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ABSTRACT

CpG islands (CGIs) are CpG-rich regions compared
to CpG-depleted bulk DNA of mammalian genomes
and are generally regarded as the epigenetic regu-
latory regions in association with unmethylation,
promoter activity and histone modifications.
Accurate identification of CpG islands with
epigenetic regulatory function in bulk genomes is
of wide interest. Here, the common features of func-
tional CGIs are identified using an average mutual
information method to differentiate functional CGIs
from the remaining CGIs. A new approach (CpG
mutual information, CpG_MI) was further explored
to identify functional CGIs based on the cumulative
mutual information of physical distances between
two neighboring CpGs. Compared to current
approaches, CpG_MI achieved the highest predic-
tion accuracy. This approach also identified new
functional CGIs overlapping with gene promoter
regions which were missed by other algorithms.
Nearly all CGIs identified by CpG_MI overlapped
with histone modification marks. CpG_MI could
also be used to identify potential functional CGIs
in other mammalian genomes, as the CpG dinucle-
otide contents and cumulative mutual information
distributions are almost the same among six
mammalian genomes in our analysis. It is a reliable
quantitative tool for the identification of functional
CGIs from bulk genomes and helps in understanding
the relationships between genomic functional
elements and epigenomic modifications.

INTRODUCTION

CpG islands (CGIs) are generally considered as the epige-
netic and functional elements (1,2). CpG dinucleotides

are notably depleted in mammalian genomes where
the observed frequency of CpG dinucleotides is only
0.20–0.25 of the expected from the G and C base compo-
sition (3). In contrast, CpG islands are CpG enriched
regions where the frequency of CpGs is exceptionally
high (4). At least 50% of gene promoters are associated
with CGIs, which can be considered as gene markers (5,6).
DNA methylation is usually absent in CGIs, compared to
about 70–80% of CpG dinucleotides methylation in
human somatic cells (7). CpG island methylation plays
important roles in gene expression (8), X chromosome
inactivation (9) and genomic imprinting (10). Hyper-
methylation of promoter CGIs is associated with the
silence of tumor suppressor genes in human cancer cells
(11). Functional CGIs are generally associated with
epigenetic regulatory function, such as the unmethylation,
promoter activity and histone modifications (2,12).
Currently, two approaches have been widely used

for CGIs identification: the computational method based
on the DNA sequence features (3) and the experimental
method based on the absence of methylated CpG
dinucleotides (4,13). A common problem of computa-
tional method is that a proportion of identified CGIs are
actually Alu repetitive elements. Alu repetitive elements
are abundant mobile elements about 300 base pairs (bp)
long in human genome with high G+C content and high
CpG observed-to-expected ratio (CpG O/E). Alu repeti-
tive elements are often falsely identified as CGIs by the
original criteria of Gardiner-Garden and Frommer
(G+C content� 50%, CpG O/E� 0.6 and length�
200 bp) (3). Alu repetitive elements are usually highly
methylated and transcriptionally silent, which is contra-
dictory to the original definition of CGIs by Bird (14).
Thus, the CGIs overlapped by Alu repetitive elements
are usually considered as the CpG clusterings rather
than functional CGIs. The overlapping rate between the
CGIs and Alu repetitive elements has become an impor-
tant criterion for assessing the false positive rate for
various algorithms of CGIs identification. The original
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criteria for identifying CGIs exhibit high false positive
rate, since about 60% of the identified CGIs are depen-
dent on Alu repetitive elements (15). Takai and Jones
developed more stringent criteria to reduce the
overlapping frequency between CGIs and Alu repetitive
elements (G+C content �55%, CpG O/E� 0.65 and
length �500 bp) (16). Using Takai and Jones’s criteria,
the algorithms of CpGProD (17) and CpGIS (18) were
developed to identify CGIs from human and mouse
genomes. However, a part of functional CGIs were
missed because of the stringent constraints on these
parameters. These functional CGIs are usually shorter
in length, lower in CpG O/E or G+C content than the
ad hoc thresholds. Moreover, these sliding window
methods are computationally inefficient as the identifica-
tion depends on the window size and step size. CpGcluster
is a new algorithm based on the physical distances between
neighboring CpGs. This approach is independent of the
three parameters mentioned above and is computationally
more efficient because of its exclusive use of integer arith-
metic in scanning the linear chromosomes (19). However,
it still has the drawback of low sensitivity, partly due
to the criteria of short length, high CpG O/E and G+C
content. CpGIF (20) extended the algorithm of
CpGcluster. It detected high CpG content regions as
seeds and then extended them to final CGIs iteratively
by reducing the content. This algorithm increases the
length of the identified CGIs and significantly improves
the sensitivity. However, it has low specificity and the
constraints of the original criteria of Gardiner-Garden
and Frommer.
Few computational algorithms have been developed for

the identification of CGIs of non-human mammalian
genomes. One reason is that it is unclear whether the
criteria for human CGIs can be applied to other mamma-
lian genomes, especially when taking different genomic
features among different species into consideration.
Another reason is that the scarcity of epigenetic data for
these mammalian species is available. Han et al. (21) have
identified the CGIs of ten mammalian genomes using
three different computational algorithms. Takai and
Jones’ stringent criteria were considered as the most
appropriate method for the CGIs identification of mam-
malian species. However, the stringent criteria would
result in loss of the functional CGIs in the human and
other species’ genomes.
In addition to computational methods, the experimental

CGI library has been constructed according to the feature
of frequent lack of methylated cytosine in CGI regions
(4,13). Illingworth et al. have detected many new CGIs
in human blood genomic DNA that were not identified
by current computational algorithms. However, the exper-
imental method is limited to one tissue type or one cell
type, and mainly depends on the feature of absence of
CpG methylation. A fraction of functional CGIs are
likely to be missed, as CpG methylation is tissue specific
or cell specific. To take advantages of both computational
and experimental approaches, Bock et al. predicted the
combined epigenetic scores of CGIs using the conven-
tional sliding window method by incorporating DNA
sequence features with epigenetic state, such as DNA

methylation, histone modifications and chromatin acces-
sibility (2). The ‘bona fide’ CGIs having higher values
(>0.5) were distinguished from the remaining (�0.5) by
their combined epigenetic scores of CGIs. This strategy
provides a new prospect for identifying functional CGIs
by incorporation of genomic and epigenomic information.
However, all the CGIs predicted by Bock et al. rely on the
conventional sliding window method and genome-wide
experimental epigenetic data. Therefore, the CGIs
predicted by this approach are confined to the conven-
tional thresholds. It is also difficult to apply this strategy
to non-human species due to paucity of epigenetic data of
these species. Analyzing common features of functional
CGIs in bulk genome has always been challenging. The
investigation regarding CpG dinucleotides enrichment in
CpG island regions prompted us to analyze mutual infor-
mation of physical distances between two neighboring
CpGs. We then further investigated whether these func-
tional CGIs had common sequence features by the theory
of mutual information. A modified mutual information
method was implemented to quantify how well these
enriched CpG dinucleotides were correlated with each
other, and to provide more accurate identification of
epigenetic regulatory regions. In fact, mutual information
is a useful tool for identifying different segments that are
correlated in the genomes. Mutual information between
single nucleotides as signatures of DNA sequences has
been widely used in bioinformatics research (22,23).

In this study, a new mutual information algorithm
was developed to identify functional CGIs based on
the physical distances between two neighboring CpGs.
Common features of ‘bona fide’ CGIs have been
explored by calculating the average mutual information
(AMI) of the physical distances between two neighboring
CpGs. The AMIs of functional CGIs were remarkably
different from that of the remaining CGIs and random
segments (Figure 1). CpG_MI, a more precise and efficient
tool, was developed to differentiate functional CGIs from
the bulk genome using cumulative mutual information
(CMI). This approach achieved the highest prediction
accuracy among current approaches. CpG_MI has suc-
cessfully identified 40 926 CGIs from human genome.
It achieved the highest coverage rate with experimental
unmethylated CGIs identified by Illingworth et al.
Moreover, almost all CGIs identified by this approach
are associated with histone modification marks.
H3K4me3 is strongly correlated with gene transcription
activation (24,25). About 81.6% of the CGIs identified
by CpG_MI overlapped with H3K4me3 marks. The
CMIs of random segments of bulk genome from human
and other five mammals were also investigated. The CpG
contents in the six mammalian species are almost identi-
cal, and the CMI distributions of random segments from
six mammalian genomes follow nearly the same exponen-
tial distribution. As the model of mutual information for
identification of CGIs mainly relies on the CpG content
and CMI distribution of the bulk genome, CpG_MI could
also be used for identifying functional CGIs in other mam-
malian genomes. Based on CpG_MI, a web service was
developed for CGIs identification, which is available at
http://bioinfo.hrbmu.edu.cn/cpgmi/.
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MATERIALS AND METHODS

Genome datasets

The sequences and corresponding genome information of
six mammals and four fish species were downloaded from
the UCSC Genome Browser (26). These mammalian
genomes are from human (hg18), chimpanzee (panTro2),
mouse (mm9), rat (rn4), cow (bosTau4) and dog
(canFam2). Four fish genomes are from zebrafish
(danRer5), medaka (oryLat2), stickleback (gasAcu1) and
tetraodon (tetNig1). Random genomic segments of these
mammalian genomes were retrieved using the UCSC
Galaxy tool (27) and Alu repetitive elements were
downloaded from the UCSC Table Browser (28).

Histone modification datasets

The histone modification data were obtained from
Barski et al. (25) and Wang et al. (29), where ChIP-seq
experiments were used to sequence histone methylation
and acetylation modifications in human CD4+T cells.
It is the most comprehensive human genome-scale high-
resolution profiles including 20 hisonte methylations and
18 histone acetylations.

CGIs library

The library of 14 022 experimental CGIs was obtained
from Illingworth et al. (4), where nonmethylated CpG
affinity chromatography technique was used. Human
CGIs with their combined epigenetic scores predicted by
Bock et al. based on the criteria of Gardiner-Garden
and Frommer (G+C content� 50%, CpG O/E� 0.6,
and length� 200 bp) were downloaded from http://neigh-
borhood.bioinf.mpiinf.mpg.de/CpG_islands_revisited (2).
The four sets of CGIs were defined as: B1 (0–0.33), B2
(0.33–0.50), B3 (0.50–0.67) and B4 (0.67–1) according to
the range of combined epigenetic scores of CGIs classified
by Bock et al.

Distribution regions of genome

The bulk genome assemblies were divided into three parts
as classification in CGIs proposed by Ioshikhes and
Zhang (5): promoter, intragenic and intergenic regions.
Promoter region is defined as the region between 2k bp
upstream of transcriptional start site (TSS) and the end of
first exon. Intragenic region is defined as the region from
the end of first exon to 2k bp downstream of
transcriptional end site (TES). Intergenic regions are
defined as the remaining regions in a bulk genome
except the promoter and intragenic regions.

Test set for evaluation

To assess the prediction accuracy of CpG_MI, we
compared it with other algorithms by evaluating proce-
dure including the sensitivity (SN), specificity (SP),
accuracy (ACC) and correlation coefficient (CC). SN
represents the proportion of experimental CGIs that
have been correctly identified as CGIs. SP represents the
proportion of random segments that have been correctly
identified as random segments. ACC and CC are two

important global accuracy scalars that are used to
balance SN and SP. The 14 022 experimental CGIs (4)
were set as the positive CGIs of the test set. Corres-
pondingly, 14 022 segments were randomly selected as
the negative CGIs of the test set from the human bulk
genome. These negative CGIs do not overlap with the
experimental CGIs of the test set and have the same
length distribution as the experimental CGIs. In order to
evaluate various algorithms, 1000 sequence segments were
randomly chosen respectively from the positive CGIs and
negative CGIs of the test set. This sampling process was
repeated ten times. The calculation formulas for SN, SP,
ACC and CC are defined as follows:

SN ¼
TP

TPþ FN
,

SP ¼
TN

TNþ FP
,

ACC ¼
TPþ TN

TPþ FPþ TNþ FN
,

CC ¼
TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FNÞðTPþ FPÞðTNþ FPÞðTNþ FNÞ
p ,

where TP, TN, FP and FN represent true-positives, true-
negatives, false-positives and false-negatives respectively.

Average mutual information and cumulative mutual
information of DNA sequence segments

The average mutual information of two neighboring
CpGs was developed to distinguish the mutual informa-
tion distributions of distances between two neighboring
CpGs among the sets of CGIs and random segments.
The location of CpG dinucleotide is treated as a variable
in DNA sequence segments consisting of CGIs and
random segments. The number of nucleotides between
two neighboring CpGs is defined as the physical distance
k between two neighboring CpGs, e.g. ‘CGACTC���AA|fflfflfflfflffl{zfflfflfflfflffl}

k

CG’.

Suppose that S is a set of n sequence segments,
the formula of average mutual information of two neigh-
boring CpGs with distance k of the set S is defined as:

AMIðkÞ ¼
1

nk

Xn

i¼1

p
ðiÞ
ðcg,cgÞðkÞ log

p
ðiÞ
ðcg,cgÞðkÞ

pcg � pcg
, k ¼ 1,2 � � � 100: 1

where pcg is the probability of occurrence of CpG
dinucleotides in a bulk genomic sequence and nk
represents the number of sequence segments
(p
ðiÞ
ðcg,cgÞðkÞ 6¼ 0,i ¼ 1,2, � � � ,n). In order to distinguish effec-

tively the different sets of CGIs and random
segments using AMI(k), the sequence segments
(p
ðiÞ
ðcg,cgÞðkÞ ¼ 0,i ¼ 1, 2, � � � , n) were filtered out in the

process of computing AMI(k) in the set S. p
ðiÞ
ðcg,cgÞðkÞ

represents the probability of occurrence of two
neighboring CpGs with distance k of the i-th measured

sequence segment in set S and is defined as p
ðiÞ
ðcg, cgÞðkÞ

¼
f
ðiÞ

k

NðiÞ
,i ¼ 1, 2, � � � , n, where NðiÞand f

ðiÞ
k represent respec-

tively the length and frequency of occurrence of two neigh-

boring CpGs with distance k of the i-th measured sequence

segment.
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The AMI was developed to reveal the distinction of
mutual information distributions of distances between
two neighboring CpG dinucleotides among the different
CGI sets and the random segment set. To quantitatively
identify functional CGIs with high mutual information
from human bulk genome, the cumulative mutual infor-
mation (CMI) was developed to measure the accumula-
tion of mutual information of neighboring CpG
dinucleotides with different distances in DNA sequence
segments. The formula of cumulative mutual information
of the i-th measured sequence segment in set S is defined
by

CMIðiÞ ¼
XM

k¼0

pðiÞ
ðcg, cgÞ
ðkÞ log

pðiÞ
ðcg, cgÞ
ðkÞ

pcg � pcg
, i ¼ 1, 2 . . . , n: 2

Where M is the maximum value of cumulative distance
k between two neighboring CpGs of measured DNA
sequence segments.

RESULTS

Characteristics of functional CGIs and the algorithm
of CpG_MI

To find the characteristics of functional CGIs in human
genome, the AMI was used to analyze the relationship
among the four sets of CGIs divided by Bock et al. (2)
and Random (random segments set). The combined
epigenetic scores of the above four sets of CGIs were
grouped as B1 (0–0.33), B2 (0.33–0.50), B3 (0.50–0.67)
and B4 (0.67–1). The CGIs with combined epigenetic
scores >0.5 are the ‘bona fide’ CGIs, which was deter-
mined by Bock et al. (2). Because the ‘bona fide’ CGIs
are strongly associated with epigenetic regulatory
function, these CGIs are considered as functional CGIs.
The AMI profiles show that B1 and B2 have the similar

AMI distribution along the physical distances from 0 to
100 bp. In analogy, B3 and B4 also have similar AMI
distribution. However, B3 and B4 can be distinguished
from B1 and B2 by their AMI distributions. The AMI
distributions of B3 and B4 are significantly higher than
that of B1 and B2 when the distances are between 0 and
10 bp. When the distances are greater than 10 bp, a
reversed trend was observed (Figure 1). It indicates that
the AMI profile can be used to differentiate the ‘bona fide’
CGIs (in B3 and B4) from the remaining CGIs (in B1 and
B2). Moreover, the AMIs of 100 000 random segments
from human genome were computed. We found there
was no significant difference of the AMIs of random
segments when physical distance k varied from 0 to
10 bp (Figure 1). Therefore, the AMI distribution
demonstrates that these functional CGIs have higher
mutual information of physical distances between two
neighboring CpGs than the remaining CGIs and the
random segments following physical distance k ranging
from 0 to 10 bp. In order to confirm this observation, all
‘bona fide’ CGIs were scanned. The results show that
83.4% of ‘bona fide’ CGIs (in B3 and B4) contain one
or more hot spot regions (HSR) consisting of at least
five CpG dinucleotides, where HSR is defined as CpG

loci as the start and end boundary, and all neighboring
distances of successive CpGs are �10 bp. As for the CGIs
in B4, there are 94.5% of CGIs containing one or more
HSRs. When ‘bona fide’ CGIs are equally divided into
three parts by use of tripartite method, most of these
hot spot regions locate in the middle regions of the
‘bona fide’ CGIs as shown in Supplementary Figure S1,
for example. It can be concluded that functional CGIs
have two important features: (i) each CGI contains at
least one hot spot region and (ii) hot spot regions
usually locate in the middle regions of the functional
CGIs.

The CMIs of CGIs in five different sets: B1, B2, B3,
B4 and Random were calculated (Formula 2) to
quantitatively evaluate the impact of mutual information
of different distances between two neighboring CpGs on
identifying functional CGIs from human genome. Taking
the significant impact of the distances (�10 bp) into con-
sideration, the CMIs of CGIs in the above five sets were
first computed having M set to 10 (Figure 2). The results
clearly demonstrate that the CMIs of functional CGIs
(in B3 and B4) are distinctly different from that of
nonfunctional CGIs (in B1 and B2) as well as the
random segments. Whether mutual information of the
longer distances between two neighboring CpGs
impacted on the effectiveness of classification between
the functional CGIs and the nonfunctional CGIs was
further evaluated. We found that the effect on classifica-
tion was similar when M was set to 30 and 50 (Figure 2).
In addition, the AMIs of identified functional CGIs had
no significant difference from the random segments when
the distance k is larger than 50 bp from Figure 1.
Therefore, M=50 should be used as the maximum of
cumulative distance. Notably, the AMIs of sets B1 and

Figure 1. The distribution of average mutual information. The Figure
shows that the distribution of the average mutual information of the
distances between the two neighboring CpGs from 0bp to 100 bp for
each set of CGIs. B1 (0–0.33), B2 (0.33–0.50), B3 (0.50–0.67) and B4
(0.67–1) represent different sets of CGIs, which fall into the different
intervals in terms of these combined epigenetic scores predicted by
Bock et al. (2). CAP denotes the set consisting of experimental CGIs
identified by Bird (1) using nonmethylated CpG affinity chromatogra-
phy technique, and random represents the set of 100 000 random
segments downloaded from UCSC (hg18) in the length range from
50 bp to 5000 bp. ‘k’ represents the distance between two neighboring
CpGs in a CGI or a random segment.
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B2 are significantly greater than zero when distance k
varies from 30 to 50 bp, while the CMIs of sets B1
and B2 have no significant difference between M=30
and M=50. The main reason is that the CGIs
(p
ðiÞ
ðcg,cgÞðkÞ ¼ 0) are filtered out in the process of computing

AMIs of sets B1 and B2 and most p
ðiÞ
ðcg,cgÞðkÞ of CGIs in sets

B1 and B2 are equal to 0 for distance M=50 from 30 to
50 bp. Therefore, the CMI values of CGIs in the sets B1
and B2 have no significant increase whenM varies from 30
to 50. We further computed the CMIs of hot spot regions
located in the middle regions of the ‘bona fide’ CGIs and
in the 100 000 random segments when M was set to 50.
The results show that CMIs of the hot spot regions are
larger than 0.8, and the percentage of CMIs �0.25 from
the 100 000 random segments is less than 1%. Therefore,
the threshold of the CMIs of functional CGIs is set to
0.25, which can significantly differentiate from the
random segments from human genome.

Based on the above findings, the search algorithm of
CpG_MI mainly consists of five steps:

Step 1: Scan each DNA sequence from 50 to 30 direction
to look for all CpG dinucleotides and record their
positions.
Step 2: Calculate the distance (k) of each two neighboring
CpGs and then scan the distances between two neighbor-
ing CpGs from 50 to 30 direction to cluster the CpGs into
subsequences while k is less than or equal to 10 bp.
Step 3: Compute the numbers of CpGs and the CMI of
each subsequence. The subsequence is identified as hot
spot region if the number of CpGs in the subsequences
is greater than 5 and the CMI is larger than 0.8.
Otherwise, it is filtered out.
Step 4: Extend the hot spot region to upstream and down-
stream iteratively by adding CpGs, and calculate the CMI
of extended CpG clustering. Iteration stops when CMI of
extended CpG clustering is less than 0.25. If the length of
extended CpG clustering is <50 bp, it is filtered out.
Return to step 2.
Step 5: Cluster two neighboring extended CpG clusterings
together if the distance between them is <100 bp.

The algorithm of CpG_MI was implemented using Perl
language. A web service and the executable Perl scripts are
available to public at http://bioinfo.hrbmu.edu.cn/cpgmi/.
CpG_MI was developed to identify the functional CGIs of
different mammalian genomes. Due to differences of CpG
content in different mammalian species, a species should
be selected before the sequence is uploaded to CpG_MI.
The output of CpG_MI includes the CGIs identified
together with corresponding genomic coordinate, length,
number of CpGs, G+C content and CpG O/E of the
CGIs.

Evaluation of CpG_MI compared with other current
approaches

It is important for CpG_MI to choose a threshold of the
hot spot regions containing a minimal number of CpG
dinucleotides. CpG_MI_i (i=5, 6, 7) represents that
hot spot regions are chosen as HSR_i (i=5, 6, 7) in the
algorithm CpG_MI, where HSR_i denotes the hot spot
region containing at least i CpG dinucleotides. In order
to assess the accuracy of different CpG_MI_ i (i=5, 6, 7),
sensitivity (SN), specificity (SP), accuracy (ACC) and cor-
relation coefficient (CC) were calculated (see ‘Materials
and Methods’ section). The results show that
CpG_MI_6 is the most appropriate determination since
it has the highest ACC and CC, and with moderate
values of SN and SP (Table 1). Therefore, the HSR_6 is
set as the optimal criterion for hot spot region in this
algorithm. Moreover, CpG_MI was compared to other
four algorithms for identifying CGIs, including two con-
ventional sliding window programs (CpGProD and
CpGIS) and the other two programs based on CpG
distances (CpGcluster and CpGIF). CpG_MI performed
better than the other programs with respect to sensitivity,
accuracy and correlation coefficient (Table 1).
The coverage rates of the CAP experimental CGIs and

the CGIs identified by five different algorithms in human
chromosomes 21 and 22 were computed (Supplementary
Figure S2). The data show that CpG_MI exhibits the
highest coverage rate with experimental CGIs than the

Figure 2. Box plots comparing the cumulative mutual information among five sets of CpG islands. These Figures show box plots of the cumulative
mutual information of five sets of CpG islands (Random, B1, B2, B3 and B4 as mentioned in Figure 1). The three figures represent respectively their
cumulative mutual information for M=10, M=30 and M=50, where boxes show center quartiles, whiskers extend to the most extreme data point
that is no more than 1.5 times the interquartile range from the box, and outliers are hidden.
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other algorithms. It demonstrates that CpG_MI is a better
tool for identifying the low methylated regions in human
genome.
According to the repeat-dependence criteria proposed

by Hutter et al. (15), the number of CGIs identified by
CpG_MI dependent on Alu repetitive elements was
computed. The result shows that the ratio (8.87%) of
CGIs dependent on Alu repetitive elements identified by
CpG_MI is lower than that of the conventional sliding
window algorithms under the stringent criterion (�10%)
(15). The CGIs identified by CpG_MI have the lower false
positive rate.

The distribution of CpG islands predicted by CpG_MI
in human genome

In order to assess the regulatory function of the
CGIs identified by CpG_MI, the location distributions
between the CGIs and genes in each chromosome of
human genome was investigated. We found the amount
of CGIs was strongly positive correlated with that of
genes in human chromosomes (r ¼ 0:89, P ¼ 5:5� 10�9;
Figure 3A). A total of 40 926 CGIs were identified by
CpG_MI from human genome. About two-thirds

(65.5%) of the CGIs locate within gene�environment
regions, i.e. promoter regions or intragenic regions
(Figure 3B). By removing parameter restriction of the
length, G+C content and CpG O/E, CpG_MI identified
many novel CGIs in the gene promoter regions. Out of
total 29 885 annotated genes in human genome, 20 442
(68.4%) have promoter CGIs. We used CpG_MI and
other four algorithms (CpGProD, CpGIS, CpGcluster
and CpGIF) to identify CGIs from human genome. The
results show that 63 new CGIs overlapping with gene
promoter regions can be identified only by CpG_MI,
where the lengths of 31 new CGIs are shorter than
200 bp, the G+C contents of 16 new CGIs are <55%
and the CpG O/E values of 30 new CGIs are <0.6
(Supplementary Table S3). These promoter CGIs are
missed by other algorithms due to their shorter lengths,
low CpG contents or CpG O/E values. The function of
new promoter CGIs identified by CpG_MI was investi-
gated by Gene Ontology (GO) terms in Supplementary
Table S3 (30,31). Gene SYMT2, for instance, is a coding
gene of MYST histone acetyltransferase 2 and plays
an important role in regulating cellular processes (32).
Gene NKX2-3 is a cancer-linked gene and aberrant
hypermethylation is frequent in melanoma cell lines (33).

Figure 3. The distribution of CpG islands in human chromosomes. (A) The number distribution of CpG islands and genes in human chromosomes.
(B) The distribution of CpG islands in different human genome regions.

Table 1. Estimation of five different predicated algorithms of CGIs

Program SN±SD SP±SD ACC±SD CC±SD

CpGProD 0.764±0.027 0.811±0.022 0.787±0.015 0.576±0.029
CpGIS 0.849±0.020 0.899±0.011 0.874±0.013 0.749±0.025
CpGcluster 0.048±0.052 0.984±0.001 0.516±0.043 0.091±0.042
CpGIF 0.950±0.011 0.589±0.045 0.769±0.024 0.578±0.041
CpG_MI_5 0.961±0.008 0.782±0.059 0.872±0.022 0.752±0.041
CpG_MI_6 0.950±0.010 0.873±0.027 0.914±0.015 0.816±0.029
CpG_MI_7 0.891±0.013 0.910±0.016 0.901±0.011 0.800±0.025

The criteria used in CpGProD and CpGIS were: length� 500 bp, G+C content� 55%, and CpG O/E� 0.65. In CpGcluster, the 75th distance was
used as the threshold of distance and the P-value cutoff is le-5. The criteria of CpGIF were the length �200 bp and other parameters with the default
values. CpG_MI_i denoted the HSR_i (i=5, 6, 7) was set as our scanning hot spot region in the first step of our algorithm CpG_MI. To assess
above algorithms, 1000 sequence segments were randomly sampled respectively from positive CGIs and negative CGIs of the test set (see ‘Materials
and Methods’ section). The sampling process was repeated 1000 times.

e6 Nucleic Acids Research, 2010, Vol. 38, No. 1 PAGE 6 OF 11



The relationship between histone modification and
CpG islands

Histone modifications are important epigenetic regulatory
elements associated with open chromatin structures and
gene activity (25,34). We investigated the genome-scale
profiling of 38 histone modifications derived from
human CD4+ T cells in the set of CGIs identified by
CpG_MI and random sets respectively. We randomly
extracted 1 000 000 segments with the same length distri-
bution as the CGIs identified by CpG_MI from human
bulk genome. All random segments overlapping with
CGIs were filtered out. Then, 40 926 random segments
were randomly selected from the remaining random
segments as the random set and the sampling process
was repeated 10 000 times. The histone modification tags
were mapped to the CGIs and random segments respec-
tively. Histone modification tags are overlapped with
97.3% of the CGIs and 88.9% of the random segments.

The distribution of different histone modifications in
the CGI set and the random sets was further investigated.
The histone modification intensity of a CGI (or random
segment) is defined as the tag number of the histone mod-
ification in the CGI (or random segment) divided by the
length of CGI. The average modification intensities of the
CGI set and the random sets were shown in Figure 4. The
average modification intensities of H3K4me1, H3K4me2,
H3K4me3, H3K9me1, H4K20me1 and H2BK5me1 are
significantly high in the CGI set. The average modification
intensities of these histone methylation modifications in
the CGI set are more than three times greater than that
of the random sets. Notably, the average modification
intensity of H3K4me3 is remarkably stronger than that

of the other modifications in the CGI set (Figure 4).
H3K4me3 locates within 81.6% of the CGIs
(Supplementary Table S4). Therefore, H3K4me3 can be
regarded as an important indicator of functional CGIs.
Fan et al. have improved the prediction accuracy of
methylation status of CGIs using four histone methylation
intensities (H3K4me1, H3K4me2, H3K4me3 and
H3K9me1) (35). Sims et al. have also validated that
H4K20me1 was enriched in promoter or coding regions
of active genes and co-localized with H3K9me1 (36).
H2BK5me1 is positively correlated with active promoters
and could be regarded as a gene activation mark (25).
Moreover, our data also show that 12 histone acetylation
modifications are significantly enriched in the CpG
set relative to the random sets: H2BK5ac, H3K27ac,
H4K91ac, H2BK120ac, H3K18ac, H3K9ac, H2BK20ac,
H3K4ac, H3K36ac, H4K5ac, H2BK12ac and H4K8ac.
The average modification intensities of these histone
acetylation modifications in the CGI set are more than
three times greater than that of the random sets. It has
been found that the patterns of histone acetylation
modifications are associated with gene activity (29,37).
We observed significant depletion of 2 histone

methylation modifications (H3K9me3 and H3K9me2) in
the CGI set. However, the average modification intensities
in the CGI set were only half of that in the random
sets (Figure 4). The depletion of H3K9me3 and
H3K9me2 in CGIs are expected, as they are considered
to be marks of inactive and constitutive heterochromatin
(38,39). It is indicated that the CGIs identified by
CpG_MI are negatively correlated with the repressive
modifications.

Figure 4. The average modification intensities of 38 histone modifications. The average modification intensities of 38 histone modifications in human
CD4+T cells were significantly distinct between the CGI set (black bars) and random sets (white bars). Random segments (1 000 000) with the same
length distribution as CGIs identified by CpG_MI were extracted from human genome. All random segments overlapping with CGIs were filtered
out. Then, 40 926 random segments were randomly selected from remaining random segments as the random set and the sampling process was
repeated 10 000 times. Error bars show plus and minus one standard error of the mean of 10 000 random sets.
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Identification of CpG islands in mammalian genomes

Owing to differences among mammalian genomes and
lack of global epigenetic data of non-human genomes, it
is more difficult to identify and evaluate functional CGIs
in these genomes. Since the algorithm of CpG_MI is
mainly dependent on the CpG content of bulk genome
and the CMI distribution of random segments from the
bulk genome, we performed the following two steps to test
the applicability of this algorithm to other mammalian
genomes. First, the CpG contents of six different mamma-
lian genomes (human, chimpanzee, mouse, rat, cow and
dog) were compared. Little variation was observed (see
Table 2). Secondly, 100 000 random segments with the
same length distribution as the CGIs identified by
CpG_MI were selected from each of the above mamma-
lian genomes respectively. The CMI values of these
random segments were calculated using formula 2. We
constructed regression models for each mammalian
genome by fitting an exponential distribution model to
the probability densities from the CMI distribution
of 100 000 random segments. Their corresponding
best-fit exponential distributions are shown in Figure 5.
For each of the above six mammalian genome,
Kolmogorov�Smirnov test was performed to compare
the probability densities of the CMI distribution of
random segments with the corresponding values from
the best-fit exponential distribution. The results show the
CMI distributions of random segments from these mam-
malian genomes follow the exponential distribution at
P< 0.01. As shown in Figure 5, the best-fit exponential
distributions of random segments from these mammalian
species are similar. It indicates that the distribution of
physical distances between two neighboring CpGs might
be conserved during the evolution of mammalian species.
Based on these observations, the criteria of identifying
human CGIs by CpG_MI can be used to identify the
CGIs of non-human mammalian genomes.
The CGIs from six mammal species identified by

CpG_MI and the statistical results of average length,
number of CGIs, annotated genes (containing promoter
CGIs) are shown in Table 2. All CGIs of mammalian
species mentioned in Table 2 are available for download

and visualization as UCSC Genome Browser (26) tracks
at http://bioinfo.hrbmu.edu.cn/cpgmi/.The results show
that nearly 70% of the annotated genes in human, chim-
panzee and cow genomes have promoter CGIs, and more
than 54% in mouse and rat. There are only 51.4% of
annotated genes having promoter CGIs in dog genome,
which might be partly due to fewer genes (only 944)
annotated in dog genome. Using the stringent criteria of
Takai and Jones, Han et al. have found that the number of
CGIs (58 328) in the dog genome were nearly three times
more than that (19 568) in the rat genome. In this study,
CpG_MI identified 64 938 CGIs in dog genomes and
42 367 CGIs in rat genome, which was not so much of
disparity comparing with the result of Han et al. (21).
The CGI average length (845 bp) of rat genome is
shorter than that (�1100 bp) of the other five mammalian
genomes. It is possibly due to that some shorter functional
CGIs in rat genome might not be identified by the Takai
and Jones’ stringent criteria. The distributions of CGIs in
the three different genome regions between chimpanzee
and mouse genomes were further investigated. The
results were listed in Supplementary Table S5. About
two-thirds of the CGIs identified by CpG_MI in chimpan-
zee (65.8%) and mouse (61.5%) genomes locate within the
gene environment. It is consistent with the distribution of
CGIs of human genome.

DISCUSSION

An essential goal for identifying functional CGIs is to
search the epigenetic regulatory regions in genomes.
The various methods face a common problem in finding
a suitable minimal length of functional CGIs. In the
original criterion of Gardiner-Garden and Frommer, the
minimal length of CGIs was set to 200 bp, which had high
false positive rate. In order to reduce the false positive
rate, it was raised to 500 bp in the modified criterion by
Takai and Jones. However, many functional CGIs are
missed owing to this increased threshold of CGIs’
length. In recent investigation, Bock et al. predicted the
combined epigenetic scores for all CGIs identified by the
criteria of Gardiner-Garden and Formmer from the

Table 2. Basic statistics of CGIs and annotated genes containing promoter CGIs in six mammals and four fish species

Species CpG
content

Length of
genome (Gb)

Average
length (bp)

Number
of CGIs

Number of
annotated genes
containing promoter
CGIs (%)a

Number of
annotated
genes

Human 0.0091 2.85 1593 40 926 20 442 (68.4%) 29 885
Chimpanzee 0.0096 2.75 1318 39 797 19 331 (66.5%) 29 077
Mouse 0.0083 2.48 1105 33 408 13 353 (59.9%) 22 297
Rat 0.0089 2.48 845 42 367 8465 (54.9%) 15 431
Cow 0.0099 2.29 1213 50 642 6773 (70.4%) 9620
Dog 0.0107 2.03 1512 64 938 485 (51.4%) 944
Zebrafish 0.0166 1.52 568 92 188 7775 (27.7%) 28 058
Medaka 0.0192 0.58 428 53 721 7541 (37%) 20 399
Stickleback 0.0328 0.39 349 82 643 13 559 (57.3%) 23 654
Tetraodon 0.0335 0.19 337 37 832 7755 (49.7%) 15 613

aPercentage of the genes containing promoter CGIs in the total genes of the different species.
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human repeat-marked genome, and estimated the effect of
three parameters (length, G+C content and CpG O/E)
on the prediction accuracy of functional (‘bona fide’)
CGIs identification respectively. Surprisingly, the results
show that the length performs better than the CpG O/E
and G+C content, and the G+C content is only slightly
better than random. It suggests that the determination of

threshold of length plays a more important role in iden-
tifying functional CGIs. Nevertheless, according to the
original definition of CpG-rich regions, the CpG O/E
should be the most natural sequence-based indicator of
functional CGIs. The contradiction might be due to that
the features of functional CGIs could not be revealed
significantly by these three parameters.

Figure 5. The distribution of the cumulative mutual information of random segments from six mammals. Random segments (100 000) are randomly
selected from the human (hg18), chimpanzee (panTro2), mouse (mm9), rat (rn4), cow (bosTau4) and dog (canFam2) genomes respectively. The six
figures show that the distribution curves (red) of probability densities of random segments’ CMIs from six mammalian genomes and the curves (blue)
of their corresponding best-fit exponential distributions.
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The correlation between two neighboring CpGs was
investigated by mutual information in this study to
reveal the common feature of functional CGIs. We
noted that the AMI distributions of the two sets (B3
and B4) of ‘bona fide’ CGIs, which resembled the set of
experimental CGIs (CAP), were distinguished remarkably
from other two sets (B1 and B2) and the random segments
set (Figure 1). There are common mutual information
features between the functional CGIs identified by
computational methods and the experimental CGIs
identified by CAP experiment. We found that the hot
spot regions with high cumulative mutual information
usually appeared in the central regions of ‘bona fide’
CGIs, which was an important feature of functional
CGIs in our algorithm. Compared with the other
algorithms, CpG_MI obtains the highest global prediction
accuracy for experimental CGIs. The average length of
CGIs identified by CpG_MI is 1593 bp in human
genome. There are 32 shorter promoter CGIs (length
�200 bp) which can be only identified by CpG_MI in
human genome.
The identification of functional CGIs in other mamma-

lian species is still difficult for various computational
methods, which is handicapped by the scarcity of
epigenetic data for these mammalian species. In this
study, the CGIs identification in other genomes can be
easily extended from human genomes through the CMI
distribution of random segments. We found that there
were similar CpG contents and CMI distributions of the
random segments among mammalian genomes (see Table
2 and Figure 5). Therefore, the thresholds for identifying
human CGIs can be directly applied to that of other mam-
malian species. We also calculated the CpG contents of
four fishes (zebrafish, medaka, stickleback and tetraodon)
whose genomes have been completely sequenced. We
noted that the CpG contents between six mammals and
four fish species were quite different. It is unexpected that
the CpG contents of four fishes are two to four times as
many as that of the mammalian species (Table 2). The
possible reason may be that the mutation rates by con-
verting CpG to TpG in these fish genomes are significantly
lower than that in the mammalian genomes, which are
mainly caused by deamination of 5-methylcytosine at
CpG loci. The CGIs in the four fish genomes were
identified by our CpG_MI respectively. The average
lengths are significantly shorter than that of the mamma-
lian species. The CGI densities of four fishes are higher
than that of the six mammalian species as shown in Table
2. It indicates that the CGIs might be under significant
evolution in vertebrates, which is consistent with the
claim of Han et al. (21).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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