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Noncoding RNAs (ncRNAs) play important roles in various cellular activities and diseases. In this paper, we presented a
comprehensive review on computational methods for ncRNA prediction, which are generally grouped into four categories: (1)
homology-based methods, that is, comparative methods involving evolutionarily conserved RNA sequences and structures, (2) de
novo methods using RNA sequence and structure features, (3) transcriptional sequencing and assembling based methods, that is,
methods designed for single and pair-ended reads generated from next-generation RNA sequencing, and (4) RNA family specific
methods, for example, methods specific for microRNAs and long noncoding RNAs. In the end, we summarized the advantages
and limitations of these methods and pointed out a few possible future directions for ncRNA prediction. In conclusion, many
computational methods have been demonstrated to be effective in predicting ncRNAs for further experimental validation. They
are critical in reducing the huge number of potential ncRNAs and pointing the community to high confidence candidates. In the
future, high efficient mapping technology and more intrinsic sequence features (e.g., motif and 𝑘-mer frequencies) and structure
features (e.g., minimum free energy, conserved stem-loop, or graph structures) are suggested to be combined with the next- and
third-generation sequencing platforms to improve ncRNA prediction.

1. Background

A noncoding RNA (ncRNA) is a functional RNA that is
transcribed from a DNA but does not encode a protein.
According to transcriptomic and bioinformatics studies,
there are thousands of ncRNAs classified into different
categories based on their functions and lengths including
transfer RNA (tRNA), ribosomal RNA (rRNA), microRNA
(miRNA), and long ncRNA (lncRNA) to name a few [1–3].

These ncRNAs play important roles in various cellular
processes. For example, rRNA catalyzes the peptide bond
formation between amino acids in translation process [4],
miRNA is important in transcription process and performs

posttranscriptional regulation of gene expression [5], and
lncRNA plays critical diverse roles in X inactivation, imprint-
ing, and regulation of epigenetic marks and gene expression
[6–8]. In addition, they also exhibit enormous importance in
connectionwith various diseases. For example, themiR-17-92
cluster functions as oncogenes while the miR-15a–miR-16-1
cluster functions as tumour suppressors [9].ANRIL, one type
of lncRNA, is related to coronary disease, type II diabetes,
and intracranial aneurysm [10]. The readers are referred
to a review by Esteller [11] and Chen et al. [12] for more
information about specific correlations between ncRNAs and
human diseases. Specifically, Esteller [11] provides a review on
the relationship between dysfunctions of ncRNAs including
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Figure 1: Four popular categories of computational methods in predicating ncRNAs. (a) Homology-based methods, which compare a query
RNA with known ncRNAs deposited in databases based on sequence or structure alignment; (b) de novo methods, which predict ncRNA
from primary sequences or structure based on general principles that govern ncRNA folding or statistical tendencies of 𝑘-mer features; (c)
transcriptional sequencing and assembling based methods, which utilize next-generation sequencing and transcriptome data; and (d) RNA
family specific methods, which predict specific ncRNA classes.

miRNA, PIWI-interacting RNAs (piRNAs), small nucleolar
RNAs (snoRNAs), transcribed ultraconserved regions (T-
UCRs), and large intergenic noncoding RNAs (lincRNAs)
and a few diseases including tumorigenesis and neurological,
cardiovascular, developmental, and other diseases. Chen et
al. [12] discussed the roles of lncRNAs in critical biological
processes and human diseases like various cancers, diabetes,
and AIDS.

Due to the important roles of ncRNAs in cellular pro-
cesses and disease development, many experimental and
bioinformatics methods have been developed to predict
ncRNAs and their functions. As for experimental methods,
enzymatic and chemical RNA sequencing, parallel cloning of
ncRNAs by specialized cDNA libraries, microarray analysis,
and genomic SELEX are among the most popular ones. The
readers are referred to a review paper for the details of
these methods [13]. However, the experimental methods are
expensive and time-consuming, and thus hundreds of com-
putational methods have also been developed to prioritize
highly confident ncRNA candidates for further experimental
validation. In this paper, we present a comprehensive review
on these computational methods. We are fully aware that
there have already been several review articles on this hot
topic [14–17]. However, they either focus on a specific ncRNA
category or have been outdated and could not present a
panoramic view of the field.

2. Main Text

Generally speaking, there are three major categories of
computational methods in predicting ncRNAs, namely,
(1) homology-based methods involving evolutionarily con-
served RNA sequences and structures, (2) de novo meth-
ods using RNA sequence and structure features, and (3)

transcriptional sequencing and assembling based methods,
according to chronological order of their occurrences. Since
miRNAand lncRNAhave very specificmethods, we reviewed
them separately and called these methods RNA family spe-
cific methods (Figure 1).

2.1. Homology-Based Methods. As probably the earliest
ncRNA prediction methods, homology-based methods
assume that sequence or structure similar RNAs are evolved
from a common ancestor and thus share function similarities
[18, 19]. Given a query RNA, these methods usually compare
it with known ncRNAs deposited in databases based on
sequence or structure alignment. The RNA is predicted to
be in a specific ncRNA family if it has sufficient similarity
with known ncRNAs in that family (Figure 1(a)). There are a
number of ncRNA databases. For example, 2,474 structural
families of ncRNAs were cataloged in the database Rfam
(version 12.1, April 2016) [20]. We listed a few popular
homology-based methods in Table 1, which are further
classified into sequence-based methods, structure-based
methods, and hybrid methods.

2.1.1. Sequence-BasedMethods. Thesemethods rely purely on
sequence conservations inferred by alignment methods like
BLAST [18] and BLAT [21].They first identify short (gapped)
matches called seeds [22] between the query ncRNA and any
ncRNA in the database, which are then expanded in both
directions to form high-scoring segment pair (HSPs). The
statistical significance of a HSP or the joining of several HSPs
is evaluated by expected value (called 𝐸-value). The query
ncRNA is classified into the family containing the ncRNA
with the lowest 𝐸-value.
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2.1.2. Structure-BasedMethods. Sequence-basedmethods are
usually very fast. However, it is commonly believed that
ncRNAs are less conserved in sequence. Thus, another
category of homology-based methods is introduced based
on structure conservations. Instead of sequence alignment,
these methods use RNA secondary structure alignment to
measure RNA similarity. Popular methods include QRNA
[19] and RNAz [23]. Specifically, QRNA compares query
RNA with known RNAs using “three probabilistic pair-
grammars: a pair stochastic context-free grammar modeling
alignments constrained by structural RNA evolution, a pair
hidden Markov model modeling alignments constrained
by coding sequence evolution, and a pair hidden Markov
model modeling a null hypothesis of position-independent
evolution” [19], whereas RNAz compares RNAs based on
conserved secondary structure and thermodynamic stability
[23].

2.1.3. Hybrid Methods. A more robust RNA similarity mea-
sure was obtained by incorporating both sequence and struc-
ture information. For example, Infernal [24] uses covariance
models, which score a combination of sequence consensus
and RNA secondary structure consensus to predict ncRNAs
homologous to ncRNA families in Rfam [20, 24]. MASTR
[25] makes use of simulated annealing method to perform
sequence alignment and structural alignment simultane-
ously.

Though homology-based methods have been extensively
used due to their advantages in speed, however, they have
a few limitations. First, they compare the query RNA with
known ncRNA families and thus are incapable of predicting
new ncRNA families. Second, they rely on sequence or
structure conservations and thus are inapplicable to predict
ncRNAs lacking conservation in sequence and structure. As a
result, de novo methods are proposed to solve such dilemma.

2.2. De Novo Methods Using RNA Sequence and Structure
Features. Unlike homologymethodswhich require the infor-
mation of RNAs similar (or homologous) to the query RNA,
de novo methods predict ncRNA from primary sequences
or structure based on general principles that govern ncRNA
folding energetics and/or statistical tendencies of 𝑘-mer
features that native ncRNA sequences and structures acquire
(Figure 1(b)). Based on the source of common features,
de novo methods can be divided into sequence feature
based methods which only use sequence features, structure
feature methods, and hybrid feature methods which use both
features.

2.2.1. Sequence Feature Based Methods. One important fea-
ture for sequence-based de novo methods is nucleotide
composition, which applies for identifying ncRNAs in species
with nucleotide compositional biases. For example, by cal-
culating the GC content, Wang et al. identified ncRNA
genes with stable secondary structure in an AT-rich extreme
hyperthermophile [26]. Another commonly used nucleotide
composition is 𝑘-mer (nucleotide sequence of length 𝑘)
frequencies. Methods in this category exploit the finding that
the frequencies of many 𝑘-mers for ncRNAs in a specific

family usually share similar probability distribution. Thus,
new ncRNAs can be predicted based on the distribution of
their 𝑘-mer frequencies. For example, Panwar et al. used the
trinucleotide composition (i.e., 3-mer) to predict ncRNA by a
support vector machine (SVM) based algorithm [27]. Sun et
al. proposedCoding-Non-Coding Index (CNCI), by profiling
adjoining nucleotide triplets (i.e., 6-mer) to effectively distin-
guish protein-coding and noncoding sequences independent
of known annotations [28]. In addition, Li et al. developed
an algorithm named PLEK to discriminate lncRNAs from
mRNAs based on a combination of 1 to 5 mers [29].

Since a single type of sequence feature might be insuffi-
cient in effectively identifying ncRNAs, other features have
also been proposed in conjunction with nucleotide com-
position. We summarized a few popular sequence feature
based de novo ncRNA identification methods in Table 2.
For example, CONC [30] incorporates a few types of fea-
tures including sequence length, nucleotide composition, and
reading frame to characterize ncRNAs. CPC [31] combines
the longest reading frame in the three forward frames, log-
odds score, coverage of the predicted ORF, and integrity of
the predicted ORF, to identify ncRNAs.

2.2.2. Structure Feature BasedMethods. The secondary struc-
tures of some kinds of functional RNA are more conserved
than their primary sequences [32]. For example, miRNA
precursors share common hairpin-like structures and tRNAs
share cloverleaf structures. The structure with (or around)
the minimum folding energy (MFE) is usually regarded as
the most possible fold structure of an RNA. Thus, MFE is
extensively used to predict secondary structure of ncRNA
sequences. Popular MFE-based methods include RNAfold
[33], Mfold [34], and Afold [35]. RNAfold calculates MFE
by assigning free energies to both loops and stems, whereas
Mfold only assigns free energies to loops. Afold improves the
speed in evaluating all possible internal loops by an algorithm
constructing sets of conditionally optimal multibranch loop
free (MLF) structures. However, it is generally insufficient to
use MFE alone for the detection of ncRNAs since different
secondary structures of a given RNA sequence may have
very similar MFE [36]. As a result, more structure features
like thermodynamic stability are also employed in predicting
ncRNA [37].

2.2.3. Hybrid Feature Based Methods. As a trend, more and
more de novo methods tend to combine both RNA sequence
and RNA structure to improve the sensitivity and specificity
in predicting ncRNAs.

For example, Gupta et al. developed a new algorithm
ptRNApred to identify and classify posttranscriptional RNA
with dinucleotide properties of sequence and secondary
structure feature, for example, numbers of loops, bulges, and
hairpins or the frequency of nucleotides involved in sub-
structures [45]. It can predict ptRNA-subclasses in eukaryotes
including snRNA, snoRNA, RNase P, RNase MRP, Y RNA,
and telomerase RNA. We summarized popular de novo
ncRNA prediction methods using RNA sequence and struc-
ture features in Table 3. For a better view, we also plotted some
popular de novo methods and their prediction algorithms in
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Figure 2: Popular de novo methods and the statistical algorithms
applied.

Figure 2. Support vectormachine (SVM) is probably themost
frequently used method for de novo ncRNA prediction.

De novo methods are capable of predicting new ncRNA
families and classifying ncRNAs lacking conservation with
existing ones. They usually have higher sensitivity and lower
specificity than homology-based methods. However, this
kind of methods depends largely on the features extracted.
With the enrichment of biological, chemical, and dynamic
knowledge of ncRNA, there might be some further informa-
tive features to be extracted, whichwill greatly benefit de novo
ncRNA prediction [46, 68].

2.3. Transcriptional Sequencing and Assembling Based Meth-
ods. More recently, with the advances in next-generation
sequencing (NGS), especially RNA sequencing (RNA-seq)
techniques, more and more transcriptome data are available,
which have been utilized to discover novel ncRNAs. A gen-
eral workflow of transcriptional sequencing and assembling
based ncRNA prediction method is described in Figure 1(c).
Different from homology-based and de novo methods which
require specific RNA sequences, methods in this category
usually start from raw single-ended or pair-ended reads. The
reads are then mapped into a reference genome and the
mapped reads are assembled into transcripts based on over-
lapping information. After removing protein-coding RNA
and known ncRNA transcripts, the remaining transcripts
are further assessed for protein-coding potential and novel
ncRNAs are reported if the potential is low.

In practice, RNA-seq data are usually combined with
other features and methods including tilling array [47],
graph-kernel SVM [49], structure features and common
motifs [69], differential gene expression (DGE) data [48],
and exon array [50] to predict specific ncRNAs. For
example, tiling array [47] is used to scan the long and
macro non-protein-coding RNAs related to cell-cycle, p53,
and STAT3 pathways. DGE is used for discovering novel
polyA+noncoding transcripts within human genome [48].
BlockClust [49] tries to predict the ncRNA modified after
its transcription by combining the sequence and secondary
structure informationwith a graph-kernel SVM, whose novel
thinking lies in a new strategy to formulate expression
profiles in compact discrete structures using fast graph-kernel

techniques. We summarized some popular sequencing and
assembling based ncRNA predication algorithms in Table 4.

As an advantage over homology-based methods and
de novo methods, RNA-seq based methods can directly
sequence coding and noncoding RNA transcripts with high
sensitivity and low false positive rate. It can especially detect
new scripts and alternative splicing. However, sometimes
it is difficult to tell ncRNAs from protein-coding RNAs
and thus other features like sequence conservation [53],
deciphering abstract graphical representation [49], designing
exon probes [50], finer terminal stem-loop feature [51], or
𝑘-mer frequency [52] are often utilized together with RNA-
seq analysis to infer ncRNAs. In this sense, one may regard
the RNA-seq technology as a platform rather than a certain
method.

2.4. RNAFamily SpecificMethods. SincemiRNAand lncRNA
are two special and important ncRNAs, we reviewed a few
computational methods related to them separately (Fig-
ure 1(d)).

2.4.1. miRNA Specific Methods. miRNAs are very short in
length, usually around 22 nt. The short length and relatively
low conservation of pre-miRNA sequences restrict the usage
of sequence-based methods in identifying miRNAs. Fortu-
nately, it is known that miRNAs are mostly derived from
regions of RNA transcripts that fold back on themselves
to form short hairpins, which make this RNA relatively
conserved in secondary structure. Thus, a few methods
exploit more secondary features for new miRNA gene detec-
tion instances. For example, as a homology-based method,
miRAlign employs sequence alignment, secondary structure
alignment, and miRNA’s position on the stem-loop structure
to identify RNA homologs. It has higher sensitivity and
comparable specificity than other homology-based methods
[70]. MiPred adopts the local contiguous structure sequence
composition, MFE, and 𝑃 value of randomization test to pre-
dict miRNA precursor with a random forest algorithm [54].
We summarized popular methods for predicting miRNA in
Table 5.

2.4.2. lncRNA Specific Methods. Long noncoding RNAs
(lncRNAs) are ncRNAs longer than 200 nt, including long
intronic noncoding RNA and intergenic noncoding RNA.
lncRNAs are believed to regulate gene expression through
changing chromatin state and correlate with cancer patho-
genesis and various clinical traits [63–66, 71]. In fact, lncRNA
prediction is a very challenging task, because many lncRNAs
exhibit low sequence and structure conservation; moreover,
they are often capped and spliced. Some databases like lncR-
NAdb [72] provide comprehensive annotations of specific
lncRNAs, for example, eukaryotic lncRNAs. A general flow
to identify lncRNA is as follows: first the transcriptome
data are annotated and the protein-coding sequences are
filtered; then sequences shorter than 200 nt are removed and
the remaining ones are viewed as candidate lncRNAs [63];
finally, the candidate lncRNAs are evaluated based on features
like secondary structures [73, 74], protein-coding ability [28,
29], conserved splicing sites [75], DGE+RNA-seq, conserved



8 BioMed Research International

Ta
bl
e
4:
Se
qu

en
ci
ng

-a
ss
em

bl
in
g
ba
se
d
w
ho

le
nc
RN

A
se
tm

et
ho

ds
.

N
am

e
U
RL

Fe
at
ur
e

Pr
ed
ic
tio

n
al
go
rit
hm

Ti
lli
ng

ar
ra
y

[4
7]

ht
tp
://
w
w
w.
ge
no

m
eb
io
lo
gy
.co

m
/2
01
4/
15
/3
/R
48

Sy
no

ny
m
ou

sa
m
in
o
ac
id

su
bs
tit
ut
io
ns
,

re
ad
in
g
fr
am

ec
on

se
rv
at
io
n,

an
d
th
e

oc
cu
rr
en
ce

of
pr
em

at
ur
es

to
p
co
do

ns

RN
Ac

od
ea

lg
or
ith

m
an
d

bi
w
ei
gh
tk

er
ne
ls

D
ig
ita

gC
T
[4
8]

ht
tp
://
cr
ac
to
ol
s.g

fo
rg
e.i
nr
ia
.fr
/s
oft

w
ar
es
/d
ig
ita

gc
t

G
en
om

ic
se
qu

en
ce
s,
D
G
E
ta
gs
,a
nd

til
in
g

ar
ra
y
ex
pr
es
sio

n
In
fe
rn
al
an
d
BL

A
ST

N

Bl
oc
kC

lu
st

[4
9]

ht
tp
://
to
ol
sh
ed
.g
2.
bx
.p
su
.ed

u/
vi
ew

/r
na
te
am

/b
lo
ck
clu

st
w
or
kfl

ow

(1
)Th

eb
lo
ck

gr
ou

p:
en
tro

py
of

re
ad

sta
rt
s,

en
tro

py
of

re
ad

en
ds
,e
nt
ro
py

of
re
ad

le
ng

th
s,
m
ed
ia
n
of

no
rm

al
iz
ed

re
ad

ex
pr
es
sio

ns
an
d
no

rm
al
iz
ed

re
ad

ex
pr
es
sio

n
le
ve
ls
in

fir
st
qu

an
til
e;
(2
)b

lo
ck
:n
um

be
ro

f
m
ul
tim

ap
pe
d
re
ad
s,
en
tro

py
of

re
ad

le
ng

th
s,

en
tro

py
of

re
ad

ex
pr
es
sio

ns
,m

in
im

um
re
ad

le
ng

th
an
d
bl
oc
k
le
ng

th
,a
nd

(3
)b

lo
ck

ed
ge
:

co
nt
ig
ui
ty
an
d
di
ffe
re
nc
ei
n
m
ed
ia
n
re
ad

ex
pr
es
sio

ns

G
ra
ph

-k
er
ne
lS
V
M

N
on

co
de
r[
50
]

ht
tp
://
no

nc
od

er
.m

pi
-b
n.
m
pg
.d
e/

Se
qu

en
ce

ho
m
ol
og

y,
ev
ol
ut
io
na
ry

in
fo
rm

at
io
n,

th
el
on

ge
st
re
ad
in
g
fr
am

ei
n

th
re
ef
or
w
ar
d
fr
am

es
,l
og
-o
dd

ss
co
re
,

co
ve
ra
ge

of
th
ep

re
di
ct
ed

or
f,
an
d
in
te
gr
ity

of
th
ep

re
di
ct
ed

or
f

BL
AT

an
d
Ph

yl
oC

SF

Vi
ci
na
l[
51
]

ht
tp
://
na
r.o

xf
or
dj
ou

rn
al
s.o

rg
/c
on

te
nt
/4
2/
9/
e7
9.f
ul
l.p

df
+h

tm
l

Ch
im

er
ic
RN

A-
cD

N
A
fr
ag
m
en
ts
an
d

te
rm

in
al
ste

m
-lo

op
Bo

w
tie

2
lo
ca
lm

ap
pi
ng

,fi
lte
rin

g,
an
d
Vi
ci
na
lm

ap
pi
ng

C
oR

A
L
[5
2]

ht
tp
://
na
r.o

xf
or
dj
ou

rn
al
s.o

rg
/c
on

te
nt
/4
1/1
4/
e1
37
.fu

ll.
pd

f+
ht
m
l

Re
ad

le
ng

th
,a
bu

nd
an
ce

of
an
tis
en
se

tr
an
sc
rip

tio
n,

5󸀠
an
d
3󸀠
po

sit
io
na
le
nt
ro
py
,

fo
ur

nu
cle

ot
id
ef
re
qu

en
ci
es

tr
an
sfo

rm
ed

in
to

al
og
-o
dd

sr
at
io

re
lat
iv
et
o
eq
ua
lb
as
e

fre
qu

en
ci
es
,a
nd

M
FE

M
ul
tic
la
ss
cla

ss
ifi
ca
tio

n
ra
nd

om
fo
re
st

Fl
ai
M
ap
pe
r

[5
3]

ht
tp
://
w
w
w.
nc
bi
.n
lm

.n
ih
.g
ov
/p
ub

m
ed
/2
53
38
71
7

D
en
sit
ie
so

fs
ta
rt
an
d
en
d
po

sit
io
ns

of
al
ig
ne
d
re
ad
sa

nd
re
ad

le
ng

th
s

Pe
ak

de
te
ct
io
n
on

th
es

ta
rt
an
d

en
d
po

sit
io
n
de
ns
iti
es

fo
llo

w
ed

by
fil
te
rin

g
an
d
ar

ec
on

str
uc
tio

n
pr
oc
es
s

http://www.genomebiology.com/2014/15/3/R48
http://cractools.gforge.inria.fr/softwares/digitagct
http://toolshed.g2.bx.psu.edu/view/rnateam/blockclust_workflow
http://noncoder.mpi-bn.mpg.de/
http://nar.oxfordjournals.org/content/42/9/e79.full.pdf+html
http://nar.oxfordjournals.org/content/41/14/e137.full.pdf+html
http://www.ncbi.nlm.nih.gov/pubmed/25338717


BioMed Research International 9

Ta
bl
e
5:
M
et
ho

ds
to

pr
ed
ic
tm

iR
N
A
.

N
am

e
U
RL

Fe
at
ur
e

Pr
ed
ic
tio

n
al
go
rit
hm

CS
H
M
M

[3
8]

St
ru
ct
ur
eo

nl
y

A
di
sc
rim

in
an
tf
un

ct
io
n
ba
se
d

on
lik

eli
ho

od
sc
or
ef
or

ah
id
de
n

M
ar
ko
v
m
od

el

M
iP
re
d
[5
4]

32
po

ss
ib
le
co
m
bi
na
tio

ns
of

th
em

id
dl
en

uc
le
ot
id
e

am
on

g
th
et
rip

le
te
le
m
en
ts,

lo
ca
lc
on

tig
uo

us
str

uc
tu
re

se
qu

en
ce

co
m
po

sit
io
n,

M
FE

,a
nd
𝑃
va
lu
eo

f
ra
nd

om
iz
at
io
n
te
st

Ra
nd

om
fo
re
st

Pl
an
tM

iR
N
A
Pr
ed

[5
5]

ht
tp
://
nc
la
b.
hi
t.e
du

.cn
/P
la
nt
M
iR
N
A
Pr
ed
/

11
5
fe
at
ur
es

in
clu

di
ng

(1
)1
7
pr
im

ar
y
se
qu

en
ce
-r
ela

te
d

fe
at
ur
es
,(
2)

64
se
co
nd

ar
y
str

uc
tu
re
-r
el
at
ed

fe
at
ur
es
,

an
d
(3
)3

4
en
er
gy
-a

nd
th
er
m
od

yn
am

ic
s-
re
lat
ed

fe
at
ur
es

SV
M

m
iR
de
nt
ify

[5
6]

ht
tp
://
w
w
w.
nc
rn
al
ab
.d
k/
#m

ird
en
tif
y/
m
ird

en
tif
y.p

hp
5󸀠
he
te
ro
ge
ne
ity
,o
ve
rh
an
gs
,n
eg
at
iv
en

um
be
rs

in
di
ca
tin

g
5󸀠
ov
er
ha
ng

,t
he
rm

od
yn

am
ic
s,
en
tro

py
,

ta
ili
ng

,a
nd

m
ul
tim

ap
pi
ng

M
ap
pi
ng

an
d
se
ek
in
g

du
pl
ex
-fo

rm
in
g
re
ad
sw

ith
in

46
-8
0n

td
ist
an
ce

w
ith

th
eg

ui
de

str
an
d

CI
D
-m

iR
N
A
[5
7]

ht
tp
s:/
/g
ith

ub
.co

m
/a
lit
o/
CI

D
-m

iR
N
A

Se
co
nd

ar
y
str

uc
tu
re

lik
eli
ho

od

St
oc
ha
st
ic
co
nt
ex
t-f
re
eg

ra
m
m
ar

m
od

el,
Ch

om
sk
y
no

rm
al
fo
rm

;
C
oc
ke
-Y
ou

ng
-K

as
am

ia
lg
or
ith

m
,

an
d
Cl
as
sifi

ca
tio

n
tre

e

m
iR
an
k
[5
8]

ht
tp
s:/
/o
m
ic
to
ol
s.c

om
/m

ira
nk

-to
ol

36
gl
ob

al
an
d
lo
ca
li
nt
rin

sic
fe
at
ur
es
,i
nc
lu
di
ng

th
e

no
rm

al
iz
ed

M
FE

of
fo
ld
in
g,
th
en

or
m
al
iz
ed

ba
se

pa
iri
ng

pr
op

en
sit
ie
so

fb
ot
h
ar
m
s,
an
d
th
en

or
m
al
iz
ed

lo
op

le
ng

th

Be
lie
fp

ro
pa
ga
tio

n
on

aw
ei
gh
te
d

gr
ap
h,
ra
nd

om
w
al
ks
-b
as
ed

ra
nk

in
g
al
go
rit
hm

m
iR
Ca

t[
59
]

ht
tp
://
sr
na
-w

or
kb

en
ch
.cm

p.
ue
a.a

c.u
k/
to
ol
s/
an
al
ys
is-
to
ol
s/
m
irc

at
/
𝐸
-v
al
ue

of
al
ig
nm

en
ta
nd

M
FE

of
se
co
nd

ar
y
st
ru
ct
ur
e

D
yn

am
ic
pr
og
ra
m
m
in
g

m
irT

oo
l[
60
]

ht
tp
://
ce
nt
re
.b
io
in
fo
rm

at
ic
s.z

j.c
n/
m
irt
oo

ls/
m
iR
N
A
/m

iR
N
A
,a
bs
ol
ut
e/
re
lat
iv
er

ea
ds

co
un

t,
an
d
th
e

m
os
ta
bu

nd
an
tt
ag

Fo
ld
in
g
th
efl

an
ki
ng

ge
no

m
ic

se
qu

en
ce

us
in
g
th
em

iR
D
ee
p

pr
og
ra
m

m
iR
an
al
yz
er

[6
1]

ht
tp
://
bi
oi
nf
o5
.u
gr
.es

/m
iR
an
al
yz
er
/m

iR
an
al
yz
er
.p
hp

N
um

be
ro

fb
in
di
ng

si
n
re
ad

clu
ste

rs
eq
ue
nc
e,

no
rm

al
iz
ed

m
ea
n
fre

ee
ne
rg
y
of

pr
ec
ur
so
rs
eq
ue
nc
e,

nu
m
be
ro

fb
in
di
ng

si
n
pr
ec
ur
so
r,
le
ng

th
of

re
ad

clu
ste

r,
th
ec

or
re
sp
on

di
ng

pu
ta
tiv

em
at
ur
es

ta
rs
eq
ue
nc
e,

nu
m
be
ro

fb
in
di
ng

si
n
re
ad

clu
ste

rd
iv
id
ed

by
th
er

ea
d

clu
ste

rl
en
gt
h,
nu

m
be
ro

fr
ea
ds

in
re
ad

clu
ste

r,
m
ea
n

fre
ee

ne
rg
y
of

pr
ec
ur
so
rs
eq
ue
nc
e,
de
gr
ee

of
bu

lb
as
ym

m
et
ry

in
pr
ec
ur
so
r,
an
d
th
en

um
be
ro

fb
ul
bs

in
pr
ec
ur
so
rs
ec
on

da
ry

st
ru
ct
ur
e

Ra
nd

om
fo
re
st

sR
N
Ab

en
ch

[6
2]

ht
tp
://
bi
oi
nf
o5
.u
gr
.es

/s
RN

Ab
en
ch
/

W
ith

in
clu

ste
rr
at
io
,5
󸀠
flu

ct
ua
tio

ns
,m

os
tf
re
qu

en
tt
o
al
l

ra
tio

,m
in
im

um
nu

m
be
ro

fh
ai
rp
in

bi
nd

in
gs
,m

in
im

um
nu

m
be
ro

fm
at
ur
eb

in
di
ng

s,
m
os
tf
re
qu

en
tr
ea
d,
le
ng

th
in
te
rv
al
,a
nd

m
in
im

um
re
ad
s

H
ie
ra
rc
hi
ca
lc
lu
ste

rin
g

http://nclab.hit.edu.cn/PlantMiRNAPred/
http://www.ncrnalab.dk/#mirdentify/mirdentify.php
https://github.com/alito/CID-miRNA
https://omictools.com/mirank-tool
http://srna-workbench.cmp.uea.ac.uk/tools/analysis-tools/mircat/
http://centre.bioinformatics.zj.cn/mirtools/
http://bioinfo5.ugr.es/miRanalyzer/miRanalyzer.php
http://bioinfo5.ugr.es/sRNAbench/


10 BioMed Research International

Table 6: Methods to predict lncRNAs.

Name Feature Prediction algorithm
Estimating lincRNome size for
human [63]

lincRNA numbers validated experimentally in human and mouse,
and their overlap lincRNA number System of nonlinear equations

Classifying human lncRNA [64]

RNA sequence-structure patterns (RSSPs) describing 42 highly
structured families, motif binding sites extracted as 1314
Position-Weight Matrices (PWMs), all 𝑘-words of length
𝑘 = 2, 3, 4, 5, 6, 7, 8, the sequence complexity

Classifying human lncRNA by
being able (or disable) to bind

the polycomb repressive complex
(PRC2), SVM with linear kernel

Identify, classify, and localize
maize lncRNAs [65]

Transcript length, open reading frame (ORF) size, and homology
with known proteins SVM

The GENCODE v7 catalog of
human lncRNA [66]

Lack of homology with known proteins, no reasonable-sized open
reading frame (ORF), and no high conservation, confirmed by
PhyloCSF through the majority of exons conserved promoters

Manual annotation and pattern
recognition

Highly conserved large
noncoding RNAs [67] Chromatin signatures “K4–K36” domain Maximum CSF score observed

across the entire genomic locus

promoters [66], and chromatin signatures such as “K4–K36”
domain [67], and only those that pass certain significance
levels are inferred to be lncRNAs. We summarized popular
lncRNA prediction methods in Table 6.

Besides the above two RNA families, some specific clas-
sification and prediction methods have been developed for
ncRNAs with strong conservation information, for example,
tRNA [76–78], snoRNA [79–81], and rRNA [82]. Recently, the
largest ncRNA set, piRNA, can be predicted by an improved
Fisher algorithm with 1364-D vectors representing RNA
sequences [83, 84].

3. Conclusions

It is very important to predict ncRNAs since they are related
to many diseases [85, 86]. Many ncRNA sequences are stored
in databases such as fRNAbd [87], NONCODE [88], and
Rfam [20] and grouped into classes based on their structures.
The popular software Infernal [24] can predict 2,474 families
of ncRNA. However, there are still ncRNAs that cannot be
predicted by Infernal, including piRNA, Air, BC200, mature
miRNA, gRNA, mRNA-like RNA, BC1 RNA, BM1 RNA, and
so on.Themajor issue is that these ncRNAs lack sequence and
structure conservation. To thoroughly predict the ncRNA
classes and whole ncRNA set, we need to construct a series
of new methods, including extracting new features and
developing novel algorithms.

Homology search has becomemuch faster with the devel-
opment of bioinformatics tools, for example, from Smith-
Waterman dynamic programming algorithm to BLAST or
GMAP [89] based on simplified consecutive 𝑘-mer match
or gapped 𝑘-mer (also called spaced seeds) techniques [22,
90]. However, these methods are less sensitive in ncRNA
identification. On the other hand, de novo algorithms try to
retrieve significant intrinsic features from RNA sequences,
structures, energy, stability, and even deep-sequencing map-
ping profile. They use the features to discriminate a certain
class of ncRNAs from other RNA sequences. However, de
novo algorithms have high false positive rate. At present,
how to combine these features and select a proper classifying
machine is another hotspot to improve the sensitivity and

specificity of ncRNA identification.With the rapid increasing
of second- and third-generation sequencing (TGS) data,
the information derived from deep-sequencing and single-
molecule long-read sequencing may provide a great oppor-
tunity to enhance the efficiency in ncRNA prediction.

In addition, it has become central for understanding bio-
logical process by studying RNA globally. However, methods
like microarrays and short-read sequencing are incapable of
describing the entire RNA molecule from 5󸀠 to 3󸀠 end. Sci-
entists use single-molecule long-read sequencing technology
fromPacific Biosciences to sequence the polyadenylatedRNA
complement for human, without the need for fragmentation
or amplification [91]. TGS can get full-length RNAmolecules
of up to 1.5 kb with little sequence loss at the 5󸀠 ends. In total,
∼14,000 spliced GENCODE genes of human were identified
[91], but >10% of the alignments are mapped to unannotated
regions; these transcripts are novel noncoding RNAs. Obvi-
ously, TGS may give more power to lncRNA discovery.

Finally, in order to assemble and correct long transcripts,
one can integrate reads sequenced by five sequencing plat-
forms including Illumina HiSeq, Life Technologies’ PGM
and Proton, Pacific Biosciences RS, and Roche’s 454 [92].
Software programs like TMAP (PGM and Proton), GSRM
(454), and GMAP (PacBio) are the best in mapping the
sequencing reads to a reference genome. It has been shown
that the integration results showed high concordance in both
intraplatform and interplatform studies [92]. In addition,
the integrated data also performed effectively in analyzing
degraded RNA samples. Thus, platform integration is very
promising for improvement of RNA-seq as well as ncRNA
identification in the future.
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F. Stadler, “Mapping of conserved RNA secondary structures
predicts thousands of functional noncoding RNAs in the
human genome,” Nature Biotechnology, vol. 23, no. 11, pp. 1383–
1390, 2005.

[33] I. L. Hofacker, “Vienna RNA secondary structure server,”
Nucleic Acids Research, vol. 31, no. 13, pp. 3429–3431, 2003.

[34] M. Zuker, “Mfold web server for nucleic acid folding and
hybridization prediction,”Nucleic Acids Research, vol. 31, no. 13,
pp. 3406–3415, 2003.

[35] A. Y. Ogurtsov, S. A. Shabalina, A. S. Kondrashov, and M. A.
Roytberg, “Analysis of internal loops within the RNA secondary
structure in almost quadratic time,” Bioinformatics, vol. 22, no.
11, pp. 1317–1324, 2006.

[36] E. Rivas and S. R. Eddy, “Secondary structure alone is generally
not statistically significant for the detection of noncoding
RNAs,” Bioinformatics, vol. 16, no. 7, pp. 583–605, 2000.

[37] T. T. Tran, F. Zhou, S. Marshburn, M. Stead, S. R. Kushner, and
Y. Xu, “De novo computational prediction of non-coding RNA
genes in prokaryotic genomes,” Bioinformatics, vol. 25, no. 22,
pp. 2897–2905, 2009.

[38] S. Agarwal, C. Vaz, A. Bhattacharya, and A. Srinivasan, “Pre-
diction of novel precursor miRNAs using a context-sensitive
hiddenMarkovmodel (CSHMM),” BMC Bioinformatics, vol. 11,
supplement 1, article S29, 2010.

[39] D. Gautheret and A. Lambert, “Direct RNA motif definition
and identification from multiple sequence alignments using
secondary structure profiles,” Journal of Molecular Biology, vol.
313, no. 5, pp. 1003–1011, 2001.

[40] J. S. Pedersen, G. Bejerano, A. Siepel et al., “Identification and
classification of conserved RNA secondary structures in the
human genome,” PLoS Computational Biology, vol. 2, no. 4,
article e33, 2006.

[41] Y. Ding, C. Y. Chan, and C. E. Lawrence, “Sfold web server for
statistical folding and rational design of nucleic acids,” Nucleic
Acids Research, vol. 32, pp. W135–W141, 2004.

[42] R. Nussinov and A. B. Jacobson, “Fast algorithm for predicting
the secondary structure of single-stranded RNA,” Proceedings of
the National Academy of Sciences of the United States of America,
vol. 77, no. 11, pp. 6903–6913, 1980.

[43] J. S. McCaskill, “The equilibrium partition function and
base pair binding probabilities for RNA secondary structure,”
Biopolymers, vol. 29, no. 6-7, pp. 1105–1119, 1990.

[44] B.H. Zhang, X. P. Pan, S. B. Cox,G. P. Cobb, andT.A.Anderson,
“Evidence thatmiRNAs are different fromother RNAs,”Cellular
and Molecular Life Sciences, vol. 63, no. 2, pp. 246–254, 2006.
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