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Genome-wide regulatory networks enable cells to function, develop, and survive.

Perturbation of these networks can lead to appearance of a disease phenotype. Inspired

by Conrad Waddington’s epigenetic landscape of cell development, we use a Hopfield

network formalism to construct an attractor landscape model of disease progression

based on protein- or gene-correlation networks of Parkinson’s disease, glioma, and

colorectal cancer. Attractors in this landscape correspond to normal and disease states

of the cell. We introduce approaches to estimate the size and robustness of these

attractors, and take a network-based approach to study their biological features such

as the key genes and their functions associated with the attractors. Our results show

that the attractor of cancer cells is wider than the attractor of normal cells, suggesting a

heterogeneous nature of cancer. Perturbation analysis shows that robustness depends

on characteristics of the input data (number of samples per time-point, and the fraction

which converge to an attractor). We identify unique gene interactions at each stage,

which reflect the temporal rewiring of the gene regulatory network (GRN) with disease

progression. Our model of the attractor landscape, constructed from large-scale gene

expression profiles of individual patients, captures snapshots of disease progression and

identifies gene interactions specific to different stages, opening the way for development

of stage-specific therapeutic strategies.

Keywords: attractor, landscape, disease progression, gene-regulatory networks, Hopfield networks

INTRODUCTION

Gene regulatory networks (GRNs) regulate diverse biological processes including cell-lineage
commitment and differentiation. GRNs are robust in maintaining their functionality against a wide
range of perturbations. Inappropriate regulatory signals can trigger cascades of failures that cause
GRNs to malfunction and a disease phenotype to appear (Huang et al., 2009; del Sol et al., 2010).
In most instances it is not aberrant activity of a single gene, but rather the perturbation of gene
networks, that drives disease progression (Stower, 2012).

Computational modeling provides insight into GRN dynamics and how the interplay of genes
can lead to alternative phenotypes. Onemodeling framework is the attractor landscape. Huang et al.
(2005) described a high-dimensional space in which each coordinate represents the expression of
a gene in the GRN. Attractors in this landscape correspond to stable equilibrium states associated
with a specific cell type (Huang et al., 2005, 2009). Disease phenotypes such as cancer can be viewed
as abnormal cell types and represented as latent attractors in this landscape (Huang et al., 2009).
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Trajectories across the landscape correspond to developmental
processes or disease progression, and elevation (i.e., the z-axis) is
inversely proportional to the likelihood of a particular state (GRN
configuration; Huang et al., 2009; Wang et al., 2010).

Experimental studies have confirmed that attractor landscapes
and state-space trajectory models can provide insight into
the biological basis of developmental processes (Huang et al.,
2005; Chang et al., 2008; Huang, 2009). Other frameworks
have been employed to model such state-space trajectories and
attractor landscapes, including model-free approaches (Chen
et al., 2012); logical models such as Boolean networks and Petri
nets, which provide a quantitative model of a GRN, allowing
users to gain an overall understanding of the behavior of
the system under different conditions; and continuous models
such as those based on ordinary differential equations (ODEs)
or continuous linear models, which provide a framework to
capture and understand stochasticity in the system using real-
valued molecular concentrations (rather than discretized values)
over a continuous time scale (Karlebach and Shamir, 2008).
In the context of cancer, Saez-Rodriguez et al. (2011) used
logical models to compare normal and transformed hepatocyte
networks; Esfahani et al. (2011) proposed an algorithm based
on Boolean networks with perturbation, and through partial
knowledge of the GRN and gene-expression values reconstructed
tumor progression; and Lucia and Maino (2002) used ODEs to
model the interaction of tumors with the host immune system.
These frameworks tend to be based on small gene regulatory
circuits, and/or require extensive prior knowledge of the system
(Maetschke and Ragan, 2014; Taherian Fard et al., 2016).

If disease is viewed as a pre-existing configuration of the
GRN, accessed via specific mutations or other changes to the
system (Huang et al., 2009), one can model trajectories of
disease progression by using an appropriate time-course gene-
expression profile. However, given the scarcity of homogenous
or isogenic samples (as samples come from different patients),
lack of dynamic experimental data, and very limited time-course
disease progression gene-expression data, to date it has not been
feasible to construct a comprehensive model of GRN dynamics
in disease.

Here we employ the mathematical formalism of Hopfield
networks (HNs; Hopfield, 1982) to construct and visualize the
landscape of disease progression, based on large-scale gene-
expression profiles from patients with different stages of disease
or cancer grades. We characterize normal and disease states of
the cell as attractors of Hopfield networks; estimate their size
and robustness; and take a network-based approach to identify
the unique biomolecular interactions that underlie each stage of
disease progression. These attractors correspond to local minima
of an energy function, and are formed by iteratively updating
the network; transient states correspond to intermediate time-
points in the gene-expression profile, while trajectories trace
the convergence of samples to their attractors. We hypothesize
that an attractor with a large basin is more likely to attract a
more-heterogeneous set of samples. To remain as close to the
biology as possible, we utilize a correlation network (computed
from large-scale time-course gene-expression data) to construct
the model. Changes in this correlation network through time

correspond to rewiring of the GRN through the stages of disease
progression.

MATERIALS AND METHODS

Hopfield Networks
We used Hopfield networks (HNs; Hopfield, 1982) to model
trajectories of disease progression and track rewiring of the
underlying GRN. AnHN is a fully connected neural network with
nodes i ∈ 1,..., n and undirected edges wij between nodes i and j,
representing genes and their interaction, respectively. There are
two major steps involved in constructing the HN. Firstly in the
training phase, we construct the weight matrix W based on the
Pearson correlation coefficient (PCC) between the gene pairs.W
is a symmetric matrix, withwij = PCC (i,j) andwii = 0 for nodes i
and j. Secondly, in the recall phase, dynamics of the network and
convergence to the attractors are defined by the product of the
pattern matrix (gene expression profile) and the weight matrix
W (bottom panel in Figure 1).

P(t+1) = sgn
(

P(t)W
)

(1)

where P(t) is the state of the pattern (here samples) at time step t,
followed by a discretization through a sign function.

The energy E is computed through a family of monotonically
decreasing functions, in this case the Lyapunov function that
guarantees convergence to a low-energy attractor state.

E[P(s)] = −
1

2
PWPT (2)

where E[P(s)] is the energy of the network state s at time t, for
pattern P.

We do not provide sample labels to the algorithm; the
pattern learning step is non-parametric, that is we leave it to
the algorithm to construct attractors based on similarities among
the patterns. To visualize the landscape in three dimensions,
we interpolated the energy values over a two-dimensional grid
constructed from the first and the second principal components
of the dimensionally reduced gene-expression data. For more
details please refer to Taherian Fard et al. (2016). This work
differs from and extends our previous methods as follows: (1)
here the term “attractor” refers to a Hopfield attractor that is
generated as the result of an iteration process and corresponds
to a local minimum of the energy function; (2) the perturbation
analysis is carried out directly on the W by assigning random
values to the edges in the network; and (3) we introduce methods
to measure the width and depth of attractors. All HN analysis
were performed on a standard workstation (Windows OS) and
completed in <5 s for each dataset.

Estimating the Size and Robustness of an
Attractor
We estimated the size of attractors by measuring their width
and depth. To estimate the width of an attractor, we computed
the intra-group distance of all the samples converging to the
attractor. There are different approaches to calculate the intra-
group distance of the elements in a group, including sum,
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FIGURE 1 | The workflow. The top panel describes the correlation network analysis through which we identified unique genes and interactions at each disease

stage, and biological characteristics of stage-specific correlation networks. The bottom panel shows the steps taken in constructing the network through which we

visualized the landscape and estimated the size and robustness of the attractors.

minimum, maximum or average pairwise distance between all
points in a group, or between the centroid and all points
in the cluster. To obtain a comparable measure of width
across all attractors we used the average standardized pair-wise
Euclidean distance of samples converging to the same attractor.
This estimate provides a quantitative measure of the variation
of samples converging to a specific attractor. The depth was
measured by calculating the energy difference of samples before
and after convergence.

Although the elements of the GRN remain the same, their
interactions change from normal to disease phenotype. In our
model, the W matrix holds information on the interactions
between the entities of the network. Therefore, in order to
assess the effect of perturbations on the network, we randomly
perturbed 50% of the edges in W. From our previous study
(Taherian Fard et al., 2016) we know that at 50% perturbation, the
network does not reflect a stable phenotype, but enough signal
remains (i.e., has not been randomized away) consistent with the
network representing a transient or unstable cell state in a living
system. The W matrix perturbation step was then followed by
the HN recall phase using the perturbed W, computation of the

fraction of the samples that did not converge to their respective
attractor, and computation of the Hamming distance (HD) of the
samples to their attractor after each iteration. The HD between
the two binary strings indicates the proportion of values that
disagree between them. The highest difference is observed at HD
= 1. At HD= 0, the strings are identical. The Hamming distance
was computed using SciPy tool 0.15.0 (http://www.scipy.org) in
Python.

Datasets
The first case-study (DeMarshall et al., 2015) identifies candidate
blood-based autoantibody biomarkers that are useful for early
detection and diagnosis of Parkinson’s disease (PD). ProtoArray
v5.0 Human ProteinMicroarrays (Invitrogen, Carlsbad CA) were
used to identify differentially expressed autoantibodies in human
serum samples. With an overall accuracy of 97.5%, the candidate
biomarkers were capable of distinguishing early-stage PD from
advanced PD. The dataset (GEO accession number: GSE62283)
encompasses 45 human serum samples, 15 for each disease stage:
control (normal), early PD (EPD), and advanced PD patients
(Table S1).
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The second case-study (Sun et al., 2006) investigates the effect
of stem cell factor (SCF) expression in human gliomas in a grade-
dependant manner. SCF induces angiogenic response in vivo by
directly activating brainmicrovascular endothelial cells. Sun et al.
(2006) found that SCF overexpression is associated with poor
prognosis in glioma patients, whereas its down-regulation results
in improved survival in mouse models. SCF is up-regulated in
high-grade gliomas and down-regulated in non-tumor samples,
making it a potential anti-angiogenic target inmalignant gliomas.
The dataset (GEO accession number: GSE4290) includes mRNA
expression data (Affymetrix Human Genome U133 Plus 2.0
Array) from patients with different grades of glioma. The 96
samples include 23 non-tumor samples (from epilepsy patients),
38 grade II, 12 grade III, and 23 grade IV gliomas (Table S1).

The third case-study compares the gene-expression profiles of
primary tumors with and without distant metastasis, to identify
candidate genes that influence the prognosis of patients with
colorectal cancer (CRC). Using real-time reverse transcription
PCR, Matsuyama et al. (2010) found that grade II and grade III
CRC patients with low expression of MUC12 showed the worst
disease-free survival, suggesting prognostic value for MUC12
in postoperative adjuvant therapy for these patients. There are
17 normal (from adjacent tissues), 47 non-metastatic, and 30
metastatic samples in this dataset (GEO accession number:
GSE18105; Table S1).

Each dataset was z-score normalized (µ = 0, σ = ±1),
followed by feature selection to extract probes with the highest
variation across groups.We ranked genes based on their variance.
The index beyond which the variance is essentially unchanged
(that is, the elbow of the variance-over-feature plot) was used as
a cut-off to select the number of features (genes).

Biological Properties of Stage-Specific
Networks
Correlation network were constructed for each disease stage, and
common genes and interactions across groups were identified.
We used the first 100 feature-selected genes to construct the
correlation networks, and chose the genes with significant (p
< 0.0001) interactions for further analysis. The p-values were
generated using standard t statistics and were generated as a
significance measure while computing the PPC. We subtracted
the set of common genes and interactions from the original
networks to obtain a network of genes with unique interactions
specific to each disease stage (top panel in Figure 1).

We used Ingenuity Pathway Analysis (QIAGEN, Redwood
City CA) for gene function and biological network analyses.
Statistical analysis was performed using R 3.0.1. Correlation
network comparisons and visualization were performed using
Cytoscape 3.2.1 (Shannon et al., 2003).

RESULTS

Our proposed model provides a framework to analyse the overall
behavior of a GRN during progression from a normal to a disease
state. Figure 2 shows a 3D view of the Hopfield energy landscape
constructed from each of our three datasets, while Figure 3 shows

the effect of perturbations on the shape of these landscapes. For
each disease-specific correlation network, and for the respective
normal and disease attractor networks, we identify the Gene
Ontology (GO) biological process (BP) terms and functions, and
the genes uniquely associated with each network (Figure 1). The
identities of proteins with unique interactions in each grade-
specific network are presented in Table S2.

Case Study 1: Parkinson’s Disease (PD)
Progression
The first dataset (GSE62283) consists of 45 samples and 9,480
human protein-probes (Table S1), of which 118 probes remain
after feature selection (refer to Datasets in section Materials
and Methods). Normal samples exhibit the highest average E-
value (Enormal = −120); the energy values are similar between
normal and Parkinson’s disease samples (EEPD = −122), but the
energy decreases substantially at mid-stage PD (EPD = −278;
Table 1). The energy difference between normal samples before
convergence and the normal attractor (1E = 1,329) is greater
than that between advanced-stage PD samples and the disease
attractor (1E = 1,173), i.e., the normal attractor is deeper
(Table 1); and the average pairwise intra-group distance is greater
for the normal attractor (1.72) than for the one representing PD
cases (1.52), i.e., the normal attractor is wider as well.

We tested the robustness of each attractor by randomly
perturbing a large proportion (here 50%) of the edges inW, then
allowing each sample to relax to its attractor. We then counted
the number of samples that did not converge. For the PD data,
the normal attractor was more resistant to perturbation: 20% of
samples failed to converge, whereas 30% of the corresponding
samples did not converge to the disease attractor (Figure 4 and
Figure S1).

In this case study, we used all feature-selected protein-probes
to construct the stage-specific networks. The correlation network
of the PD group had the greatest number of interactions (598
edges), followed by the EPD (186) and normal networks (123).
These networks do not have any interactions in common. Node
number varied in the unique networks: the PD group had the
greatest number of nodes, followed by the normal and EPD
groups. Table 2 shows the numbers of positively and negatively
co-regulated interactions, and the number of unique interactions
needed for the network to progress from one state to the next.

The genes encoding proteins with unique interactions in the
normal correlation network were slightly enriched for the GO
term receptor-mediated endocytosis (p= 1.3E-2; Table 3). Among
the unique genes associated with this network is nucleoside
diphosphate kinase 7 (NME7). The protein encoded by this gene
has a major role in synthesis of nucleoside triphosphates other
than ATP. Garcia-Esparcia et al. (2015), investigating the effect
of NME7 and other genes involved in purine metabolism in PD,
interpreted the down-regulation of these genes (mainly expressed
in neurons) in the midbrain as a consequence of dopaminergic
cell death in PD (Garcia-Esparcia et al., 2015).

Positive regulation of calcium-mediated signaling (p = 5.2E-
2) was associated with genes in the EPD correlation network
(Table 3). Chemokine C-C motif ligand 17 (CCL17) is one of
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FIGURE 2 | Hopfield energy landscape for the three case studies in 3D (left column) and 2D (right column): top, Parkinson’s disease; middle, gliomas;

bottom panel, colon cancer. The x- and y-axes are respectively the first and the second principal components of the autoantibody expression data, while the z-axis

is the Hopfield energy value. Each dot represent a sample, colored by disease stage; and the large green dots represent the attractors. The lines in the 2D view

represent the trajectories of samples converging to their respective attractors.
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FIGURE 3 | Effect of perturbations on the shape of the landscape: top, Parkinson’s disease; middle, gliomas; bottom panel, colon cancer. The red-blue

surface shows the original network, while the gray-scale surface shows the landscape after perturbation. The brackets show the difference in attractor E-value before

and after perturbation.
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TABLE 1 | Mean energy of samples in their original state i.e., before

convergence.

Data Group E E dis. attract†

Parkinson disease Normal −120 1329

Early PD −122 1329

PD −278 1173

Glioma Normal −536,922 332,579

Grade II −240,789 628,712

Grade III −306,800 562,701

Grade IV −398,300 471,201

Colon cancer Normal −786,802 258,735

Non-metastatic −197,287 848,250

Metastatic −160,845 884,692

†
Energy-value distance from attractor.

the unique genes present in this network. Chemokines and their
receptors are expressed in cells of the central nervous system and
are involved in synaptic transmission. Studies have confirmed
their role in neurological diseases such as Alzheimer’s and PD,
making them potential therapeutic targets (Mines et al., 2007).

The GO term Histone H4-K12 acetylation (p = 2.6E-2) was
associated with genes in advanced PD (Table 3 and Table S4).
Among the unique genes present in the network is the FYVE-
finger-containing phosphoinositide kinase PIKfyve. The protein
encoded by this gene regulates endosome and lysosome function
by internalizing and degrading voltage-gated Ca2+ channels
(VGCCs). Knockdown of PIKfyve prevents the degradation of
VGCCs and thus Ca2+ overload and excitotoxicity in neurons,
which have been found to play an important role in PD (Tsuruta
et al., 2009).

Genes in the normal attractor network were associated with
amino acid metabolism (p = 2.7E-4) and Nur77 signaling in
T lymphocytes (p = 7.1E-5) canonical pathways. The genes in
the disease attractor network were enriched for carbohydrate
metabolism (p= 3.1E-3) and associated with the calcium-induced
T lymphocyte apoptosis pathway (p = 1.2E-4; Table S3). A
progressive loss of dopaminergic neurons is the main cause of
Parkinson’s disease; and different types of programmed cell death
and signaling pathways and mitochondrial fragmentation have
been associated with PD (Venderova and Park, 2012).

Case Study 2: Grade-Based Progression of
Gliomas
The second dataset (GSE4290) includes 96 samples and 54,613
probes, of which 2,859 remain after feature selection (Table S1).
Normal samples in their original state (i.e., before convergence)
have the lowest energy value (E-value) Enormal = −536,922,
indicating tighter correlation between the genes in the underlying
network. We observe an increase in E-value for grades II and III
gliomas (EG2 =−240,789, EG3 =−306,800) and a lower E-value
for the final stage of the disease EG4 = −398,300 (Table 1). The
energy difference between samples before and after convergence
was greater for the cancer attractor (1E = 471,201) than for

the normal attractor (1E = 332,579), implying that the cancer
attractor is deeper than the normal one (Table 1). The average
intra-group distance is greater for the cancer (1.79) than for the
normal attractor (1.56), suggesting that the former can attract a
more-heterogeneous set of samples.

Upon perturbation the cancer attractor is robust, as samples
continue to converge even after perturbation of 50% of the
edges in the underlying network. This contrasts with the normal
attractor, for which the same level of perturbation results in 20%
of the samples failing to converge to the corresponding attractor
(Figure 4).

Analysis of the underlying correlation networks shows that the
normal-stage network has the highest number of significant (p≤
0.0001) interactions (1,361 edges), followed by the grade II, IV,
and III networks. Next, we filtered out common interactions (88
common edges) from the original networks, yielding networks
of genes with unique interactions. The normal network had
the highest number of unique interactions (1,273 unique edges)
followed by grades II, IV, and III (Table 2).

For the normal group, the genes with unique interactions are
enriched for GO terms including transmission of nerve impulse
(p = 1.0E-5; Table 3 and Table S4). One of these is neurexin
3 (NRXN3). The protein encoded by NRXN3 functions as a
receptor and cell-adhesion molecule in the nervous system.
NRXN3 is highly expressed in normal tissues and down-
regulated in human gliomas; moreover, Sun et al. (2013) found
that Forkhead box Q1 (FoxQ1) promotes glioma proliferation
by down-regulating NRXN3, suggesting that it may be a tumor
suppressor gene (Sun et al., 2013).

Gamma-aminobutyric acid (GABA) signaling (p= 4.9E-5) was
associated with genes in grade II gliomas (Table 3 and Table S4).
GABA is the main inhibitory neurotransmitter in the central
nervous system, and has been shown to regulate the growth of
many cell types including neuronal and tumor stem cells. GABA
response is associated only with low-grade gliomas, suggesting
that its absence results in unlimited growth of malignant gliomas
(Smits et al., 2012). MET proto-oncogene tyrosine kinase (MET)
was among the genes with unique interactions in this network.
Following activation by hepatocyte growth factor (HGF) ligand,
it triggers cascades of signaling pathways including RAS-ERK
and PI3 kinase-AKT. Mutation in MET is associated with tumor
growth, angiogenesis and metastasis. Amplification of MET and
its ligand HGF has been associated with primary and lower-grade
gliomas (Fischer et al., 1997; Beroukhim et al., 2007).

Genes in the grade III correlation network were enriched
for neurological system process (p = 1.0E-3; Table 3 and
Table S4). Neurotensin receptor 2 (NTSR2), which encodes
a G-protein-coupled receptor, was among the genes with
unique interactions in this network. Neurotensin and its
receptors including NTSR2 play an important role in oncogenic
progression of cancer malignancies. Activated NTSR2 is the key
regulatory component that promotes the phosphorylation of
extracellular signal-regulated kinase 1/2 (ERK1/2) in glioma cells.
ERK1/2 can mediate cell proliferation and apoptosis through
overexpression of PDGFRA—a type of receptor tyrosine kinase
with ERK-dependant activity (Chen et al., 2014; Ouyang et al.,
2015).
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FIGURE 4 | Distance of samples from their respective attractors at each iteration in the original network, and the perturbed network at 50%

perturbation rate. Left, Parkinson’s disease; middle, gliomas; right panel, colon cancer. For each disease-normal pair, comparing the median-line and boxes shows

how the attractors differ in size.

Synaptic transmission (p = 1.9E-5) is one of the GO terms
associated with grade IV tumors (Table 3 and Table S4).
Among the genes with unique interactions in this group is
epidermal growth factor receptor (EGFR), which encodes a
member of the protein kinase superfamily. Following receptor
activation by binding to a ligand, a series of signaling
cascades initiates and drives many cellular responses including
cell proliferation and an anti-apoptosis process. EGFR is
associated with higher-grade gliomas (Kunkle et al., 2013),
and its amplification and activating mutation can be accurate
molecular markers in glioma subtyping (Brennan et al.,
2009).

We performed similar analyses for the samples that converged
to the normal and the cancer attractors. GABA receptor signaling
(p = 2.7E-05) was among the canonical pathways associated
with the samples converged to the cancer attractor. Wnt/catenin
signaling, associated with the normal group (p = 1.1E-2), plays
an important role in glioma proliferation and tumor progression
(Nager et al., 2012; Chen et al., 2013). Cell death and survival
(p = 1.99E-04) was enriched for the cancer attractor, whereas
cellular growth and proliferation (p = 1.36E-4) was among the
molecular cellular functions associated with the normal attractor
(Table S3).

Case Study 3: Colon Cancer Progression
from Normal to Metastatic State
The third dataset (GSE18105) contains a total of 94 samples and
54,675 probes (Table S1) of which 3,960 probes remained after
feature selection. Normal samples at their original state reside
at the Enormal = −786,802 energy level. Non-metastatic and
metastatic samples energy values were Enon−metastatic =−197,287
and Emetastatic =−160,845, respectively (Table 1). Analysis of the
depth of attractors showed that the metastatic attractor is deeper
than the normal attractor as the energy difference of samples

TABLE 2 | Comparison of group-based correlation networks: first 100

feature-selected genes with p ≤ 0.0001.

Data Group Original network Unique network

Nodes Edges (±) Nodes* Edges (±)

Parkinson

disease

Normal 118 123 (91/32) 65 123 (91/32)

Early PD 118 186 (173/13) 61 186 (173/13)

PD 118 598 (367/231) 96 598 (367/231)

Glioma Normal 100 1361 (1319/42) 68 1273 (1256/17)

Grade II 100 1144 (1090/54) 83 1056 (1027/29)

Grade III 100 101 (75/26) 18 13 (12/1)

Grade IV 100 988 (906/82) 84 900 (843/57)

Colon

cancer

Normal 100 215 (131/84) 47 86 (58/28)

Non-metastatic 100 200 (113/87) 58 71 (40/31)

Metastatic 100 139 (81/58) 18 10 (8/2)

*The genes that remained with no interaction after the filtering process are removed from

the network.

before and after convergence is higher in the cancer attractor
(metastatic vs. normal attractor = 884,692 vs. 258,735; Table 1).
Estimates of the size of attractor indicated that the cancer
attractor has a greater width, as the average pair-wise Euclidean
distance of all samples is larger than the normal attractor (cancer
vs. normal = 1.73 vs. 1.69). Perturbation analysis revealed that
both attractors are equally robust, as in both cases 10% of the
samples do not converge to their respective attractors (Figure 3).

The correlation network analysis showed that the normal
network had the highest number of edges (215), followed by the
non-metastatic and then metastatic correlation networks with
200 and 139 edges respectively. After removing the common
edges, the normal correlation network exhibited 47 nodes and 86
unique edges, followed by the non-metastatic (58 nodes and 71
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TABLE 3 | Functional analysis of group-based correlation networks (based

on genes with unique interactions in each network)*.

Data Group GO term p-value

Parkinson

disease

Normal Receptor-mediated endocytosis 1.3E-2

Early PD Positive regulation of calcium-mediated

signaling

5.2E-2

PD Histone H4-K12 acetylation 2.6E-2

Glioma Normal Transmission of nerve impulse 1.0E-5

Grade II Gamma-aminobutyric acid signaling 4.9E-5

Grade III Neurological system process 1.0E-3

Grade IV Synaptic transmission 1.9E-5

Colon

cancer

Normal Ion transport 9.6E-2

Non-metastatic Multicellular organismal process 2.7E-2

Metastatic Development process 3.2E-2

*Please refer to Table S4 for the full list of GO terms (p ≤ 0.0001).

edges) and the metastatic correlation network (18 nodes and 10
edges) with the fewest genes and unique interactions (Table 2).

The genes with unique interactions in the normal network
were enriched for ion transport (p = 9.6E-2; Table 3 and Table
S4). Prostate cancer susceptibility candidate (PRAC) is among
the unique genes in this network. It is specifically expressed in
the human prostate, rectum and distal colon and has been shown
to have a regulatory role in the nucleus (Liu et al., 2001).

The non-metastatic network was enriched for multicellular
organismal process (p = 2.7E-2; Table 3 and Table S4) including
the calcium activated chloride channel A1 (CLCA1). It is
expressed mainly in the colon, intestine, and appendix. CLCA1
plays a role in tumor suppression and has been shown to have
a down-regulated expression in colorectal cancer (Yang et al.,
2013).

The genes in the metastatic network were associated with
developmental process (p= 3.2E-2; Table 3 and Table S4). Among
the unique genes in this group is IGF2BP3, a member of mRNA
protein binding family and an oncofetal protein that regulates
expression of genes involved in tumor cell proliferation, chemo-
resistance and metastasis. In vitro studies have revealed that
IGF2BP3 up-regulated expression enhances tumor growth, drug-
resistance and metastasis in various human cancers (Lederer
et al., 2014).

The genes with unique interactions in the normal attractor
correlation network were enriched for B cell development
pathways (p = 3.5E-3) and cell morphology (p = 1.06E-5)
for molecular and cellular function. In the case of the cancer
attractor correlation network, the genes were enriched for cellular
movement (p = 2.0E-4) for cellular function and associated with
the autoimmune thyroid disease signaling pathway (p = 3.6E-
3; Table S3). Thyroid hormone signaling has been shown to
be a major factor in digestive system growth, and homeostasis
and the expression of thyroid-hormone receptors has been
associated with colon cancer progression. Other studies have
suggested that thyroid-hormone signaling may suppress colon
cancer invasiveness (Brown et al., 2013).

DISCUSSION

Large-scale multi-omics studies have been carried out to
investigate the molecular dynamics underlie complex disease
progression. For instance, in a recent study Cho et al. (2016)
used Boolean networks to construct the attractor landscape of
colorectal tumorigenesis from previously published canonical
signaling pathways. Combined with already known mutation
data and prior knowledge of signaling networks in cancer, their
model provides a new approach for discovering novel therapeutic
targets for cancer patients (Cho et al., 2016). Parsons et al. (2008)
provided a genetic landscape of glioblastomas by integrating
mutations and copy number alternations by sequencing 20,661
protein-coding genes, and performed gene expression analysis
in 22 human tumor samples. They inferred key genes associated
with glioblastoma including IDH1, and showcased the potential
of genome-wide genetic studies in opening novel avenues in brain
cancer research (Parsons et al., 2008).

Attractor landscape models provide a quantitative approach
to understand the dynamics of GRNs during development
and disease formation. Here we construct disease-progression
landscape models using the mathematical framework of Hopfield
networks. We used three datasets to capture different aspects
of this process: the advancement of Parkinson’s disease from
normal to an advanced state, the progression of glioma
from normal to grade IV, and the progression from normal
colon to metastatic colon cancer. For each, we mapped
these different stages of disease progression to HN energy
profiles. Attractors in these landscapes correspond to the
initial (normal) state of the cell, and the (potentially) final
stage of the disease. Each landscape is constructed using
the correlation network among all feature-selected protein-
or gene-pairs in the microarray data, reflecting the biological
activity and changes in the GRN during disease progression.
We take a network approach to identify unique molecular
interactions at each disease stage, and examine their biological
features.

Complex disease can often be attributed to inappropriate
regulatory signals, together with accumulation of genetic
mutations. It is important to identify specific genes whose
mutation results in moving cells from normal to a disease state,
and eventually to disease progression, characterized in cancer by
acquisition of metastatic potential. With a view of disease as a
pre-existing configuration of the GRN that has not been accessed
by a normal cell, this model provides a systems view on GRN
rewiring during disease formation and progression.

Unlike other computational models of attractor landscapes,
our model does not require prior knowledge of the system.
Because the Hopfield energy values are computed via a Lyapunov
function, they are guaranteed to converge to a local energy
minimum that represents a stable state of the network or
attractor. In this formalism, the energy of samples at their
original state (i.e., before convergence) is inversely proportional
to the tightness of the correlations in the network: the more-
correlated the expression of feature-selected genes, the lower
the energy (Taherian Fard et al., 2016). We emphasize that we
do not provide labels for samples (non-parametric learning),
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and the learning algorithm constructs attractors solely on the
similarities among the patterns in the gene-expression data.
Samples with similar activity patterns typically converge to the
same attractor, but are occasionally misclassified (i.e., converge to
a different attractor). The difference between energy values before
and after convergence provides an estimate of the depth of the
attractor.

As discussed above, computational models of GRNs have
their own definition of attractors and trajectories. Here we
capture trajectories of disease progression through the energy
values of samples before convergence (color-coded in the 3D
landscape, Figure 2). Attractors are the result of an artificial
updating of the network (the iterative HN process) and do not
correspond to actual cell types, but the computed energy of
samples at their attractor state provides a quantitative measure
of the extent of gene-expression similarity among the samples
at the corresponding stage of disease progression. Thus, in
the PD case study, we observe that normal and EPD samples
converge to the normal attractor, whereas PD samples converge
to the disease attractor. By contrast, in both cancer case studies
we observed high intra-group heterogeneity within the mid-
stage subgroups: a subset of grade II gliomas converge to the
normal attractor while the rest converge to the cancer attractor,
while a subset of non-metastatic CRC tumors converges to
the normal attractor while the rest converge to the disease
attractor.

Our results indicate that in the case of PD, the normal attractor
has a slightly broader basin of attraction than does the disease
attractor, whereas the opposite is true for each of the cancer
case studies. Thus, samples extracted from tumors are more
heterogeneous than the corresponding normal tissues, whereas
there is a relatively narrow basin of attraction in PD. It remains
to be seen whether this result will prove general.

A stable attractor is robust to perturbation, such that
introducing noise into the network does not affect the fraction
of samples converging to that attractor. By contrast, a less-stable
attractor does not bear the insult. The biological interpretation
is that if the attractor is robust, more molecular changes to
the network are required to move cells out of the phenotypic
state. The robustness of attractors proved to be specific to
each case study, and was influenced by factors including
the presence of nodes strongly correlated with many other
nodes.

For the HN framework to have utility, the input data
must meet certain requirements: at least three time-points
must be available, with at least three samples per time-point,
and samples must be sufficiently homogeneous. As we use a
correlation measure to constitute the edges, a larger sample
size provides a stronger signal for the gene-activity pattern.
To capture the dynamics of GRN at well-defined stages of
disease progression, we chose publicly available datasets with
different characteristics. Thus, in the first case study we focused
on severity of disease by using human protein microarray
data from patients with early- and advanced-stage PD. In the
second case study, we used gene-expression profiles of patients

with different cancer grades. We utilized the graded glioma
samples, assuming that normal and lower-grade gliomas are

precursors of higher-grade gliomas. Similarly in the third case
study, we targeted the metastatic process in colon cancer,
assuming a progression from normal to non-metastatic disease
to metastasis.

Our HN landscape model, with a simple computational
workflow and requiring minimum prior knowledge of the
underlying network, provides a framework to study the process
of disease formation and progression, and identifies genes
that are potential key drivers of this process. The feature-
selected gene sets are informative on the disease states per
se, while still supported by the evidence we present in this
paper that the genes with unique interactions at each stage-
specific network of the disease are the potential key drivers of
disease progression. We show that by applying this framework
to appropriate disease stage-specific protein or gene microarray
datasets, biologically useful insights can be revealed from
the dynamics of the GRN, including the identification of
genes and their stage-specific interactions that are involved in
disease progression. In constructing GRN models, it could be
desirable to include data on other molecular processes that are
also involved in driving the cell toward a specific fate, e.g.,
histone modifications, copy-number variation, and time-course
proteomics data; or in the context of disease, specific mutations
and their downstream regulatory consequences. The Hopfield
model framework is sufficiently flexible to utilize and integrate
a variety of molecular data, so long as at least two states or
conditions are present; input data need not be quantitative,
e.g., could represent the presence or absence of a histone mark.
Combining all layers of information will allowmore-accurate and
detailed modeling of these dynamic systems of development or
disease.
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