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Learning populations with hubs
govern the initiation and
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2Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin, China

Spontaneous bursts in neuronal networks with propagation involving a

large number of synchronously firing neurons are considered to be a

crucial feature of these networks both in vivo and in vitro. Recently,

learning has been shown to improve the association and synchronization

of spontaneous events in neuronal networks by promoting the firing

of spontaneous bursts. However, little is known about the relationship

between the learning phase and spontaneous bursts. By combining high-

resolution measurement with a 4,096-channel complementary metal-

oxide-semiconductor (CMOS) microelectrode array (MEA) and graph

theory, we studied how the learning phase influenced the initiation

of spontaneous bursts in cultured networks of rat cortical neurons

in vitro. We found that a small number of selected populations carried

most of the stimulus information and contributed to learning. Moreover,

several new burst propagation patterns appeared in spontaneous firing

after learning. Importantly, these “learning populations” had more hubs

in the functional network that governed the initiation of spontaneous

burst activity. These results suggest that changes in the functional

structure of learning populations may be the key mechanism underlying

increased bursts after learning. Our findings could increase understanding

of the important role that synaptic plasticity plays in the regulation of

spontaneous activity.
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Introduction

Spontaneous bursts have been observed in various
mammalian central nervous system neuronal types, as well as
in organotypic slice cultures or various cultures of neuronal
networks in vitro (Harris et al., 2001; Yanagawa and Mogi,
2009; Sato et al., 2012), the latter of which are thought to
play a crucial role in communication in neuronal networks
(Lisman, 1997), by serving as rhythm generators or creating
a specific frequency component of brain waves (Wang, 2010).
An increasing number of studies have indicated that bursts
may play a role in network development and maturation (Baltz
et al., 2010; Kilb et al., 2011), learning and memory (Pike et al.,
1999; Harris et al., 2001), and information communication
and processing (Ringach, 2009). However, it is unclear how
spontaneous bursts develop in a network.

Several studies have investigated how spontaneous bursts
are initiated in neuronal networks. Some studies have indicated
that a dendritic calcium spike could be triggered when
backpropagated action potentials in cortical pyramidal neurons
combine with weak synaptic inputs in the apical dendrites.
When the soma receives the calcium pulse, it then fires a
corresponding burst (Fregnac, 1999; Grattarola et al., 2001).
Several studies have suggested that the balance of excitation and
inhibition is one of the most important factors inducing burst
activity in a network (Kudela et al., 2003; Geng et al., 2015). The
influence of other factors, such as heterogeneous delays, noises,
autapses, and connection topology, in the synchronization of
bursting has been demonstrated. For instance, Wang et al.
(2011a,b) and Guo et al. (2012) described the mechanisms
underlying time delays in synchronous and asynchronous
bursts in neuronal networks. The effect of white noise on the
dynamics of a delayed electrically coupled pair of Hidmarsh-
Rose bursting neurons was also investigated (Buric et al.,
2007). Zheng and Lu (2008) have proposed that chaotic
burst synchronization is observed if the link probability and
coupling strength of a small-world neuronal network are large
enough. The coupling strength, as well as the probabilities of
intracluster and intercluster connections, determine bursting
synchronization in small-world networks (Batista et al., 2012).
Computational network models show that modular network
topologies with highly connected subnetworks are optimal
for creating and maintaining network activity (Kaiser and
Hilgetag, 2010; Klinshov et al., 2014). Several studies have
indicated that the modularity of networks affects global
burst synchronization (Yang and Wang, 2016; Moriya et al.,
2017). However, few studies have focused on the intrinsic
association between the learning phase and spontaneous
bursts in networks.

To investigate the learning ability of cultured neuronal
networks, researchers have constructed learning models to
study network plasticity (Shahaf and Marom, 2001; Pimashkin
et al., 2013). Shahaf and Marom (2001) found that repeated

cycles of learning ultimately led to a significantly improved
stimulus response. Li et al. (2007) studied the effect of learning
on spontaneous bursts by constructing a learning model.
They found that learning enhanced the firing, association and
synchrony of spontaneous burst activities in the neuronal
network. Bologna et al. (2010) found that low-frequency
stimulation enhanced burst activity in cortical cultures. Le
Feber et al. (2010) found that a learning protocol induced
functional connectivity changes. Moreover, they hypothesized
that networks developed a balance between connectivity
and activity (Le Feber et al., 2010). The combination of
applied stimulus and initial connectivity induced changes in
connectivity (Le Feber et al., 2010). However, there are few
reports on the mechanism underlying learning-encoding bursts
in cultured neural networks.

Electrophysiological signals are recorded by microelectrode
arrays (MEAs). MEAs with 60–250 electrodes represent a well-
established technology, as demonstrated for recording network-
wide extracellular activity from neuronal cultures prepared
from rodents; for studying the developing patterns of network
activity and to investigate the network responsiveness to
electrical stimuli. However, the spatial resolution of a traditional
MEA is unable to observe the propagation of spontaneous
activity patterns over large neuronal networks with high
spatial resolution, which could lead to the misestimation of
population parameters (Gerhard et al., 2011; Ribeiro et al.,
2014). Furthermore, if networks are large enough, they
can enter a state of continuously circulating synchronous
bursting activity (Keren and Marom, 2016). The burst
propagation pattern of neuronal networks recorded by low-
density MEAs showed that most of the onset regions of
synchronous bursts originated outside the recording array
(Okujeni et al., 2017; Pasquale et al., 2017). Therefore, a
high-density MEA (HD-MEA) is required to record the
propagation patterns of spontaneous bursts. A HD-MEA with
4,096 recording electrodes provides exceptional spatiotemporal
resolution for exploring spontaneous activity of neuronal
networks in vitro.

In this study, to investigate the mechanism underlying
changes in burst activity due to learning, we located a “learning
population” that encoded stimulus information in the network.
To assess network plasticity and learning stability, we evaluated
whether plasticity and stability reflects learning in the learning
population. Then, we investigated the relationship between
burst initiation after the learning phase and the learning
population. We found that learning population, which encodes
stimulus information, gradually formed a functional network
with the ability to process information during the learning phase
and that the learning population with the largest betweenness
centrality in the functional network governed the initiation of
spontaneous burst activity. Finally, we validated our results by
manipulating the excitatory-inhibitory balance of the network
with bicuculline.
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Results

High-density recording of
spontaneous activity in cultured
neuronal networks

An HD-MEA with 4,096 electrodes was used to record
spontaneous activity from five cortical networks (Figure 1A).
The neuronal network was formed (Figure 1B), and MAP-2, an
axo-dendritic marker, was used to identify neurons (Figure 1C).
This neuronal network generated spontaneous synchronized
bursts, characterized by an intense series of spikes over a short
period (Figure 1D). From an early stage [10 days in vitro (DIV)],
synchronized bursts of cortical neurons were observed; these
bursts remained stable throughout development (Kamioka et al.,
1996). We computed a cross-correlation matrix to construct
a functional network (nodes: electrodes, edges: correlations),
which demonstrated complex spatiotemporal patterns, in the
cultured neuronal network (Figure 1E). These results were
consistent with a previous study that found that cultured
neuronal networks were maturity and functional (Colombi
et al., 2016; Dias et al., 2021). The experimental protocol (see
the Materials and Methods for more details) consisted of the
learning and test phases (Figure 1F). Biphasic current stimuli
(200 µs in duration, amplitude ± 15 µA) were delivered at a
frequency of 1 Hz from 2 spatially distant sites that had the
greatest correlation in spontaneous activity.

Learning in networks of cortical
neurons

To locate the learning population in the cultured neuronal
network, we initially used previously reported methods and
indicators to induce learning (see the Materials and Methods
for more details) (Shahaf and Marom, 2001; Li et al., 2007; Le
Feber et al., 2010; Hamilton et al., 2015). For cultured neuronal
networks, the stimulus can be used as a learning paradigm,
causing changes in the neuronal network according to synaptic
plasticity. In other words, the neuronal network adapts to the
electrical stimulus. The neuronal network exhibits increasing
mastery of the external input during learning. The response of
the neuronal networks to stimuli can be gradually enhanced and
stabilized (Shahaf and Marom, 2001). The response/stimulus
(R/S) ratio is used to quantify this phenomenon. The R/S ratio
refers to the proportion of 10 stimuli that elicit the desired
response; thus, its value ranges between 0 and 1. In addition, the
neuronal network gradually mastered the information carried
by the stimulus and established the optimal path to the external
stimulus during learning. The fastest path of specific external
information transmission was selected and stabilized after
exploration (Marom and Shahaf, 2002). This phenomenon can

be quantified by the response time (RT) of neurons to external
stimuli (Li et al., 2007). The R/S ratio and RT were used to
evaluate learning in the cultured neuronal network.

We calculated the number of spikes during 10–200 ms
following each stimulus. Increased evoked firing was observed
following the stimulus after learning. Figure 2A shows the
number of spikes following the stimulus in a trial. The evoked
response of each electrode in a trial to the 10 stimuli was
used to generate a graph of the R/S ratio. First-order linear
modeling was performed on the R/S ratio of 32 trials during
one experiment (Figure 2B). The electrode location with a
positive slope in the linear fitting was defined as the electrode
with a continually increasing R/S ratio (Figure 2C). Figure 2D
shows the representative RT after stimulus in a trial (each
trial contained 10 stimuli). The RT of each electrode in a
trial was averaged to obtain the average RT (Figure 2E). The
average RT of the 32 trials in the experiment was fitted by
first-order linear modeling to acquire the electrode position
that exhibited decreasing RT (Figure 2F). The spatial overlap
in Figures 2C,F represented the location of the learning
populations (Figure 2G). Figures 2H,I show the fitting result
of the R/S ratio and RT of the learning populations in
the experiment. The R/S ratio of the learning populations
(Figure 2H) gradually increased (r = 0.783, R2 = 0.601), and
the RT (Figure 2I) gradually decreased (r =−0.906, R2 = 0.815)
during the experiment. Thus, successful learning was induced in
the networks. To assess the ability of the learning populations
to carry information during the learning phase, we calculated
the information entropy of these populations (Figure 2J). We
found that the information carried by the learning populations
gradually increased, and learning populations were able to
recover approximately 75% of the information gained in the
global population (defined as the electrophysiological signals of
all recording electrodes).

To understand the changes in the plasticity of cultured
neuronal networks, we applied a stimulus to a pair of channels
and analyzed the stimulus-evoked response to the test stimulus
every 1 min before and after 60 min. Examples of stimulus-
evoked responses in the cultured neuronal network are shown
in Figure 3A. Following learning, the response was increased in
the 200 ms after the stimulus. Figure 3B shows typical stimulus-
evoked responses of an increased number of spikes in learning
populations. Figure 3C shows the increasing firing rate after
learning. The learning population’s average firing rate for 1 h
after learning was increased by 217% compared with that before
learning. To test the learning stability of learning populations
in the network, the same electrical stimulus as that applied
during the learning phase was applied to the network every
30 min following learning during the test phase (total duration:
240 min), and the stimulus-evoked response of the learning
populations was analyzed. During the test phase, the R/S ratio
(Figure 3D), the RT (Figure 3E), and the (Figure 3F) of the
information entropy learning populations were maintained in
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FIGURE 1

High-density recording of spontaneous activity and experimental workflow. (A) Overview of the HD-MEA biochip, including 4,096 recording
electrodes and 16 stimulus electrodes. (B) The neurons on the biochip were stained with Ca-AM and photographed under confocal microscopy
[at 7 days in vitro (DIV)]. (C) The same batch of neurons cultured in a culture dish was stained with MAP-2 (DIV 14): neurons (red), nucleus (blue).
(D) Raster of spontaneous spikes in cultured neuronal networks (time: 60 s). (E) Representative functional network diagram of spontaneous
activity (time: 60 s). (F) Experimental workflow for the learning phase and test phase.

a stable range, suggesting that learning populations indeed
contributed to recognizing the stimulus.

The initiation and propagation of
spontaneous burst activity changed
after learning

We found that the number of spontaneous synchronized
burst of the network within 1 min increased significantly after
the learning phase (Supplementary Figure 1A, P < 0.01);
the number of electrodes participating in each burst showed

increased significantly (Supplementary Figure 1B), and the
duration of the spontaneous synchronized bursts also increased
slightly (Supplementary Figure 1C). Were these increased
bursts merely repetitions of the existing burst pattern or did
learning induce a new pattern? To address this question, we
used first spike rank-order maps to visualize initiation and
propagation of spontaneous bursts (Figure 4A). We defined
the first ten recruitment ranks as the onset electrodes of
a spontaneous burst. The initiation site of the burst was
determined, and the path of the raw waveform (from inside to
outside) was drawn (Figure 4B). The selected electrode spike
timestamp and distance from the initiation site were fitted to
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FIGURE 2

Locating learning populations on the MEA. (A) The response map of each electrode in the network to the stimulus in a typical trial, which
consisted of 10 stimuli. (B) The 10 representative response maps from each trial were used to produce an R/S ratio map. The experiment
consisted of 32 R/S ratio maps. (C) First-order linear modeling was performed on each electrode in the 32 R/S ratio maps to identify the spatial
position where the slope of the fitted line was greater than 0. (D) The RT map of each electrode in the network to the stimulus in a typical trial.
(E) The 10 representative RT maps from each trial were used to produce an average RT map. (F) First-order linear modeling was performed on
each electrode in the 32 average RT maps. The spatial position where the slope of the fitted line was less than 0 was identified. (G) The spatial
location of overlap between C and F was determined as the spatial position of the learning population in the cultured neuron network. The
location of the overlap reflected the exact electrode position. (H) Linear regression of trial vs. the R/S ratio of the learning populations. (I) Linear
regression of trial vs. RT for the learning populations. (J) The ratio of the information entropy of the learning population accounted for the total
information entropy in the cultured neuronal network in each cycle (n = 5 cultures. Data collected during 10–200 ms after the stimulus were
analyzed. *p < 0.05 vs. Cycle 1, **p < 0.01 vs. Cycle 1. R/S: response/stimulus, RT: response time).

a model (Figure 4C, r = 0.978, R2 = 0.973). The results of
the network propagation map showed that the burst originated
from a localized network region and recruited other parts of
the network. New burst initiation areas and burst propagation
patterns appeared in the network after learning (Figures 4D,E).
Therefore, electrical stimuli induce changes in network burst
initiation regions and propagation patterns.

Next, to explore new burst initiation regions in the network
after the learning phase, we calculated the distance between
the average positions of the first 10 burst initiation sites in the
network burst propagation map as well as the nearest learning
population (Figure 4F, recording time: 10 min). The distance

between the centers of the two electrodes was 81 µm. We were
surprised to find that 72.42% of the average initiation electrode
positions were 81 µm away from learning populations, 90.02%
of the average initiation electrode positions were within 115 µm
of learning populations, and 97.64% of the electrode positions
were within 162 µm of learning populations (Figure 4G).
These findings demonstrated that the burst initiation region
was intrinsically linked to learning populations. To assess this,
we examined the firing pattern before and after the learning
phase. Before learning, the firing pattern between the burst
initiation site and the learning population was quite different; in
contrast, after learning, the electrophysiological signals at these
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FIGURE 3

The identification of learning and network plasticity. (A) The original trace represents the typical stimulus-evoked responses before and after
training. (B) A comparison of typical stimulus-evoked responses of learning populations within 200 ms of the stimulus, before and after learning
(n = 349 learning populations, bin = 10 ms). (C) Time course of the number of spikes in the stimulus-evoked responses of learning populations
before and after learning (time: 120 min, 100% represents the average before training for 60 min). The R/S ratio (D), RT (E) and information
entropy (F) of learning populations during the test phase (n = 5 cultures. R/S: response/stimulus, RT: response time).

same electrodes were highly synchronized (Figure 4H). The
correlation and synchrony between the learning population and
burst initiation sites after learning was significantly higher than
before learning (Figures 4I,J). Therefore, we speculate that the
emergence of new bursts in the cultured neuronal network after
learning was likely predominantly due to learning populations.

Learning populations with hubs govern
the initiation of spontaneous bursts
after learning

Synchronous burst activity has been reported to depend
on network modularity (Yang and Wang, 2016; Moriya et al.,
2017). Therefore, we investigated the possible mechanisms
underlying spontaneous burst generation associated with
functional communities after learning. We hypothesized that
the functional network consisting of learning populations
cooperatively processes information during the learning phase,
which changed the modularity of the network and ultimately led
to a change in the burst pattern of spontaneous activity after
learning. In networks, a module is a subset of highly connected
nodes; modularity is a metric that measures the degree of
modularization (Rubinov and Sporns, 2010; Figure 5A). The
degree of modularization of the functional network constructed
by the learning populations was calculated. As shown in

Figure 5B, the degree of modularization increased significantly
with learning. Next, we wanted to know which characteristic
in the learning population led to the emergence of new burst
patterns. We constructed a linear model of the number of bursts
at burst onset and the learning population within 115 µm of the
burst onset with an average degree of modularization (r = 0.231,
R2 = 0.03, 5 cultures, time: 5 min, n = 284 bursts, Figure 5C).
We then calculated the degree of overlap between the burst
onset and neurons with the top 90% modularity in the learning
population; there was only 29% overlap between neurons
involved with burst onset and the learning population. To
further investigate whether the hubs (quantified by betweenness
centrality) could be a key feature of the functional network, we
repeated the same quantification between the number of bursts
at burst onset and the learning population. We found a clear
positive correlation between the burst number and betweenness
centrality of neurons (r = 0.735, R2 = 0.531, 5 cultures, time:
5 min, n = 284 bursts, Figure 5D). We also calculated the
overlap degree between the burst onset and the neurons with
the top 90% betweenness centrality in the learning population;
there was up to 68% overlap between neurons involved with
burst onset and the learning population. From these results,
we fully confirmed our hypothesis; moreover, we propose that
learning populations with higher betweenness centrality in the
functional network govern the initiation of spontaneous burst
activity after learning.
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FIGURE 4

Initiation and propagation of spontaneous burst activity changed after learning. (A) A typical network burst propagation map. The propagation
patterns were revealed by mapping the rank order of the first spike on each electrode during spontaneous synchronized bursts. The
propagation pattern from the initial regions of the burst to outside of the area is marked with red dots. Color codes indicate the rank order of
the first spike on each electrode during spontaneous bursts. (B) Waveforms from the first selected 10 electrodes in (A). (C) Linear regression of
distance vs. latency for the selected electrodes in (A). (D) Representative diagram of the distribution of burst onset in a culture within 5 min
before and after learning (blue dots: before learning, orange and cyan dots: after learning). The representative original burst onset area is circled
in blue, and the new onset area is circled in orange. (E) Representative burst propagation pattern in each burst area (the number code follows
that in D). (F) The distance between the burst initiation site and location of learning populations (for 67 burst initiation sites). (G) The distances
between the burst initiation sites and the learning populations from (F). (H) Raw voltage recording of burst initiation sites and learning
populations before and after learning. The correlation (I) and synchrony (J) between burst initiation sites and learning populations (time = 60 s,
n = 5 cultures. ∗p < 0.05 vs. Cycle 1, ∗∗p < 0.01 vs. Cycle 1).

Reports have indicated that changes in the balance
between excitatory and inhibitory synaptic activity contribute
to increased network burst activity (Kudela et al., 2003).
To confirm this hypothesis, we manipulated the network
excitation-inhibition balance with bicuculline, a gamma-
aminobutyric acid A (GABA A) receptor-specific blocker
that exhibits dose-dependent effects (Teppola et al., 2019).

We found that learning populations were more sensitive
than global populations to changes in the network state
(Supplementary Figures 2, 3). We also found that the number
of spontaneous bursts per minute increased after adding
bicuculline (Supplementary Figure 3H), and the number of
electrodes participating in each burst also increased significantly
(Supplementary Figure 3I). Additionally, burst duration was
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FIGURE 5

Generation of spontaneous network bursts in the functional learning populations. (A) An artificial network example, where degree represents
the number of links connected to a node (green) or module (ovals). Hubs (red) often occur along the shortest paths and consequently often
have a high betweenness centrality. (B) The network modularity was compared throughout the experiment during spontaneous activities.
(C) Linear regression of the number of bursts at burst onset and the average degree of the learning populations within 115 µm of the burst onset
(left). The overlap between neurons involved in the burst onset and those in the learning population with the top 90% modularity is shown in the
right pie chart as orange. (D) Linear regression of the number of bursts at burst onset and the average betweenness centrality of learning
populations within 115 µm of the burst onset (left). The overlap between neurons involved in the burst onset and those in the learning
population with the top 90% betweenness centrality is shown in the right pie chart in orange (n = 5 cultures, time: 5 min, n = 284 bursts.
∗p < 0.05 vs. before, ∗∗p < 0.01 vs. before).

significantly prolonged (Supplementary Figure 3J). After
adding bicuculline, the correlation between the number of
bursts at burst onset and the average betweenness centrality of
the learning population was significant and positive (r = 0.423,
R2 = 0.162, 5 cultures, time: 5 min, n = 387 bursts) as well as
higher than the average degree fitted (r = 0.742, R2 = 0.523, 5
cultures, time: 5 min, n = 387 bursts), as shown in Figure 6.
There was up to 78% overlap between the neurons involved
with burst onset and the betweenness centrality of the learning
population. This result was robust across the different cultured
neuronal networks, suggesting that learning populations with
higher betweenness centrality in a functional network govern
the initiation of spontaneous burst activity after learning; and
that this pattern is a fundamental property of the network.

Discussion

Using an HD-MEA, we recorded the firing activity of large-
scale networks. Our results indicated that learning populations
represented the learning ability of cultured neuronal networks
and carried most of the stimulus information. We reported that

the learning population gradually formed a functional network
with the ability to process information during the learning
phase, and the learning population in the functional network
with the largest betweenness centrality governed the initiation
of spontaneous burst activity. Our results suggest that network
hubs could play an important role in spontaneous bursts after
learning. Functional connectivity as well as spontaneous burst
generation and propagation may be particularly important to
understand mechanisms of neural information processing.

The use of HD-MEAs is an advanced technique for
recording the electrophysiological activity of neuronal networks
with a cellular-level spatial resolution and a single spike-level
temporal resolution (Imfeld et al., 2008; Berdondini et al.,
2009). Studies have found that only a small fraction of neurons
exhibit high excitability (Wohrer et al., 2013), and these
neurons are likely to play critical functions in the network
(Panas et al., 2015); overlooking these neurons could lead to
misinterpretation of our results. To prevent such sampling
bias, the measurements must possess a cellular-level spatial
resolution. Moreover, because these spontaneous bursts last
only a few hundred milliseconds, the temporal resolution
must be at the millisecond level to accurately identify the
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FIGURE 6

Altering the excitatory-inhibitory balance allowed further exploration of the relationship between spontaneous bursts and hubs. (A) Linear
regression of the number of bursts at burst onset and the average degree of the learning population within 115 µm of the burst onset (left). The
overlap between neurons involved in the burst onset and those in the learning population with the top 90% modularity (right). (B) Linear
regression of the number of bursts at burst onset and the average betweenness centrality of the learning populations within 115 µm of the burst
onset (left). The overlap between neurons involved in the burst onset and those in the learning population with the top 90% betweenness
centrality (right) (n = 5 cultures, time: 5 min, n = 387 bursts).

propagation pattern of bursts (Eytan and Marom, 2006). To
the best of our knowledge, HD-MEAs are the ideal device for
simultaneously achieving these temporal and spatial resolutions.
In our experiment, we implanted ∼90,000 neurons in a
5.12 × 5.12 mm2 electrode area to form a network. These
4,096 electrodes and ∼90,000 neurons produced a sampling
ratio of approximately 1:22, allowing us to evaluate sustained
slight changes in all regions of the network. Given the 1:22
sampling ratio, we may have overlooked the electrophysiological
signals of crucial yet infrequent neurons. However, the single
neuron resolution provided by the HD-MEA was sufficient
to record the initiation and propagation patterns of neuronal
populations during bursts (Lonardoni et al., 2017). Yada et al.
(2016a,b) studied the repeating spatiotemporal patterns of
network spontaneous bursts with HD-MEAs. Okujeni et al.
(2017) and Okujeni and Egert (2019a,b) researched the initiation
and propagation of spontaneous bursts using MEAs with 1,024
electrodes. Therefore, HD-MEAs are an ideal experimental tool
for studying the mechanism of spontaneous network bursts.

We applied low-frequency stimulation to the cortical
culture network by analyzing the R/S ratio and RT in open-
loop conditions. For cultured neuronal networks, an electrical
stimulus can be used as a learning paradigm, causing changes
in a neuronal network according to its plasticity (Shahaf and
Marom, 2001). Notably, not all cultures demonstrate plasticity;
therefore, we chose cultures that matched the following criteria
(Chiappalone et al., 2008): (i) cultures that were spontaneously
active in terms of spiking and bursting activity, (ii) a network
that responded to electrical stimulation, and (iii) a stable mean
firing rate. Previous studies have used the R/S ratio and RT to
evaluate the learning ability of cultured neuronal networks (Li
et al., 2007; Chiappalone et al., 2008). We used these values
to identify the spatial location of learning populations in the
cultured neuronal network. During the learning phase, the R/S
ratio of the learning populations gradually increased, and the

RT gradually decreased, indicating that learning occurred in the
cultured neuronal network. Previous research has shown that
this type of learning is extremely selective. Only the neurons on
the trained electrodes increase the quantity of spikes in response
to the stimulus, resulting in a higher R/S ratio (Stegenga
et al., 2009). In our experiments, we also found an increase
in the response from learning populations. Another important
characteristic is how long synaptic modifications in the network
are sustained after learning. Our study revealed that learning
populations exhibited network plasticity and stable responses
to the stimulus within 6 h of learning. The network showed
long-term plasticity, consistent with previous results (Pimashkin
et al., 2013). Thus, stimulation in open-loop conditions may
induce long-term changes in the structure and function of
cultural networks, including synaptic connectivity. Previous
studies have used the first 10 spatial principal components to
locate the small subset of neurons that carries most of the
stimulus information in the network (Angotzi et al., 2019); the
most informative neurons carried nearly enough information to
support the discrimination abilities of the entire animal. In our
study, the information carried by learning populations during
the learning phase gradually increased and eventually accounted
for approximately 80% of the information in the global network.
This result was consistent with Nieus’s findings that a small
population of neurons carries most of the stimulus information
in the network (Nieus et al., 2018).

We found that learning enhanced the firing of spontaneous
bursts in neuronal networks, consistent with a previous study
showing that successful learning can drive neuronal activity
and improve the connection and synchrony of spontaneous
firing in neuronal networks (Li et al., 2007). We found that
the strength of a large portion of functional connections
changed, as exhibited by comparing spontaneous activity before
and after learning. Therefore, the learning phase influenced
functional network connectivity. One explanation for successful
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learning is the balance between activity and connectivity that
cultured neuronal networks develop (Van Pelt et al., 2004).
The stable activity patterns of networks may be interpreted as
an established balance between activity and connectivity (Le
Feber et al., 2007). If external stimulation drives the network
off balance, it may achieve a dynamic balance that includes or
excludes a given connection (Le Feber et al., 2010). Thus, stimuli
might trigger internal network forces that induce connectivity
changes. Vajda et al. (2008) stimulated a cultured network with
a low-frequency stimulus and thereby induced changes in stable
patterns of spontaneous activity, as observed through changes
in a single site and culture-wide spontaneous burst activity in
the network. They proposed that changes in connectivity caused
by low-frequency electrical stimulation may be caused by (1)
plasticity, (2) altered intrinsic neuronal characteristics such as
excitability, or (3) transition from one attractor state to another.

The mechanisms and network structures underlying
spontaneous burst initiation and propagation in cultured
neuronal networks remain unclear. A previous study showed
that protein kinase C can change the balance between local and
long-range connectivity, and clustering enhanced spontaneous
burst generation (Okujeni et al., 2017). Previous works have
indicated that spontaneous bursts are preceded by the activation
of a subset of overactive electrodes (Eytan and Marom, 2006;
Eckmann et al., 2008). Our results suggest that the activity of
learning populations gradually increases during the learning
phase and that this activity is retained in spontaneous activity.
Other studies confirmed that bursts and phase profiles change
during conditions of repeated stimulation (Stegenga et al.,
2009). We also found that the burst propagation pattern
changed after learning. Alternatively, pacemaker neurons or
highly active neurons (known as “leader sites,” “major burst
leaders” or first-to-fire neurons) may play a role in spontaneous
burst initiation (Eytan and Marom, 2006; Eckmann et al., 2008;
Ham et al., 2008; Shein et al., 2008; Pasquale et al., 2017).
Studies have argued that early-firing “leader” sites are part of a
subnetwork that is consistently excited during the initial stages
of activity propagation (Yada et al., 2016b). However, we found
that the firing pattern of learning populations after learning
and the firing pattern of the burst initiation sites showed a
high correlation and synchronization. Therefore, we speculated
that the new bursts after learning were related to learning
populations. Learning populations function in a similar manner
as the “leader” sites of the network, namely, both are reliably
and rapidly recruited in spontaneous and evoked firing patterns.

Finally, by analyzing the properties of the functional
network, we found that hubs in the functional network
were highly coincident with the burst onset. This result
implies that functional network structure and spontaneous
bursts are intrinsically related. These learning populations were
dispersed throughout the network and were characterized by
strong functional connections with low average path lengths.
Previous studies have reported that neuronal networks exhibit

a small-world topology, with a short mean path length and a
strong clustering coefficient (Watts and Strogatz, 1998; Yu et al.,
2008). Furthermore, hubs, or groupings of neurons with a high
out/in degree, are common in these neural networks, allowing
information to be transported effectively (Bettencourt et al.,
2007). Recently, hubs in cultured neuronal networks have been
suggested to be involved in propagating spontaneous activity
from first-to-fire neurons to the global network (Schroeter
et al., 2015). Previous studies have also suggested that the
spontaneous bursts of networks are intrinsically related to their
modularity (Moriya et al., 2017; Yang et al., 2017). Our findings
were consistent with those of earlier research. Taken together,
these results suggest that learning populations gradually become
functional networks during the learning phase due to their
highly organized spatial structure, graph-theoretic properties,
and strong connectivity; these functional networks may act as
hubs that govern spontaneous burst activity.

Materials and methods

Cell culture and data acquisition

The biochip was coated with laminin (0.1 µg µL−1; Sigma,
United States) (3 h) and poly-D-lysine (0.1 µg µL−1; Sigma,
United States) (overnight) and then rinsed with sterilized
water. Primary cortical cells were obtained from the brain
tissue of Sprague–Dawley (SD; Charles River, China) rats
at embryonic day 18 (E18) following protocols reported
in previous works (Rasband, 2010). Briefly, embryos were
removed and dissected under sterile conditions. The cortex was
dissociated by enzymatic digestion in 0.125% trypsin (Thermo
Fisher Scientific, United States) for 10 min at 37◦C and finally
triturated with a Pasteur pipette. Dissociated neurons were
plated on the active area of the biochip. To cover the entire
active area (5.12 mm × 5.12 mm), we used drops of various
volumes of cell suspensions (ranging from 80 to 90 µL) and
variable cell concentrations (∼1,000–1,500 cells µL−1). Four
hours later, when cells had adhered to the substrate, 1.5 mL of
medium was added to the biochip. The cells were incubated with
neurobasal medium (Invitrogen, United States) supplemented
with 1% GlutaMAX (Gibco, United States) and 2% B-27 plus
(Gibco, United States) in a humidified atmosphere of 5% CO2

at 37◦C. Before starting an experimental session, we waited for
approximately 30 min to allow the cultures to stabilize after
removal from the incubator (Streit et al., 2001). All experiments
were performed on cortical cultures (at 21–27 DIV), by which
time neurons were expected to have matured and be electrically
recognizable. We used 10 neuronal cultures obtained from pups
from 8 different rats. Of these, 2 cultures were excluded because
of uneven neuronal distribution, and 3 cultures were excluded
because their firing rates did not meet the basic requirements.

Frontiers in Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2022.854199
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-854199 August 13, 2022 Time: 13:55 # 11

Jia et al. 10.3389/fnins.2022.854199

This experiment was approved by the Animal Ethical and
Welfare Committee of Tianjin University.

We performed all electrophysiological signal recordings
using the BioCam X system (3Brain, Switzerland). The biochip
contains an array of 4,096 recording electrodes and 16
stimulation electrodes uniformly distributed on the active area
(21 × 21 µm2 in size, 81-µm pitch) on an active area of
5.12 × 5.12 mm2, centered in a working area of 6 × 6 mm2.
We used BrainWave 4 software (3Brain, Switzerland) for data
recording and spike detection. Data were analyzed through
MATLAB. Data are expressed as the means ± standard errors
of the mean (SEs). The t-test was used to detect significant
differences between two groups. P < 0.05 was considered
statistically significant.

Experimental protocol

We used balanced negative-first biphasic current pulses for
the electrical stimulation because of their effectiveness (Odawara
et al., 2016). The current pulses had phase durations of 200 µs
and amplitudes between ± 15 µA. A stimulus was applied to
one pair of electrodes at a time in all stimulus protocols; the
two stimulus electrodes (out of the 16 stimulus electrodes) were
selected as the pair with the greatest correlation in spontaneous
firing activity, i.e., the stimulus electrodes at (3, 3) and (2, 2). The
stimulus was applied at a frequency of 1 Hz, which was chosen
because of its possible effect on intrinsic neuronal plasticity and
learning (Li et al., 2007). A total of 4,096 recording electrodes
simultaneously recorded the electrophysiology signals. The
basic experimental protocol consisted of control, learning and
test phases (Shahaf and Marom, 2001; Li et al., 2007; Pizzi
et al., 2009; Pimashkin et al., 2013). We applied the stimulus
to a pair of channels and analyzed the response to the test
stimulus every 1 min for 60 min during the learning phase.
The purpose of the learning phase was to allow neurons to
gradually adapt to the electrical stimulus and respond stably to
the electrical stimulus at a fixed position. The learning phase was
followed by a test phase in which the culture was stimulated
with a similar stimulus and its response for further analysis.
The learning phase was divided into 8 cycles, each containing
4 trials; each of the trials contained 10 stimulations (10 s).
After each stimulus trial, the neurons rested for 20 s; after each
cycle, the neurons were allowed to rest for 1 min. A total of
320 stimuli were administered to the neural network during
the learning phase. The neural networks were tested after the
learning phase with a 20-min test phase. During the test phase,
the same position in the neural network was stimulated 10
times, once every 0.5 h. Bicuculline, a specific antagonist of
the GABA A receptor, was applied to the network to verify
the characteristics of the dynamic change. First, the networks
underwent the learning phase, and learning populations were
successfully detected. Then, the cultured neuronal networks

were tested, and their response signals were recorded after the
addition of 50 µM bicuculline. The cultured neuronal networks
were tested again after the bicuculline was washed out. The
whole experiment lasted approximately 8 h.

Immunohistochemistry and
fluorescence imaging

After the experiments, neurons were fixed in 4%
paraformaldehyde (Invitrogen, United States) in PBS
(phosphate-buffered saline; Sigma, United States) and
permeabilized (0.25% Triton X-100, Sigma, United States)
in PBS. Then, the primary antibody against MAP2 (Abcam,
United Kingdom) was diluted 1:500 in PBS with 1% BSA
(bovine serum albumin; Sigma, United States); 0.1% Tween 20
was added the solution was left overnight at 4◦C on a shaker
at low speed. The secondary antibody conjugated with Alexa
Fluor 647 (Invitrogen, United States), diluted to 1:200, was
applied for 1 h at room temperature in the dark (Bakkum et al.,
2013). Laser scanning confocal microscopy (Nikon, Japan) was
performed on the neuronal network after loading with 2 µM
calcein (Sigma, United States) green AM for 15 min at room
temperature in HBSS (Thompson et al., 2006). Neurons were
monitored for at least 10 min after the experiments to ensure
that the calcein fluorescence was stable.

Spike detection and burst detection

Spike detection analysis was performed by employing the
Precise Timing Spike Detection (PTSD) algorithm (Maccione
et al., 2009) integrated in the Brainwave software application
(3Brain, Switzerland). A threshold of 8 times the standard
deviation was used for spike detection. All spike trains
were exported from BrainWave to MATLAB files and were
analyzed with custom MATLAB scripts. We calculated the
spike triggered-average (STA) for a single electrode by dividing
the median by many time-aligned spike occurrences (Muller
et al., 2015). Burst detection was based on previously reported
methods (Vajda et al., 2008). Network bursts were defined as
more than 25% (>1,024) of active electrodes in the network
firing spikes synchronously in the same bin.

Identification of the spatial location of
learning populations

The location of learning populations was identified with
low-frequency stimulation. A stimulus-evoked response was
defined as instances when the number of spikes on the electrode
exceeded the average number of spikes in the cultured neuron
network. The detection of the stimulation artifacts was afforded
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with a hard threshold (Olshausen, 2003). The first 10 ms after
the stimulus were discarded in order to avoid any possible effect
of the stimulus artifact. The RT was defined as the average of
the timestamps of the first 3 spikes after stimulation (analysis
interval: 10–200 ms after stimulus). The R/S ratio refers to the
proportion of 10 stimuli that reach the desired response (the
R/S ratio gradually increases during the learning phase); thus
its values range from 0 to 1. If the RT decreased gradually in
eight cycles, the networks exhibited learning. Similarly, if the R/S
ratio increased gradually in eight cycles, the network was also
considered to exhibit learning (Shahaf and Marom, 2001). The
RT and R/S ratio were calculated for each electrode, and first-
order linear modeling was performed to determine the spatial
position of the neuron where the R/S ratio gradually increased
and the RT gradually decreased. Based on the R/S ratio and RT,
we defined these electrodes as the learning population.

Information entropy

To quantify the information carried by learning
populations, we used information entropy measures. First,
we computed the inter-spike interval (ISI) based on the spike
train. Second, we calculated the probability of ISI in each bin.
This probability value was used in the following formula to
obtain information entropy.

E = −
n∑
i=1

Pi log2 Pi (i = 1, 2, ..., n) (1)

Functional connectivity analysis of
spiking activity

We used a cross-correlation algorithm based on the spike
trains of learning neurons to estimate functional connectivity
in networks. The method describes the network topology as
a graph where nodes represent the learning neurons and
edges represent structural connections. The edge weights were
provided by the degree of correlation. In principle, stronger
correlations between two nodes were reflected by higher weights
(Ullo et al., 2014). The cross-correlation (bin = 1 ms) of spike
trains was calculated between every two neurons. The following
cross-correlation function was used to assess the spike trains of
each pair of electrodes (x, y) (Ullo et al., 2014):

Cxy(τ) =
1√
NxNy

Nx∑
s=1

τ+(1τ/2)∑
ti=τ−(1τ/2)

x(ts)y(ts + ti) (2)

where Nx and Ny are the number of spikes in trains x and y,
respectively; ts is the spike occurrence time in train x; and 1τ is
the time window in which synchronous spikes occur in train y.

Synaptic connections were detected, and the directions
were defined by the polarity of the detected peaks (negative

peaks represent presynaptic connections, and positive peaks
represent postsynaptic connections) (English et al., 2017). The
average cross-correlation of learning neurons in the network
plus 3 times the average standard deviation was selected as the
threshold to construct the network. The network indicators were
calculated as follows:

Synchrony: For each spike, the synchrony was calculated
as the duration between that spike and the closest spike in the
reference event. This analysis was useful for identifying times
when several neurons were in sync with the reference neuron.
First, we selected the inverted distance; high values indicated
spikes that were close to each other.

In the following equations, N is the set of all in the network,
and n is the number of nodes; L is the set of all links in the
network, and l is the number of links; (i, j) is a link between
nodes i and j, (i, j∈N); and aijis the connection status between
i and j.

Degree:
ki =

∑
j∈N

aij (3)

Network density:

d =
2L

N(N − 1)
(4)

Global efficiency:

E =
1
n

∑
i∈N

Ei =
1
n

∑
i∈N

∑
j∈N,j6=i d

−1
ij

n− 1
(5)

Modularity:

Q =
∑
u∈M

[euu − (
∑
v∈M

euv)2
] (6)

where the network was fully subdivided into a set of non-
overlapping modules M, and euv is the proportion of all links
that connect nodes in module u with nodes in module v.

The betweenness centrality of node i was calculated as
follows:

bi =
1

(n− 1)(n− 2)

∑
h, j ∈ N

h 6= j, h 6= i.j 6= i

ρ
(i)
hj

ρhj
(7)

where ρhj is the number of shortest paths between h and j, and
ρhj(i)is the number of shortest paths between h and j that pass
through i.

Small-world:

S =
C
/
Crand

L
/
Lrand

(8)

where C and Crand are the clustering coefficients, and L and
Lrand are the characteristic path lengths of the respective tested
network and a random network.
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SUPPLEMENTARY FIGURE 1

The influence of learning on the spontaneous activity of the cultured
neuron network. (A) The number of bursts within 1 min in the neuronal
network was assessed in the learning phase. (B) The number of
participating electrodes in each burst in the learning phase. (C) The
duration of each burst in the learning phase (n = 5 cultures. ∗p < 0.05
vs. Cycle 1,∗∗p < 0.01 vs. Cycle 1).

SUPPLEMENTARY FIGURE 2

The effect of bicuculline on stimulus-evoked response in learning
populations in cultured neuron networks. (A) The R/S ratio of learning
populations and all neurons within 200 ms of the stimulus in cultured
neuronal networks from different groups. (B) The RT of learning
populations and global populations within 200 ms of the stimulus in
cultured neuronal networks in the different groups. (C) The amplitude of
evoked responses in learning populations and global populations within
200 ms of the stimulus in cultured neuronal networks from different
groups. (D) Effects of bicuculline on the global efficiency of
stimulus-evoked responses. (E) Effects of bicuculline on the network
density of stimulus-evoked responses. (F) Effects of bicuculline on
small-world stimulus-evoked responses. The average inverse shortest
path length is a measure known as the global efficiency and describes
the parallel information processing ability of the network. Network
density can be used to characterize the density of interconnected edges
between nodes in a network. Small-world networks combine the
presence of functionally specialized (segregated) modules with a robust
number of intermodular (integrating) links (n = 5 cultures. ∗p < 0.05 vs.
learning population control, ∗∗p < 0.01 vs. learning population control.
#p < 0.05 vs. learning population bicuculline, ##p < 0.01 vs. learning
population bicuculline. p < 0.05 vs. learning population wash,
4p < 0.01 vs. learning population wash).

SUPPLEMENTARY FIGURE 3

The effect of bicuculline on the spontaneous activity of learning
populations in cultured neuron networks. (A) The correlation of
spontaneous activity between learning populations and global
populations in cultured neuronal networks from different groups. (B)
The synchrony of spontaneous activity between learning populations
and global populations in cultured neuronal networks from different
groups. (C) Effects of bicuculline on the network density of
spontaneous activities. (D) Effects of bicuculline on small-world
spontaneous activity. (E) Effects of bicuculline on the global efficiency
of spontaneous activities. (F) Effects of bicuculline on the number of
spontaneous activity bursts (time: 60 s). (G) Numbers of electrodes per
burst in cultured neuronal networks from different groups. (H) Mean
burst duration in cultured neuronal networks from different groups
(n = 5 cultures. ∗p < 0.05 vs. learning neuron control, ∗∗p < 0.01 vs.
learning neuron control. #p < 0.05 vs. learning neuron bicuculline,
##p < 0.01 vs. learning neuron bicuculline).
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