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Abstract
Chronic kidney disease (CKD) is defined as any condition that causes reduced
kidney function over a period of time. Fibrosis, tubular atrophy and interstitial
inflammation are the hallmark of pathological features in CKD. Regardless of
initial insult, CKD has some common pathways leading CKD to end-stage
kidney disease, including hypoxia in the tubulointerstitium and proteinuria.
Recent advances in genome editing technologies and stem cell research give
great insights to understand the pathogenesis of CKD, including identifications
of the origins of renal myofibroblasts and tubular epithelial cells upon injury.
Environmental factors such as hypoxia, oxidative stress, and epigenetic factors
in relation to CKD are also discussed.
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Introduction
Chronic kidney disease (CKD) is a growing health burden with an 
increasing incidence and prevalence worldwide. An estimated 13% 
of adults in the US and Japan have CKD, and the proportion of 
affected individuals increases each year because of an aging popu-
lation and increases in diabetes and hypertension, the most com-
mon causes of CKD1,2. CKD is a risk factor for end-stage kidney 
disease (ESKD), cardiovascular disease, and overall mortality3. In 
the US, the economic costs of CKD and ESKD in patients over 
age 65 are $60 billion, representing 24% of total Medicare expen-
ditures in 20114. Currently, the predominant problem is that thera-
peutic options for CKD are limited and often ineffective, meaning 
that there is essentially no cure for CKD. Therefore, translating 
our understanding of CKD pathogenesis into treatments is a high 
priority in the field.

CKD is defined as any condition that causes abnormalities of kid-
ney structure or function for a duration of more than 3 months with 
notable implications for patient health5,6 (Table 1). Regardless of 
initial etiology, fibrosis, tubular atrophy, and interstitial inflamma-
tion are common pathological features of CKD. Careful histologi-
cal observations have demonstrated that functional impairment of 
the kidney is more highly correlated with tubulointerstitial dam-
age than with glomerular injury, which is often associated with the 
loss of peritubular capillaries (PTCs)7. In addition, hypoxia is now 
accepted to be the final common mechanism underlying the pro-
gression of CKD to ESKD, which we discuss later in this article8,9.

The current understanding of CKD is based on a broad range of 
studies focused on the genetic risk factors for the development and 
progression of CKD, the pathogenesis of renal fibrosis (e.g., the 
origin and activation of renal myofibroblasts, fibrogenic mediators 
and signaling, crosstalk with tubular cells, vasculature, and inflam-
matory cells), tubular injury and repair, mediators and dynamics 
of renal inflammation, and cellular adaptations to the microenvi-
ronment such as hypoxia and oxidative stress. This article reviews 
some of the recent advances in our understanding of CKD from two 
vantages: cellular regeneration and hypoxia. A better understand-
ing of CKD pathogenesis will hopefully provide insights leading to 
better management of CKD in the future.

Kidney development and regeneration
Nephrogenesis and nephron number
Nephrogenesis requires precise sequential and reciprocal interac-
tions between renal progenitor cells and their integration with vas-
culature. In mammals, the metanephric kidney develops through 
interactions between the metanephric mesenchyme (MM) and uretic 
bud10. MM nephron progenitors give rise to Six2+ cap mesenchyme 
progenitor cells (which later differentiate into nephron epithelia, 
including proximal and distal tubular cells, the loop of Henle, and 
podocytes) and Foxd1+ cortical stromal progenitor cells (which later 
differentiate into cortical and medullary interstitial cells, mesangial 
cells, and pericytes)11–14. Nephrogenesis ceases at approximately 
the third post-natal day in mice15 and 36 weeks of gestation in 
humans16. Low nephron number is associated with a risk of renal 
disease and hypertension17, and low birth weight and prematurity 
are the most robust clinical surrogates for low nephron number18. 
The molecular event that governs the end of nephron formation is 
unknown and is an ongoing topic of research10,19. The regenerative 
capacity of glomeruli is limited after birth, and many studies have 
focused on the source of regenerated tubular cells following acute 
kidney injury (AKI) and the origin of myofibroblasts in CKD.

Origin and regeneration of tubular cells
A proliferative burst of tubular cells occurs during kidney injury. 
Sophisticated lineage-tracing studies have excluded the possibil-
ity of extrarenal cells contributing to tubular regeneration20. Recent 
studies further support the self-proliferation of existing differenti-
ated tubular cells rather than the contribution of stem-like cells to 
epithelial proliferation after AKI21–23.

Whereas the origin of the repairing tubule is becoming clearer, less 
is known regarding the signals that regulate epithelial dedifferentia-
tion, proliferation, and polarization. One signal is known to derive 
from inflammatory cells. Cellular stress in tubules induces the acti-
vation of innate immunity through the production of cytokines and 
chemokines, which exacerbate tubular injury by recruiting mac-
rophages, neutrophils, and proinflammatory lymphocytes24. One 
study demonstrates that a lack of interleukin-1 receptor-associated 
kinase-M leads to persistent proinflammatory macrophage infil-
tration with higher tubular phagocytosis activity and thus limited 

Table 1. Definition of chronic kidney disease (KDIGO 2012).

Criteria for chronic 
kidney diseasea

Definition of criteria

One or more marker of 
kidney damage

Albuminuria (AER of ≧30 mg per 24 hours and ACR of ≧30 mg/g) 
Urine sediment abnormalities 
Electrolyte and other abnormalities due to tubular disorders 
Abnormalities detected by histology 
Structural abnormalities detected by imaging 
History of kidney transplantation

Decreased GFR GFR of less than 60 ml/min per 1.73 m2

aEither of the criteria below should be present for more than 3 months. Data are from the KDIGO (Kidney 
Disease: Improving Global Outcomes) 2012 Clinical Practice Guideline for the Evaluation and Management 
of Chronic Kidney Disease. ACR, albumin-to-creatinine ratio; AER, albumin excretion rate; GFR, glomerular 
filtration rate.
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tubular re-epithelialization25. This effect was reversed by tumor 
necrosis factor-alpha blockade, indicating that cytokine-induced 
tubular attack overwhelms tubular repair capacity. Advances in 
genetic manipulation at the desired time point, together with a bet-
ter understanding of myofibroblasts, now allow the study of signal-
ing from fibroblasts or myofibroblasts to tubular cells in vivo.

However, whether tubular regenerative capacity is itself limited in 
CKD is unknown. The intrinsic limit of tubular regenerative capac-
ity may be related to disturbances in metabolism, endoplasmic 
reticulum stress, cell cycle arrest, or DNA damage26. In addition, the 
first direct reprogramming of renal epithelial cells to Six2+ neph-
ron progenitor cells was accomplished by the addition of a com-
bination of six transcription factors, including SIX2 and OSR127. 
These reprogrammed cells differentiated into epithelial cells in a 
re-aggregation assay, providing another strategy for replacing the 
epithelial layer if correct integration into nephrons can be achieved. 
In parallel, several groups have succeeded in the induction of cells 
of renal lineage, including intermediate mesoderm as well as indi-
vidual differentiated cells such as proximal tubular cells or podo-
cytes from embryonic stem or induced pluripotent stem cells11,28,29. 
Similar to the maintenance of nephron progenitor potency in the 
stromal-epithelial niche during kidney development, sophisticated 
programs may be required to maintain this potency30.

Origin of myofibroblasts and their transdifferentiation
Myofibroblasts are extracellular matrix-producing cells that drive 
fibrogenesis. The origin of renal myofibroblasts has been another 
area of major debate. Currently, FoxD1-Cre-labelled pericytes31, 
P0 (myelin protein 0)-Cre-labelled resident fibroblasts32, and renal 
erythropoietin-producing (REP) cells33 are reported as the origins 
of myofibroblasts. The absence of permanent specific markers and a 
shared developmental program makes it difficult to determine their 
precise origin. Their similar localization—near CD31+ endothelial 
cells in the interstitium—and gene expression patterns (PDGFRβ 
(platelet derived growth factor receptor beta) and CD73) suggest 
that they represent an overlapping cell population. A recent study 
reported that Gli1+PDGFRβ+CD73− cells, a small fraction of the 
total PDGFRβ population, are the major cellular origin of myofi-
broblasts in multiple organs, including kidney, heart, and liver34. 
Unified theories require further investigation.

Triggers of the transdifferentiation of resident fibroblasts, REPs, 
or pericytes to alpha-smooth muscle actin-producing myofibrob-
lasts also remain unclear. Factors produced by injured tubular and 
inflammatory cells, including vascular endothelial growth fac-
tors (VEGFs), platelet-derived growth factors (PDGFs), fibrob-
last growth factors, and transforming growth factor-beta, activate 
pericytes and induce their detachment from capillaries and their 
transdifferentiation to myofibroblasts33,35. In a typical inflammatory 
fibrogenic model known as unilateral ureteric obstruction (UUO), 
this transdifferentiation was found to be partially reversible in 
REPs after removal of the insult33. Recently, a comprehensive DNA 
microarray analysis of pericyte-to-myofibroblast transition was 
performed by using translational ribosome affinity purification in 
UUO, which may yield clues to help characterize these cells36.

Mediators of chronic kidney disease progression
Proteinuria
Proteinuria is an established mediator of CKD pathogenesis, and 
lowering proteinuria retards CKD progression37–40. Protein overload 
exacerbates tubulointerstitial injury in a number of ways: direct 
tubular injury, including lysosomal rupture and energy depletion; 
activation of intratubular complement components, which leads to 
tubular cell activation or injury; and stimulation of inflammatory 
and fibrogenic mediators41–43.

Hypoxia
The fact that nonproteinuric CKD is common and that renin-
angiotensin-aldosterone inhibitors have renoprotective effects 
beyond lowering blood pressure and reducing proteinuria suggests 
that there are other key mediators of CKD pathogenesis. Chronic 
hypoxia of the tubulointerstitium is now widely accepted as the 
final common pathway in CKD progression8,9 (Figure 1). Once PTC 
rarefaction occurs, hypoxia in the affected region triggers pheno-
typic changes in tubular cells (e.g., proliferation rate and apoptosis), 
which in turn serve as a source of mediators involved in inflam-
matory cell infiltration and fibrosis. Fibrosis further impairs local 
oxygenation, while hypoxia induces sterile inflammation. Hypoxic 
responses are also induced by inflammatory transcription factors44. 
Thus, hypoxia is intricately linked to inflammation and oxidative 
stress, causing a vicious cycle leading to CKD pathogenesis.

Hypoxia-inducible factors (HIFs) are transcription factors that 
function as master regulators of biological adaptive responses to 
hypoxia45. HIFs consist of an alpha subunit (HIF-1α, HIF-2α, and 
HIF-3α) and a common beta subunit. Under normoxic conditions, 
HIF-α is hydroxylated by prolyl hydroxylase (PHD) and undergoes 
proteasomal degradation. HIFs regulate the expression of more than 
150 genes, including those involved in anaerobic metabolism (e.g., 
glucose transporter-1), hematopoiesis (erythropoietin, or EPO), 
and angiogenesis (e.g., VEGF and angiopoietins). In response to 
hypoxia in kidney, HIF-1α is expressed in tubular cells, whereas 
HIF-2α is expressed mainly in endothelial cells and interstitial 
fibroblasts46.

In kidney disease, despite the hypoxic milieu, HIF activation is 
considered to be suboptimal. In the early phase of UUO (day 2), 
induction of HIF-1α and its target genes was disrupted, although 
pronounced hypoxia was confirmed by a hypoxia-detecting probe33. 
In another study using a rat CKD model, indoxyl sulphate, a repre-
sentative uremic toxin, impeded the recruitment of transcriptional 
coactivators to HIF-1α, causing insufficient upregulation of HIF-1 
target genes while leaving HIF-1α protein level unaffected47. This 
was reversed by an oral adsorbent for CKD, AST-120, that is cur-
rently in clinical use. Indeed, genetic and pharmacological modu-
lation of HIFs in the kidney has been a subject of great interest, 
not only for investigating the roles of HIFs but also as a potential 
therapeutic tool. The renoprotective effects of HIF activation have 
been demonstrated in various AKI models, whereas those in CKD 
models have variable outcomes48. Pepck-Cre-mediated conditional 
knockout of HIF-1α in proximal tubules ameliorated fibrosis in 
UUO49, whereas global HIF activation by Vhl knockout ameliorated 
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inflammation and fibrosis in the same model50. Global HIF activa-
tion by PHD inhibition reduced the tubulointerstitial injury associ-
ated with reduced tubular injury and capillary rarefaction in CKD 
rats51 and improved oxygen metabolism in diabetic rats52. HIF-1 
in tubular cells exhibits both autocrine (e.g., cell cycle regulation 
and metabolic regulation) and paracrine (e.g., angiogenic and fibro-
genic factors) signaling, which may result in different long-term 
renal outcomes. Additional cell type-specific and time-dependent 
manipulations of HIF activity may yield further insight for the 
development of future kidney therapies.

Renal anemia is a frequent complication of CKD. The pathogene-
sis of renal anemia includes chronic inflammation, iron deficiency, 
shortened erythrocyte half-life, and, most importantly, EPO defi-
ciency. One explanation for the observed EPO deficiency is the 
accumulated indoxyl sulphate observed in CKD. Indoxyl sulphate is 
reported to suppress EPO production in a HIF-dependent manner53. 
The identification of REPs also provided insight into the causes of 
EPO deficiency. REPs were repressed of EPO producing potential 
upon transdifferentiation to myofibroblasts in UUO through the acti-
vation of nuclear factor-kappa-B (NF-κB) signals33. REP-specific  
PHD2 knockout mice recovered EPO production in UUO and 

lipopolysaccharide-treated mice via HIF-2 activation54. This find-
ing is in accordance with the observation that the pharmacological 
activation of HIFs by PHD inhibitors augmented EPO production in 
patients with ESKD55. Notably, PHD2 knockout-mediated HIF acti-
vation in REPs did not affect the inflammatory or fibrotic pathology 
of UUO; REP plasticity seems to be regulated by multiple signals 
at multiple levels.

What causes angiogenesis insufficiency in CKD? Hypoxia signals 
generally promote angiogenesis56, and PTC development is thought 
to be regulated by angiogenic factors (e.g., VEGF, fibroblast growth 
factors, angiopoietins, and PDGF) secreted from tubular cells as 
well as endothelial and mesenchymal precursors. Doxycycline-
regulated tubular-specific VEGF-A deletion during development 
led to a marked reduction of PTC, whereas deletion of VEGF-A 
post-natally between days 21 and 42 did not result in pronounced 
PTC rarefaction57. This suggests a difference in tubulovascular cross-
talk in the developing and adult kidney. Another study that focused 
on pericyte-endothelial crosstalk in the adult kidney58 showed that 
PDGFβ and VEGF receptor signaling induced pericyte detach-
ment from PTC and their transdifferentiation to myofibroblasts in 
UUO. These unusual behaviors by angiogenic factors may in part 

Figure 1. Pathogenesis of chronic kidney disease. Tubulointerstitial hypoxia, inflammation, and oxidative stress form a vicious cycle in 
chronic kidney disease (CKD) progression. Glomerular injury results in a decrease in peritubular capillary (PTC) blood flow and subsequent 
tubulointerstitial hypoxia. Hypoxia and proteinuria cause tubular injury, which in turn triggers the production of cytokines and chemokines 
and promotes inflammatory cell infiltration into the tubulointerstitium. Damaged PTC also facilitates inflammatory cell infiltration. Hypoxia, 
inflammation, and oxidative stress promote the transdifferentiation of resident fibroblasts, renal erythropoietin-producing cells, or pericytes to 
extracellular matrix (ECM)-producing myofibroblasts. Direct interactions between the injured tubular cells and myofibroblasts also play a role. 
Fibrosis further impairs local oxygenation.
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explain the insufficient angiogenesis in adult kidneys, including 
CKD kidneys.

Oxidative stress
Oxidative stress, another type of oxygen disturbance, is inevitably 
present in CKD and inseparably linked to hypoxia and inflammation59 
(Figure 1). Oxidative stress is caused by increased reactive oxy-
gen species (ROS) production or impaired antioxidant capacity, 
or both. Factors such as proteinuria, uremic toxin, hyperglyc-
emia, and increased activity in the intra-renal angiotensin system 
contribute to increased oxidative stress in CKD. The Keap1-Nrf2 
(Kelch-like ECH-associated protein 1-nuclear factor-erythroid-
2-related factor 2) system is the major regulator of cytoprotective 
responses to endogenous and exogenous stresses caused by ROS. 
Impaired Nrf2 activity is observed in various animal CKD models, 
and the activation of Nrf2 ameliorates antioxidant defense and inflam-
mation. Pharmacological activation of the Nrf2 pathway has been 
challenged with synthetic triterpenoid bardoxolone methyl in type 
2 diabetic CKD patients. A phase 2 BEAM (52-Week Bardoxolone 
Methyl Treatment: Renal Function in CKD/Type 2 Diabetes) trial 
showed promise for the use of bardoxolone methyl to increase esti-
mated glomerular filtration rate (eGFR) compared with a placebo 
(mean change of 8.2 to 11.4 ml/min per 1.73 m2, depending on the 
dose group) in moderate-to-severe diabetic CKD patients60 (eGFR 
20 to 45 ml/min per 1.73 m2). Notably, increased albuminuria was 
observed in the bardoxolone methyl group, despite significantly 
improved kidney function. A study in cynomolgus monkeys sug-
gests that bardoxolone methyl decreases the expression of megalin, 
which is primarily responsible for albumin reabsorption in proxi-
mal tubules, resulting in increased albuminuria61. Whether and how 
Nrf2 is related to reduced megalin expression remain unknown. The 
subsequent phase 3 BEACON (Bardoxolone Methyl Evaluation in 
Patients with Chronic Kidney Disease and Type 2 Diabetes Melli-
tus: the Occurrence of Renal Events) trial in diabetic CKD stage 4 
patients (eGFR of 15 to less than 30 ml/min per 1.73 m2) was termi-
nated because of a higher rate of cardiovascular events in the bar-
doxolone methyl group than in the placebo group62. Controversies 
exist as to the cause of increased cardiovascular events during bar-
doxolone methyl treatment and as to the appropriate selection of a 
target patient population for this therapy63,64. Interventions designed 
to prevent oxidative stress remain important therapeutic options 
for CKD.

New technology-driven advances in understanding 
of chronic kidney disease
-Omics
‘-Omics’ approaches have rapidly expanded our understanding of 
CKD. Genome-wide association studies have identified multiple 
genetic loci associated with kidney function-related traits65–68. The 
shared loci among multiple ethnic groups include the UMOD locus, 
which encodes the abundant urinary protein uromodulin produced 
by the epithelial cells of the thick ascending limb of the loop of 
Henle (TAL). Further animal studies have demonstrated the causal 
role of UMOD risk variants in hypertension and CKD by modulating 
salt handling in the TAL69. An example for a specific ethnic group 
is APOL1. The higher incidence of ESKD in African Americans 
compared with European Americans led to the identification of 
APOL1 variants as risk factors for the development and progression 
of CKD among African Americans in the general population70–72.

Epigenetics
Epigenetic regulation in CKD is emerging as an important topic. As 
proposed in the “metabolic memory” theory of diabetic nephropa-
thy, hypoxia may be remembered via epigenetic changes to play a 
crucial role in the pathogenesis of CKD. Epigenetic modifications 
include cytosine DNA methylation, noncoding RNA, and histone 
post-translational modification73. Differentially methylated regions 
were observed in the cortical tubules of CKD patients and controls, 
especially in enhancer regions of key fibrotic genes74. Microar-
ray approaches have identified a number of potential microRNAs 
responsive in CKD animal models75. MicroRNA-21 was shown to 
promote fibrosis by repressing peroxisome proliferator-activated 
receptor-alpha, by either germline deletion of miR21 or oligonu-
cleotide administration of anti-miR21 in UUO76. Hypoxia is also 
reported to alter the chromatin conformational structure dynami-
cally and cause histone modifications in human umbilical vein 
endothelial cells, which result in transcriptional changes of HIF-1 
target genes77. Prolonged ischemic-reperfusion injury has caused 
histone modifications at proinflammatory and profibrotic genes prior 
to fibrosis, which may be related to CKD pathogenesis78. Interven-
tional studies for these epigenetic modifications are anticipated.

Perspectives
Technological developments in genome editing, genome-wide 
analysis, and dynamic multiplex four-dimensional measurement, as 
well as advances in the fields of stem cell and regenerative biology 
are considerable. It is now possible to investigate the contextual, 
environmental, and interdependent coordination between multi-
ple players in the kidney79. Needless to say, translating the results 
of basic research in animal models to the bedside will require a 
number of additional studies. One example is the lack of animal 
models that mimic human CKD pathophysiology. To overcome 
these issues, research using samples from patients with CKD is 
under way. Overall, this is an exciting time for CKD research, as 
a fuller understanding of its pathogenesis lays the foundation for 
pathogenesis-based kidney therapy.
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