
materials

Article

One-Pot Sonochemical Synthesis of ZnO
Nanoparticles for Photocatalytic Applications,
Modelling and Optimization

Muhammad Tayyab Noman 1,2,*, Michal Petru 1, Jiří Militký 2, Musaddaq Azeem 2 and
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Abstract: This present study proposed a successful one pot synthesis of zinc oxide nanoparticles
(ZnO NPs) and their optimisation for photocatalytic applications. Zinc chloride (ZnCl2) and sodium
hydroxide (NaOH) were selected as chemical reagents for the proposed study. The design of this
experiment was based on the reagents’ amounts and the ultrasonic irradiations’ time. The results
regarding scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy
confirmed the presence of ZnO NPs with pure hexagonal wurtzite crystalline structure in all
synthesised samples. Photocatalytic activity of the developed samples was evaluated against
methylene blue dye solution. The rapid removal of methylene blue dye indicated the higher
photocatalytic activity of the developed samples than untreated samples. Moreover, central composite
design was utilised for statistical analysis regarding the obtained results. A mathematical model for
the optimisation of input conditions was designed to predict the results at any given point. The role
of crystallisation on the photocatalytic performance of developed samples was discussed in detail in
this novel study.
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1. Introduction

During the past few years, the research on metal oxides, particularly zinc oxide (ZnO), has
remarkably increased and gained enormous interest from researchers in chemistry, materials science,
physics, medical, textiles and many other fields of science [1–12]. ZnO belongs to a family of metal
oxide semiconductors. ZnO is an n-type semiconductor with wide band gap (3.37 eV) and having
large exciton binding energy (60 meV). On the nanoscale, ZnO shows exceptional physicochemical
properties that are beneficial in many industrial applications. Many researchers have successfully
used ZnO nanostructures in photocatalytic [13–16], photovoltaic [17–20], biomedical [21–24] and
sensing [25–31] applications, as it provides large surface area as compared to its bulk counterpart. The
demand of highly efficient, durable and robust photocatalysts for wastewater treatment makes ZnO
nanostructures a reliable candidate for photocatalytic applications.

Researchers have been concluded that the photocatalytic performance of nanomaterials
significantly depends upon the synthesis route, size, shape, crystallinity and dimension [32–36].
At present, different researchers have prepared ZnO nanostructures by different synthesis methods i.e.,
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sol–gel [37–39], hydrothermal [40–42], co-precipitation [43–45], green [46–49], electrospinning [50,51]
and sonochemical [52,53]. The sonochemical method among all mentioned methods has been proven
to be a more economic, efficient and facile approach used for the synthesis of nanomaterials. This
sonochemical method works on the principle of acoustic cavitation. In liquids, ultrasonic energy
induces physicochemical changes in a material through low-pressure/high-pressure waves. These
waves lead to create a huge number of unstable vacuum bubbles that aggressively collide with each
other due to pressure difference, and develop extremely local conditions, i.e., local pressure and
temperature raised up to 20 MPa and 5000 K, respectively, with cooling rate 1010 K·s−1 [54]. The size
and crystallinity of the synthesised structures have been very well controlled by the sonochemical
method, and that is another advantage of using this method.

In an experimental study, Pholnak et al. used an ultrasonic homogeniser as a tool to fabricate ZnO
NPs under varying shapes i.e., sphere, cube and cylinder. They sonochemically treated zinc nitrate
with hexamethylenetetramine at ambient temperature. They reported that the ultrasonic homogeniser
is a better tool for nanomaterials’ synthesis than the ultrasonic bath and sonoreactor. Moreover,
scanning electron microscopy (SEM) and X-ray diffraction (XRD) results confirmed the formation of
ZnO NPs with an average particle size of 70 nm [55]. In another study, Hipolito and Martinez used
the sonochemcial method and synthesised ZnO NPs at room temperature and further used them as
a photocatalyst in hydrogen gas generation. They reported that the high surface area and smaller
particle size of ZnO NPs significantly enhances hydrogen production. Furthermore, they suggested
ultrasonic energy an efficient and cost-saving tool, as they used the ultrasonic method for avoiding
long reaction time and high temperature [56]. Ma et al. fabricated two-dimensional (2D), hierarchical,
fern-like nanoleaves of ZnO in water at room temperature with significantly enhanced photocatalytic
performance by this ultrasonic method. The results obtained by different characterisation techniques
i.e., SEM, XRD and Transmission electron microscopy (TEM), which confirmed the synthesis of 2D ZnO
through the ultrasonic method. They concluded the ultrasonic method as a clean and economic route
for large scale production of novel nanostructures [57]. Mahmoodi et al. worked on the modelling of
the photocatalytic dye removal of basic blue 41 and basic red 46 by using ZnO NPs, and explained that
under optimised conditions the maximum dye removal achieved by ZnO was 72.56% [58]. Dhiman et al.
studied the modelling and optimisation of the dye removal efficiency of ZnO NPs by using acridine
orange. They used the green chemical method for the synthesis of ZnO NPs and reported a maximum of
72% dye removal efficiency for the synthesised pure ZnO [59]. In another modelling and optimisation
study of ZnO, the photocatalytic degradation of RB 19 and RB 21 was investigated by Rodrigues et al.
under a UV photoreactor. They obtained 100% dye removal for RB 19, but the time taken for this was
more than six hours [60].

In this novel study, ultrasonic homogeniser was used for one pot sonochemical synthesis of ZnO
NPs for photocatalytic degradation of methylene blue. This study was conducted to investigate the
influence of ultrasonic energy onto the structure and morphology of ZnO NPs, as well as the synergistic
role of ZnO NPs onto photocatalytic applications. The process variables i.e., amount of zinc chloride
(ZnCl2) and sodium hydroxide (NaOH), and the total time for ultrasonic irradiations, were adjusted
by central composite design to attain the optimum conditions. To the best of our knowledge, there is
no literature available regarding the synthesis of ZnO in this manner. This work represents a unique
demonstration about the modelling and optimisation of as synthesised ZnO. Moreover, regarding the
reagents used in this experimental study, it is supposed that this method is a robust one that could be
extended for other zinc precursors and synthesis methods.
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2. Materials and Methods

2.1. Materials

Zinc chloride (ZnCl2), sodium hydroxide (NaOH), ethanol (C2H5OH) and methylene blue (MB) dye
with the chemical formula C16H18ClN3S were received from Sigma-Aldrich (Prague, Czech Republic).
The chemicals were used as received.

2.2. Design of Experiment

A Central Composite Design (CCD) is a set of experimental designs with three different design
points i.e., factorial points (±1), a centre point (0) and star/axial points (±α). For a three factors CCD,
the value of α is 1.68. The general form of a CCD with three input variables/factors (A, B, C) and their
coded values (±1), centre point (0) and axial/star points (±α) is illustrated in Figure 1. The CCD is a
valuable asset in determining the response surfaces by fitting a quadratic model in order to estimate
the effect of curvature, or to find out the maxima or minima of a variable. Table 1 illustrates the input
variables (factors) and the factors level setting in their coded form based on CCD.
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Figure 1. General form of three factors Central Composite Design (CCD) with coded values.

Table 1. The factors level setting of a 3-factors CCD matrix under coded values for the synthesis of zinc
oxide nanoparticles (ZnO NPs).

Experimental
Trial

Factors Level Setting

A B C

1 −1 −1 −1
2 1 −1 −1
3 −1 1 −1
4 1 1 −1
5 −1 −1 1
6 1 −1 1
7 −1 1 1
8 1 1 1
9 −α 0 0

10 α 0 0
11 0 −α 0
12 0 α 0
13 0 0 −α

14 0 0 α

15 0 0 0
16 0 0 0
17 0 0 0
18 0 0 0
19 0 0 0
20 0 0 0
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The design of experiment (DOE) with different amounts of ZnCl2 and NaOH under varying
sonication time based on CCD with experimental results is illustrated in Table 2. Some preliminary
experiments were conducted to calculate the optimal point of each variable before starting the final
experiment. The influence of variables on results was adjusted by using quadratic Equation (1).

Y = b0 +
∑

biXi +
∑

bi. jXiX j +
∑

bi.iX2
i i ≥ j i, j = 1, 2, 3 (1)

where b0 is the coefficient of constant term, bi represents the coefficient of linear term, bi.j represents the
coefficient of two factors interaction, and bi.i is the coefficient of quadratic term, respectively [54].

Table 2. The 3-factors CCD matrix based on experimental values for actual variables and for experimental
and predicted response of methylene blue (MB) removal.

Sample
Number ZnCl2 (g) NaOH (g) Sonication

Time (min)
MB Removal (%)

Experimental
MB Removal (%)

Predicted

Sample M 15 10 − 55.3 −

1 15 5 60 94.6 95.1
2 10 7.5 19.7 58.4 62.3
3 15 10 60 99.3 99.7
4 10 7.5 45 86.6 84.6
5 5 10 30 65.1 63.0
6 18.5 7.5 45 95.8 96.7
7 10 3.3 45 78.1 80.8
8 10 7.5 45 81.3 84.6
9 15 5 30 73.4 70.0

10 10 7.5 45 83.2 84.6
11 10 7.5 45 87.6 84.6
12 5 5 60 82.5 81.5
13 5 10 60 64.3 66.2
14 1.5 7.5 45 62.4 63.4
15 10 7.5 45 84.4 84.6
16 5 5 30 66.4 64.4
17 10 7.5 45 85.1 84.6
18 15 10 30 89.2 88.6
19 10 11.7 45 84.3 83.6
20 10 7.5 70.2 88.1 86.2

2.3. Synthesis of ZnO NPs

In one pot synthesis of zinc oxide nanoparticles (ZnO NPs), varying amounts of ZnCl2 (1.5 g to
18.5 g) were added into a beaker and then we adjusted the amount of water so that the total volume of
the solution was maintained at 100 mL. During all experiments, distilled water was utilised. Sonicate
the solution for 5 min to make a homogenous solution. A varied amount of NaOH granules (3.3 g to
11.7 g) was added into the running solution. To complete the reaction mechanism, the solution was
then sonicated for different time intervals (19.7 min to 70.2 min) based on CCD under ultrasonic probe
homogeniser (Bandelin Sonopuls HD 3200, Bandelin Electronic GmbH & Co. KG, Berlin, Germany,
20 kHZ, 200 W, 50% efficiency). The effective power of ultrasonic waves emitted into the solution
was 100 Wcm−2, which value was experimentally determined by calorimetric measurement. After
the completion of the sonication process, the resulting white flocculates were washed five times with
ethanol to remove the excess amount of trashes and impurities. Afterwards, the white flocculates were
centrifuged at 4000 rpm for 15 min to separate solid particles from liquid. The centrifuged solid was
dried at 80 ◦C for 1 h in an oven to remove the remaining percentage of moisture and organic impurities.
The centrifuged solid was then grinded to obtain the fine powder of ZnO that further characterised it.
During our experiments, we observed that Sample 3 provided the maximum MB removal (%). So, in
order to compare and to investigate the essential impact of the ultrasonic method, a similar sample
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was synthesised by the conventional magnetic stirring method under same experimental conditions
without sonication, and named as sample M, as provided in Table 2. The schematic illustration of the
experimental setup is given in Figure 2.
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2.4. Characterisation of ZnO NPs

The surface topography and morphological changes of sonosynthesised ZnO NPs were observed
by Ultra High-Resolution Scanning Electron Microscope UHR-SEM Zeiss Ultra Plus (Carl Zeiss Meditec
AG, Jena, Germany) with an accelerating voltage of 2 kV. The charging effect was eliminated by the use
of a charge compensator (local N2 injection). For the investigation of crystal structure, XRD patterns
were collected by an X’Pert PRO X-ray diffractometer (Malvern Panalytical Ltd., Malvern, UK) using
Cu Kα radiation of wavelength λ = 0.15406 nm with a scanning angle (2θ) range 5–80◦ with step size
of 0.02◦ at voltage and current of 40 kV and 30 mA, respectively. The collected patterns were compared
with standard patterns of the International Centre for Diffraction Data (ICDD) Powder Diffraction File
(PDF: 89-7102) and further analysed. Moreover, Raman spectroscopy (Thermo scientific DXR Raman
spectroscope, Thermo Fisher Scientific, Waltham, MA, USA) was utilised to detect the purity of the
crystal phase. In order to calculate the size of the crystals, Scherrer’s crystallite Equation was used as
given below:

D =
Kλ
βCosθ

(2)

In Equation (2), D represents the crystallite size calculated through line broadening of plane
reflection whereas, λ represents the wavelength of the X-ray radiations. β is the full line width at
half-maximum height (FWHM) and K represents the shape constant with a constant value i.e., 0.89.

2.5. Photocatalytic Activity of ZnO NPs

Photocatalytic activity of developed samples of ZnO NPs was investigated by photodegradation
of MB dye solution under UV light irradiations. For this study, 0.01% (w/v) solution of MB dye was
prepared, and 0.5 g·L−1 of the as synthesised nano ZnO (Sample 3 and Sample M) was mixed in running
solution. The suspension was kept in the dark for 40 min to reach equilibrium. The suspension was
then exposed to a 500 W xenon lamp for 2 h. The distance between the UV lamp and the suspension
was 30 cm, and the intensity of the UV light was 20 W·m−2, depending on the distance between the
lamp and the sample. After a certain time, an aliquot was taken out and a UV-vis spectrum was
recorded on a UV-1600PC Spectrophotometer (VWR International, Radnor, PA, USA). The characteristic
concentration peak of MB was obtained at 668 nm of wavelength. The colour removal percentage
(CR%) was calculated by the given equation:
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CR% =

[
1−

C
C0

]
× 100 (3)

In Equation (3), C0 and C represents initial and final concentration of MB dye in the
solution, respectively.

3. Results and Discussion

3.1. Characterisation of ZnO NPs

The results regarding the surface topography and morphology of synthesised ZnO NPs were
collected by SEM micrographs and illustrated in Figure 3. SEM results explained that sonication
induced a great impact on the particle size of the resulting ZnO NPs. We observed that crystallite
size for Sample 3 is two times smaller than Sample M. For Sample 3, we observed a homogenous
distribution and quasi-spherical morphology of ZnO NPs, while an elliptical shape with sharp edges
was observed for Sample M. The average particle size for Sample 3 and Sample M was 28 nm and
70 nm, respectively, as calculated from SEM images by ImageJ software (version 1.52p). These results
are in good agreement with the findings of our previous investigation in which we concluded that
ultrasonic irradiations play a significant role onto the smaller size and morphology of metal oxide
nanoparticles [61].
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Figure 3. Scanning electron microscopy (SEM) analysis for (a) Sample 3 developed with optimal
conditions Zinc chloride (ZnCl2) 15 g, sodium hydroxide (NaOH) 10 g, Sonication time 60 min,
(b) Sample M developed without sonication.

XRD analysis is a valuable asset in order to determine the crystal structure and crystallite size
of a samples. The XRD patterns for observed samples (Sample 3 and Sample M) showed that the
synthesised ZnO NPs possessed a pure hexagonal wurtzite crystal structure, as all the obtained peaks
under XRD analysis for both methods (sonochemical and conventional stirring) matched with the ICDD
file (PDF: 89-7102). In Figure 4, the highest peak obtained at 2θ = 36.2◦ is the characteristic crystalline
peak of hexagonal wurtzite crystals of pure ZnO that follows [101] plane reflection. Moreover, a series
of crystalline peaks at 2θ = 31.7◦, 34.4◦, 47.5◦, 56.6◦, 62.8◦ and 67.9◦ follow the [100], [002], [102], [110],
[103] and [112] planes, respectively. We observed that hexagonal wurtzite crystals of nano ZnO were
formed by both methods with a significant difference regarding crystal size for these methods. The
average particle size for observed samples calculated by Scherrer’s Equation was 28.1 nm and 70.8 nm
for Sample 3 and Sample M, respectively. The average particle size of all the samples prepared by the
sonochemical method was 28 nm. The samples prepared by this sonochemical method have three times
less particle size than the conventional method, which explains the significant role of the ultrasonic
method in the synthesis mechanism of nanomaterials. The XRD results for particle size are in good
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agreement with the SEM results. Furthermore, no other phase (impurities) i.e., Zn(OH)2, was found
during the XRD analysis.Materials 2019, 12, x FOR PEER REVIEW 7 of 19 
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Raman analysis is one of the finest modes for identifying the purity of a crystal lattice or the
phase purity of a molecule. The results regarding the Raman analysis for all prepared samples are
presented in Figure 5. It was observed that all the Raman bands matched with the characteristic peaks
of pure hexagonal wurtzite ZnO. Factor group analysis for vibrational modes of crystals explained
that the pure wurtzite crystal phase of ZnO consists of given Raman active modes i.e., (238, 331, 436,
537, 1085 and 1593 cm−1). In Figure 5, a strong peak at 537 cm−1 was observed, which is the metaphor
for wurtzite ZnO NPs. Moreover, no characteristic peak of impurity i.e., Zn(OH)2, was found during
analysis. The Raman results are significant and consistent with XRD results, and both techniques
confirmed the formation of pure hexagonal wurtzite crystal of nano ZnO.
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Figure 5. Raman spectrum for Sample 3 developed with optimal conditions ZnCl2 15 g, NaOH 10 g,
Sonication time 60 min, and Sample M developed without sonication.

Specific surface area and pore size distribution are significantly influential microstructural
properties of ZnO NPs highly dependent upon the geometry, morphology and porosity of as synthesised
NPs. These parameters were measured by the Brunauer–Emmet–Teller (BET) method under N2

(−196 ◦C) atmosphere. The volume of a gas adsorbed is considered as the total area including the
specific surface area and pore size. The average specific surface area of ultrasonically prepared samples
(Sample 3) was 107 m2

·g−1. The experimentally-determined values of surface area, pore volume and
pore size distribution of all samples are provided in Table 3.
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Table 3. Results of specific surface area and pore volume distribution of ZnO NPs.

Sample No. Surface Area (m2
·g−1) Pore Volume (cm3

·g−1) Pore Size (nm)

Sample M 53 0.51 49
1 104 0.30 23
2 105 0.27 21
3 111 0.20 16
4 108 0.25 19
5 107 0.27 19
6 105 0.28 22
7 106 0.24 21
8 108 0.23 19
9 105 0.26 22
10 106 0.25 21
11 107 0.24 20
12 109 0.21 19
13 108 0.22 19
14 106 0.23 21
15 107 0.26 20
16 108 0.22 19
17 106 0.24 22
18 109 0.20 18
19 107 0.21 19
20 108 0.23 18

3.2. Photocatalytic Activity of ZnO NPs

The photocatalytic activity of as synthesised ZnO NPs was evaluated against MB dye solution.
0.5 g·L−1 of the prepared ZnO NPs was used for 50 mg·L−1 of MB dye. It was observed that under UV
light irradiations, samples prepared by the ultrasonic method completely degraded MB dye in less than
60 min, while for Sample M, the degradation took a longer time. The results are quite obvious, as we
obtained a smaller particle size by the sonochemical method than any conventional method. The results
of MB degradation are in good agreement with BET results. The results of MB degradation for Sample 3
and Sample M are illustrated in Figure 6. In order to confirm that MB degradation was only due to
ZnO NPs, a controlled sample of MB dye (without ZnO NPs) was exposed to UV light. This sample did
not change its colour even after a longer time. This confirmed that MB degradation was only due to
the presence of ZnO NPs in the dye solution. The overall results explain that sonochemically-prepared
samples showed higher photocatalytic performance for MB than Sample M. UV-vis spectral changes in
the MB dye solution as a function of UV light irradiations’ times are illustrated in Figure 6.

The ln Ao/A plot for the complete degradation of MB against irradiation time is illustrated in
Figure 7, where Ao represents the absorbance at time t = 0 min, and A represents the absorbance after a
complete MB degradation at time t =∞min. The results explained that in a controlled sample (without
ZnO NPs), no change was observed in MB degradation even after longer time, while 53% change was
observed for Sample M as it is synthesised by a conventional method. However, a complete 99.9% MB
degradation was observed in case of Sample 3. Furthermore, in order to investigate the behaviour of
MB under different conditions, i.e., in the presence of dark, in the presence of light, in the presence
of Sample M (with and without light) and in the presence of Sample 3 (with and without light), had
also been evaluated, and the results are illustrated in Figure 8. Under dark conditions without ZnO
NPs, the MB colour remained unchanged. Under irradiations (light conditions) without ZnO NPs, we
still did not observe any significant change. For Sample M, 7% and 48% degradation of MB dye was
observed under dark and light conditions, respectively. 16% colour change was observed for Sample 3
under dark conditions, whereas a significant colour change of 99.9% was observed for Sample 3 during
light irradiations that showed the excellent photocatalytic activity of prepared ZnO NPs. It was noted
that the colour change of MB under dark conditions for both samples (Sample M and Sample 3) was
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only because of the extra white colour of the prepared samples, which means that even with the
photocatalyst, the process of photocatalysis was not started without light. So, we concluded that for
photocatalytic degradation of pollutants, the presence of both, i.e., light and photocatalyst, is necessary.
The influence of the ultrasonic method was significantly high, as we observed 99.9% MB degradation
for Sample 3.
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Photocatalysis is a dynamic mechanism and the most fundamental property of nano ZnO that
triggers a series of oxidation and reduction reactions. In photocatalysis, nano ZnO absorbs light energy
and breaks down the long chain organic molecules (pollutants) into smaller fragments i.e., atoms, ions
and radicals. Theoretically, photocatalysis is the conversion of light energy into chemical energy to
produce radicals and other unstable chemical compounds. The primary oxidizing species formed
during photocatalysis are hydroxyl radicals and superoxide anions [62]. The hexagonal wurtzite crystal
form of pure ZnO is significantly used in many industrial and practical applications. Rakhshaei et al.
reported that ZnO NPs with hexagonal phase show significant photocatalytic properties [63]. When a
photon having energy greater than the band gap energy of ZnO strikes on its surface, electrons are
released. The released electron further reacted with atmospheric oxygen to become a super oxide
anion (O2

−). The surface that has lost an electron takes another electron from moisture to fill up the
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hole. This converted the moisture into a hydroxyl radical (•OH). The two, i.e., the hydroxyl radical
(•OH) and the superoxide anion (O2

−) are highly reactive, and due to their strong oxidative power,
they decompose organic compounds that cause staining. In our previous investigation, we explained
the role of reactive oxygen species (ROS) during photocatalysis and reported that hydroxyl radicals
(•OH) are the major radical scavengers that are responsible for the degradation of pollutants [56]. More
production of ROS on the surface of the photocatalyst increases their power to degrade pollutants. The
general mechanism of photocatalysis on the surface of nano ZnO is illustrated in Figure 9.Materials 2019, 12, x FOR PEER REVIEW 10 of 19 
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3.3. Modelling and Optimization

The experimental design (CCD) and response surface plots, i.e., surface plots and contour plots,
were analysed to investigate the effects of input variables onto response. In modelling and optimisation,
3D surface plots and the 2D contour plot are helpful to visualise the effect of independent variables
onto dependent variables. In total, 20 experimental samples were designed with variation in reagents
amount and sonication time as illustrated in Table 2. For better visualisation of the drawn plots and for
more accuracy regarding the analysis, Design-Expert 10 was used for statistical analysis. The results
presented in Table 2 indicate that the photocatalytic activity of the developed samples increased with
an increase in ZnCl2 and NaOH amount up to 15 g and 10 g, respectively. The results showed that
MB removal (%) increased from 62.4% to 95.8%, 78.1% to 84.3% and 58.4% to 88.1%, by increasing
active reagents amount and sonication time up to their maximum levels. However, the best outcome of
99.3% was achieved with optimal conditions, i.e., ZnCl2 15 g, NaOH 10 g and sonication time 60 min,
whereas, the predicted response value for MB removal (%) at optimal conditions (Sample 3) was 99.7%.
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A mathematical model (Equation (4)) was suggested to evaluate the obtained results and the
relationship between selected variables and response surfaces. The designed response by the model
was a function of independent variables. This model is beneficial in the prediction of selected variables
at any given point in space. By using this model, response surfaces and contour plots were drawn
and analysed, as presented in Figures 10–12. MB removal (%) on the basis of the designed model is
calculated by the following Equation (4).

MB Removal (%)

= 5.26− 0.99(ZnCl2) + 2.56(NaOH) + 2.36(Time)
+0.40(ZnCl2 ×NaOH) + 0.02(ZnCl2 × Time)
−0.09(NaOH × Time) − 0.06(ZnCl2)

2
− 0.13(EG)2

− 0.02(Time)2

(4)
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Analysis of variance (ANOVA) was used to examine the interaction of data between selected
variables and obtained response from samples 1–20. The results were further analysed to judge
the goodness of fit. The results showed that the designed model for MB removal (%) is statistically
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significant for an F-value of 35.32 and prob > F of <0.0001, as shown in Table 4. R-squared coefficient
was used to predict the fit of the model. The results explained that only 3.05% of the total variables
cannot be explained by the designed model for MB removal (%). Low coefficient of variation (CV%)
values of the developed model explained the precision and accuracy of the results and reliability of
the experiment.
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Table 4. Analysis of variance (ANOVA) results regarding MB removal (%) for ZnO NPs.

Source Sum of
Squares df Mean

Square F Value p-Value
Prob > F Remarks

Model 2560.20 9 284.47 35.32 <0.0001 Significant
A-ZnCl2 1322.18 1 1322.18 164.15 <0.0001 Significant
B-NaOH 9.55 1 9.55 1.19 0.3017 Not significant

C-Sonication Time 680.84 1 680.84 84.53 <0.0001 Significant
AB 200.00 1 200.00 24.83 0.0006 Significant
AC 32.00 1 32.00 3.97 0.0742 Not significant
BC 98.00 1 98.00 12.17 0.0058 Significant
A2 36.34 1 36.34 4.51 0.0596 Not significant
B2 10.26 1 10.26 1.27 0.2855 Not significant
C2 191.87 1 191.87 23.82 0.0006 Significant

Residual 80.55 10 8.05 - - -
Lack of Fit 54.47 5 10.89 2.09 0.2191 Not significant
Pure Error 26.08 5 5.22 - - -
Cor Total 2640.75 19 - - -

R-squared: 0.9695, adjusted R-squared: 0.9420, CV%: 3.53.

A comparison of actual values and predicted values for MB removal (%) is illustrated in Figure 13
that was used to detect the values that were not detected by the designed model. This comparative
plot explains the overall pros of our fitted model in terms of statistical analysis and absolute residual
minimisation. It was observed that the experimental values were very close to the normal distribution
line, indicating a good fit of the model. The normal probability plot of residuals for raw residuals,
internally studentised residuals and externally studentised residuals regarding MB degradation, is
illustrated in Figure 14 that explained the relationship of experimental data with the standardised
normal distribution, whereas the plot between residuals and experimental run order for raw residuals,
internally studentised residuals and externally studentised residuals regarding MB degradation is
presented in Figure 15, respectively. These graphs explained the lurking factors that influenced the
response during experimentation. The optimal design points on the basis of Table 2 and Equation (4)
are 15 g ZnCl2, 10 g NaOH and 60 min sonication time.
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4. Reusability Performance of ZnO NPs for Sequential Applications

Reusability of ZnO NPs is an essential attribute from the point of sequential application. The
reusability performance of Sample 3 (sonochemical method) and Sample M (conventional method) was
estimated in the photocatalytic removal of MB for seven reuse cycles. After each cycle, both samples
were extracted from their respective solutions by centrifuge process and washed with ethanol and then
distilled water, respectively. After drying the samples at 100 ◦C for 1 h, they were reused again in the
fresh MB solution until the seventh cycle. As shown in Figure 16, only a 6.1% MB degradation loss was
observed for a sonochemically-prepared sample (Sample 3) even after seven reused cycles, while 26.9%
loss was found for the conventional method (Sample M), respectively. Interestingly, the morphology
was unchanged before and after each cycle. The overall results regarding the photodegradation and
reusability confirmed that the sonochemical method is a facile and durable method for the synthesis of
robust and more photocatalytically-active ZnO NPs than the conventional method.
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5. Conclusions

ZnO NPs with pure hexagonal wurtzite crystalline structure were successfully synthesised by a
one pot sonochemical method using ZnCl2 and NaOH as reactive variables. The samples prepared by
the sonochemical method showed a more significantly enhanced photocatalytic performance than the
conventional method (Sample M). The average particle size for ZnO NPs prepared by this sonochemical
method was three times smaller than for that conventional method (Sample M). Ultrasonic irradiations
played a remarkably crucial role in order to synthesise hexagonal wurtzite crystals of nano ZnO with
smaller particle size and higher photocatalytic activity as compared to the conventional method. The
photo degradation of MB dye recommends the potential use of sonochemically prepared ZnO NPs in
waste water treatment for industries, especially the textile industry. Reusability of the prepared ZnO
NPs during photocatalytic removal of the MB dye confirmed their durability for industrial applications.
The as prepared nano ZnO could be further utilised in many other functional textile applications i.e.,
self-cleaning and UV protection.
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