0042(24)01959-X/sref56
https://doi.org/10.1002/jbmr.4021
https://doi.org/10.1016/j.exger.2014.11.015
https://doi.org/10.1016/j.exger.2014.11.015
https://doi.org/10.1016/s0531-5565(00)00230-8
https://doi.org/10.1016/s0531-5565(00)00230-8
https://doi.org/10.1111/j.1474-9726.2007.00350.x
https://doi.org/10.1111/j.1474-9726.2007.00350.x
https://doi.org/10.1073/pnas.0800042105
https://doi.org/10.3389/fcell.2019.00332
https://doi.org/10.3389/fcell.2019.00332
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1038/s41586-018-0414-6
https://doi.org/10.1038/s41586-018-0414-6
https://doi.org/10.1038/s41587-019-0201-4
https://doi.org/10.1038/s41587-019-0201-4


ll
OPEN ACCESS

iScience
Article
variants in whole-genome-amplified single
cells. Nat. Methods 14, 491–493. https://doi.
org/10.1038/nmeth.4227.

69. Li, H., and Durbin, R. (2009). Fast and accurate
short read alignment with Burrows-Wheeler
transform. Bioinformatics 25, 1754–1760.
https://doi.org/10.1093/bioinformatics/
btp324.

70. McKenna, A., Hanna, M., Banks, E.,
Sivachenko, A., Cibulskis, K., Kernytsky, A.,
Garimella, K., Altshuler, D., Gabriel, S., Daly,
M., and DePristo, M.A. (2010). The Genome
Analysis Toolkit: a MapReduce framework for
analyzing next-generation DNA sequencing
data. Genome Res. 20, 1297–1303. https://
doi.org/10.1101/gr.107524.110.
16 iScience 27, 110734, September 20, 2024
71. Blasco, M.A., Lee, H.W., Hande, M.P.,
Samper, E., Lansdorp, P.M., DePinho, R.A.,
and Greider, C.W. (1997). Telomere
shortening and tumor formation by mouse
cells lacking telomerase RNA. Cell 91, 25–34.
https://doi.org/10.1016/s0092-8674(01)
80006-4.

72. Pearson, K. (1901). LIII. On lines and planes of
closest fit to systems of points in space. The
London, Edinburgh Dublin Philosophical
Magazine J. Sci. 2, 559–572. https://doi.org/
10.1080/14786440109462720.

73. Traag, V.A., Waltman, L., and van Eck, N.J.
(2019). From Louvain to Leiden: guaranteeing
well-connected communities. Sci. Rep. 9,
5233. https://doi.org/10.1038/s41598-019-
41695-z.

74. Franzén, O., Gan, L.M., and Bjorkegren,
J.L.M. (2019). PanglaoDB: a web server for
exploration of mouse and human single-cell
RNA sequencing data. Database 2019,
baz046. https://doi.org/10.1093/database/
baz046.

75. Wilcoxon, F. (1945). Individual Comparisons
by Ranking Methods. Biometrics Bulletin 1,
80–83. https://doi.org/10.2307/3001968.

76. Sherry, S.T.,Ward,M.H., Kholodov, M., Baker,
J., Phan, L., Smigielski, E.M., and Sirotkin, K.
(2001). dbSNP: the NCBI database of genetic
variation. Nucleic Acids Res. 29, 308–311.
https://doi.org/10.1093/nar/29.1.308.

https://doi.org/10.1038/nmeth.4227
https://doi.org/10.1038/nmeth.4227
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1016/s0092-8674(01)80006-4
https://doi.org/10.1016/s0092-8674(01)80006-4
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1093/database/baz046
https://doi.org/10.1093/database/baz046
https://doi.org/10.2307/3001968
https://doi.org/10.1093/nar/29.1.308


ll
OPEN ACCESS

iScience
Article
STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Mouse bone marrow Collected from long bones

(femurs and tibias) of C57BL/6J

and B6.Cg-Terctm1Rdp/J strains.

N/A

Critical commercial assays

Chromium Single Cell 30 V3.1 Reagent Kits 10X Genomics 1000121

Leukocyte Acid Phosphatase (TRAP) Kit Sigma-Aldrich 387A

NucleoSpin RNA II MN(Macherey-Nagel) 740955.50

REPLI-g UltraFast Mini Kit Qiagen 150035

QIAamp DNA mini kit Qiagen 51306

Deposited data

Raw single-cell DNA-seq and bulk DNA-seq data This paper PRJNA906340

Raw single-cell RNA-seq and bulk RNA-seq data This paper GSE190535; GSE169608; GSE224119

Mouse reference genome mm10 UCSC Genome Browser http://genome.ucsc.edu/cgi-bin/hgGateway?db=mm10

Experimental models: organisms/strains

C57BL/6J, mus musculus The Jackson Laboratory IMSR_JAX:000664

B6.Cg-Terctm1Rdp/J,mus musculus The Jackson Laboratory IMSR_JAX:004132

Oligonucleotides

shRNA targeting sequence: Irf8 #1:

GGACATTTCTGAGCCATATAA

This paper N/A

shRNA targeting sequence: Irf8 #2:

GCCTATGACACACACCATTCA

This paper N/A

shRNA targeting sequence: Cebpd #1:

GCTGGCCTCCGGCAGTTCTTC

This paper N/A

shRNA targeting sequence: Cebpd #2:

GCTCCACGACTCCTGCCATGT

This paper N/A

shRNA targeting sequence: Klf4 #1:

GACCTAGACTTTATCCTTTC

This paper N/A

shRNA targeting sequence: Klf4 #2:

GGTCATCAGTGTTAGCAAAGG

This paper N/A

shRNA targeting sequence: Sox4 #1:

GCGACAAGATTCCGTTCATCC

This paper N/A

shRNA targeting sequence: Sox4 #2:

GCTCAAGGACAGCGACAAGAT

This paper N/A

Recombinant DNA

pGMLV-zsGreen-vshRNA-TFs Genomeditech N/A

Software and algorithms

DESeq2 (v1.38.3) Love et al.63 https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

fastp (v0.21.0) Chen et al.64 https://github.com/OpenGene/fastp

CellRanger (v5.0.0) 10x Genomics https://support.10xgenomics.com/

single-cell-gene-pression/software/

pipelines/latest/what-is-cell-ranger
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velocyto (v.17.17) La Manno et al.66 http://velocyto.org/

SCDIFF (v2) Ding et al.38 https://github.com/phoenixding/scdiff2

CellChat (v1.5.0) Jin et al.44 https://github.com/sqjin/CellChat

HISAT2 (v2.2.0) Kim et al.67 http://daehwankimlab.github.io/hisat2/

SCcaller (v2.0.0) Dong et al.68 https://github.com/biosinodx/SCcaller

bwa (v0.7.17) Li et al.69 https://github.com/lh3/bwa
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animals

All animal breeding and sample harvest procedures were approved by ethics committee of Shanghai Sixth People’s Hospital Affiliated to

Shanghai Jiao Tong University School of medicine (approval number: 2020-0355). The C57BL/6J Terc knockout (mTRKO) animals71 (JAX stock

#004132) were a kind gift from Prof. Ming Lei. All mice were kept in C57BL/6J background andmaintained in standard, specific pathogen-free

facility at a controlled temperature (22�C–24�C), with a 12 h dark/light cycle (07:00 to 19:00 light on), with standard food andwater provided ad

libitum and environmental enrichments. The mice are healthy and used for in-house mating to generate enough mice for experiments. Only

male mice were used for experiments and the littermate controls were used. The genotypes of mice were determined by PCR. The primers of

genotyping for Terc�/� mice are: Terc F- ATTTGTCACGTCCTGCACGACG; WT F-GCACTCCTTACAAGGGACGA; common R-CTTC

AATTTCCTTGGCTTCG. Wild type mice were raised up to 6 months and 20 months. Terc�/� mice was generated by crossing the Terc+/�.
Terc�/� mice and wild type littermates were raised up to 6 months.
METHOD DETAILS

Cell isolation and culture

After being completely anesthetized, mice were euthanatized by cervical vertebral dislocation. Mice bone marrow tissue was harvested, and

bonemarrow derivedmonocytes were obtained to generate mature OC in vitro. BMMs were cultured in Minimum Essential Medium a (MEM

a, Gibco, Cat. 12571071) with 10% fetal bovine serum (FBS). Osteoclastogenesis assayswere carried out. The BMMswere cultured in complete

a-MEM supplemented with 25 ng/mlM-CSF in 24-well plates and 96-well plates with 4x104 cells per well or 1x104 cells per well respectively. In

both instances, cells were stimulated with 100 ng/ml RANKL through culturemedium changing at different time points (1, 3, 5 days and so on).

After the big multinucleated cell presenting, the cells were either extracted for RNA lysates (24-well plates) or fixed with 4% PFA (96-well

plates) for further analysis.
Single cell isolation for scRNA-seq

Single-cell RNA-seq experiment was performed by experimental personnel in the laboratory of NovelBio Bio-Pharm Technology Co.,Ltd. The

tissues were surgically removed and kept in MACS Tissue Storage Solution (Miltenyi Biotec) until processing. The tissue samples were pro-

cessed as described below. Briefly, Bones were harvested, samples were first washedwith phosphate-buffered saline (PBS), bonemarrowwas

flushed, samples were sieved through a 40mmcell strainer, and centrifuged at 300g for 5min. After the supernatant was removed, the pelleted

cells were suspended in red blood cell lysis buffer (Miltenyi Biotec) to lyse red blood cells. After washing with PBS containing 0.04% BSA, the

cell pellets were re-suspended in PBS containing 0.04% BSA and re-filtered through a 35 mm cell strainer. Dissociated single cells were then

stained with AO/PI for viability assessment using Countstar Fluorescence Cell Analyzer.
scRNA-seq sample and library preparation

The scRNA-Seq libraries were generated using the 10X Genomics Chromium Controller Instrument and Chromium Single Cell 30 V3.1 Re-

agent Kits (10X Genomics, Pleasanton, CA, 1000121). Briefly, cells were concentrated to 1000 cells/uL and approximately 8,000 cells were

loaded into each channel to generate single-cell Gel Bead-In-Emulsions (GEMs), which results into expected mRNA barcoding of 6,000 sin-

gle-cells for each sample. After the RT step, GEMs were broken and barcoded-cDNA was purified and amplified. The amplified barcoded

cDNA was fragmented, A-tailed, ligated with adaptors and index PCR amplified. The final libraries were quantified using the Qubit High

Sensitivity DNA assay (Thermo Fisher Scientific) and the size distribution of the libraries were determined using a High Sensitivity DNA

chip on a Bioanalyzer 2200 (Agilent). All libraries were sequenced by illumina sequencer (Illumina, San Diego, CA) on a 150 bp paired-end run.
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Single cell and bulk DNA library preparation and whole genome sequencing

Femurs and tibias were dissected and cut at both ends with sharp sterile scissors. Bone marrow cells were flushed out using pre-warmed

DMEM (Meilunbio, MA0591) until the flow through turned white, filtered with a cell strainer (Falcon, 70 mm, 352350) to remove debris and

bone fragment and washed with PBS 2 times. Red cells were removed using red cells lysis buffer (Beyotime, C3702). Bone marrow cells

were resuspended in pre-warmed DMEM so that the cells were ready for single cell isolation and bulk DNA extraction.

Single cells were prepared using the CellRaft array (Cell Microsystems) based on the methods described in Dong et al.68 In brief, Poly-D-

lysine (Sigma, P6407) were added into the CellRaft array and incubate at 37�C overnight. A total of 1.6 mL pre-warmed DMEMmedium were

added and the cell solution (4,000 cells in 600 mL) was added evenly onto the CellRaft array. The array was centrifuged for 30 s at 200 g and

observed under microscope (Nikon, ECLIPSE-Ci-L) to confirm all cells were detached. Remove the supernatant carefully and add 4 mL HBSS

(Thermo, 14155063) (containing 2.5% FBS) to the array gently.

Single rafts containing one cell (as observed by microscopy with a 103 objective) were transferred with the magnetic wand supplied with

the CellRaft system into 0.2-mL PCR tubes containing 3 mL PBS. By observing the PCR tubes under a magnifying glass and the CellRaft array

under a microscope before and after the transfer, only one cell per tube was validated. Tubes containing single rafts were frozen immediately

on crushed dry ice and kept at �80�C until use.

Single-Cell Multiple Displacement Amplification (SCMDA) was performed using Exo-Resistant Random Primer (Thermo Scientific, SO181)

and REPLI-g UltraFast Mini Kit (Qiagen, 150035) according to the methods described in Dong et al.68 Amplified DNA was purified with

AMPureXP-beads (Beckman Coulter, A63880), and the concentration was measured with a Qubit High Sensitivity dsDNA Kit (Invitrogen

Life Science, Q32854). As a positive control for the amplification, 1 ng of mice genomic DNA in 3 mL PBS was also amplified, and 3 mL of

PBS without any template was used as a negative control.

DNA from bulk cell populations were prepared with QIAamp DNA mini kit (Qiagen, 51306) and libraries were prepared with NEB Next

Ultra DNA Library Prep Kit for Illumina (NEB). All the bulk and single-cell libraries were sequenced on Illumina NovaSeq 6000 with 2 3

150-bp paired-end reads.

Bulk RNA extraction and sequencing

Male C57BL/6J mice were euthanized under anesthesia. Bone marrow was harvested from long bones by rinsing with culture medium. Nu-

cleospin RNA II kits was used for total RNA extraction. Subsequent denaturation bymagnetic oligo (dT) beads was performedbefore the RNA

sample purification. After the first-strand cDNA being obtained by reverse transcription of purified mRNA, and a second cDNA being syn-

thesized, fragmented DNA samples were blunt ended and adenylated at the 30 ends. Adaptors were ligated to construct a library. DNA sam-

ples quantification was performed by Qubit (Invitrogen), which were then sequenced by an Illumina Nova-seq 6000 instrument fromGenergy

Bio (Shanghai) after cBot cluster generation.

Knock-down validations

To silence the expression of four TFs, Klf4, Sox4, Irf8 and Cebpd BMMs, we constructed four shRNA lentiviral vectors based on the shRNAi

vector pGMLV (pGMLV-zsGreen-vshRNA, Genomeditech, Shanghai, China). The four shRNA-targeting sequences for these TFs were as

follows:

Irf8-shRNA1:GGACATTTCTGAGCCATATAA;

Irf8-shRNA2:GCCTATGACACACACCATTCA;

Cebpd-shRNA1:GCTGGCCTCCGGCAGTTCTTC;

Cebpd-shRNA2:GCTCCACGACTCCTGCCATGT;

Klf4-shRNA1:GACCTAGACTTTATCCTTTC;

Klf4-shRNA2:GGTCATCAGTGTTAGCAAAGG;

Sox4-shRNA1:GCGACAAGATTCCGTTCATCC;

Sox4-shRNA2:GCTCAAGGACAGCGACAAGAT.

The recombinant pGMLV-zsGreen-vshRNA-TFs were identifiedby PCR andDNA sequencing. Lentivirus packagingwas conducted in 293T

cells, followed by transfection with the shRNA-TFs into A375 cells. A scramble lentiviral vector was used as a negative control. The optimum

shRNA fragment against TFs was determined by real-time PCR. The interference of this selected shRNA on TFs was verified by fluorescent

array.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single-cell RNA data preprocessing

scRNA-seq data analysis was performed by NovelBio Bio-Pharm Technology Co.,Ltd. with NovelBrain Cloud Analysis Platform. We applied

fastp v0.21.064 with default parameter filtering the adaptor sequence and removed the low-quality reads to achieve the clean data. Then the

feature-barcodematrices were obtained by aligning reads to themouse genome (mm10) using CellRanger v5.0.0. We applied the down sam-

ple analysis among samples sequenced according to the mapped barcoded reads per cell of each sample and finally achieved the aggre-

gatedmatrix. Cells contained over 200 expressed genes andmitochondria UMI rate below 20%passed the cell quality filtering andmitochon-

dria genes were removed in the expression table. The filtered cell-by-gene matrices will be further analyzed using Scanpy v1.8.2.65
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Single-cell RNA-seq data processing and clustering

With the raw cell-by-gene expression matrix, we further filtered the genes with a small dispersion (i.e., 0.05) of gene expression or with very

small expression (e.g., 0.01). The filtered cell-by-gene gene expression matrices will be further normalized and log1p transformed using the

Scanpy tool. The final normalized gene expression matrices were then dimensionality reduced with PCA72 and then were clustered using the

Leiden approach73 in the Scanpy tool. Here, a default resolution parameter of 1.0 and a neighborhood graph (k = 15) were used for the Leiden

clustering of all the cells in the sample. Next, the top differential genes (signatures) associated with each cluster were identified by comparing

them with the cells in all other clusters. All the obtained clusters were annotated with the cell type by comparing the top signature genes of

each cluster with the known cell type marker genes from databases such as CellMarker31 and PanglaoDB.74 To visualize all the cells and clus-

ters in the data, here UniformManifold Approximation and Project (UMAP) methods have been employed tomap the cells into the 2D space.
Reconstruction of cellular dynamics trajectory and underlying gene regulatory network

We employed multiple strategies to robustly infer the cellular trajectory that represents the cellular state transitions between different cell

populations. Namely, the final cellular trajectory is built by combining the cellular trajectories inferred from RNA velocity (e.g., velocyto)

and from between-cell cellular similarity (e.g., PAGA).

The RNA velocity is the time derivative of the gene expression state, which can be estimated from the unspliced and spliced mRNAs pro-

filed in the single-cell RNA-seq. RNA velocity is a high-dimensional vector that predicts the future state of individual cells on a timescale of

hours. Therefore, RNA velocity presents unique opportunities (from the perspective of future change of individual cells) to reconstruct the

cellular dynamics (in the form of cellular trajectories). In this study, we used the velocyto v.17.1766 method to infer the RNA velocity for all

the cells in the sample.
Partition-based graph abstraction

Another common trick to infer cellular dynamics is to compare the expression between different cells and clusters. Partition-based graph

abstraction (PAGA)37 presents an interpretable graph-like map of the single-cell data manifold, inferred from estimating the connectivity

of different partitions of the manifold. The node in the graph denotes different cell populations (cell clusters) while the edges between nodes

represent the strength of the connection between clusters. Such a graph representation represents the cellular transitions between different

cell populations (i.e., cell clusters). Here we employed the PAGA function in the Scanpy toolset for the inference of the PAGAgraph, which can

take the inferred RNA velocity vectors as inputs. Such a joint strategy will deliver a trajectory graph that integrates both the RNA velocity and

between-cell expression comparison and thus could more accurately depict the cellular state transitions in the single-cell data.
Reconstruction of Gene regulatory networks that dictate the gene expression dynamics in the sample

To identify potential strategies to manipulate the cell fates in the studied biological process, here we also reconstruct the gene regulatory

network that modulates the cellular trajectories for all cell populations in the data. To achieve such an objective, here we extend and apply

the SCDIFF38 that we previously developed to this mouse bone aging single-cell data. The extended SCDIFF (named SCDIFF2) can directly

take the clustering and trajectory inference results from the Scanpy tool (in the format of H5AD) as the inputs to infer the gene regulatory

network that modulates the transition between cell populations (edges in the inferred PAGA graph). For each edge in the graph, we will infer

the differential genes using theWilcoxson rank-sums test.75 The transcription factors for each edge in the trajectory graph will be given by the

SCDIFF2method. The transcription factors and their target genes (differential genes) associatedwith the graph edgeswill constitute the gene

regulatory networks that dictate the cellular dynamics, which should also be the candidate targets for cell fate manipulations.
Inference of the cell-cell interactions between different cellular populations

The cross-talking between different cell populations is also critical for regulating cellular dynamics as reported in previous studies and thus

cell-cell interaction inference is an indispensable piece of the cellular dynamics puzzle inmouse bone aging, particularly if we are interested in

finding potentially effective cell fatemanipulation strategies. In this work, we utilized CellChat v1.5.044 to infer cell-cell interactions in the data.

The cell clusters, together with the cell type annotation, from the Scanpy tool, were fed into the CellChat method to infer the interaction be-

tween different cell populations. Significant Ligand-Receptor pairs will also be provided between each cluster pair.
Bulk RNA-seq data analysis

The bulk RNA-seq reads were trimmed to remove the adapter and segments of bad quality. The trimmed reads were then mapped to the

mouse reference genomemm10 using HISAT2 v2.2.0.67 HTSeq-count were then used to quantify the raw gene expression count matrices for

all samples. The raw gene expression count matrices were then normalized using the DESeq2 v1.38.3,63 which also identify the differential

genes between samples of different conditions (e.g., WT vs. Terc�/�). Here we used an FDR cutoff (q < 0.05) and log2 fold change (|log2fc| > 1)

to call significant differential genes from DESeq2 output. Furthermore, the up-regulated (q < 0.05 & log2fc > 1) and down-regulated genes

(q < 0.05 & log2fc < �1) were analyzed separately in the downstream analyses.
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Single-cell DNA-seq data analysis

The raw single-cell DNA-seq reads were trimmed with fastp v0.21.0.64 Then we used bwa v0.7.1769 to align the reads to the mouse mm10

reference genome. We performed somatic SNV calling through GATK v4.1.670 and SCcaller v2.0.0.68 The single-cell mutation identification

is notoriously noisy and suffers from enormous false positives. To address this issue, here we employed statistical measurements to remove

potential false positives by leveraging knownmutations reported in public databases. Specially, we score each candidate mutation based on

the following aspects. First, the mutation will be assigned a higher score if it is already reported in a public mutation database such as snp142

common.76 Second, Amutationwill be given a higher weight if it was sharedbymultiple samples in our study (e.g., 1mWT and 6mWT). Third,

a mutation will be given a higher score if the mutation quality score (QUAL) is higher. Here, if mutation i is found in public mutation database,

otherwise P(i) will be assigned as the default value (e.g., 0.5). Similarly, if a mutation i is shared bymultiple samples, it will be given a score of 1,

otherwise a default 0.5 will be assigned. Q(i) will be normalized score of themutation quality (in range [0,1]). All thesemutations will be used to

estimate a null background, which will be used to calculate a significance p-value for all each mutation. Similarly, we can also calculate a mu-

tation significance p-value for each gene by summarizing all themutations within the region (and normalized by the gene length). A null back-

ground score distribution will need to be learned for the gene mutation score and the genes with scores that are significantly larger than the

background will be considered as significant mutation genes.
Gene set enrichment analysis

All the gene sets (e.g., differential genes), whichever data in this study it comes from, were analyzed with the functional enrichment analysis.

Here, we used the ToppGene Suite30 for the GO term and pathway enrichment analyses. All the functional terms (GO terms or pathway) with

FDR < 0.05 will be considered as significant.
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