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Abstract

Understanding mortality, derived from debilitations consisting of multiple diseases, is crucial

for patient stratification. Here, in systematic fashion, we report comprehensive mortality

data that map the temporal correlation of diseases that tend toward deaths in hospitals. We

used a mortality trajectory model that represents the temporal ordering of disease appear-

ance, with strong correlations, that terminated in fatal outcomes from one initial diagnosis in

a set of patients throughout multiple admissions. Based on longitudinal healthcare records

of 10.4 million patients from over 350 hospitals, we profiled 300 mortality trajectories, start-

ing from 118 diseases, in 311,309 patients. Three-quarters (75%) of 59,794 end-stage

patients and their deaths accrued throughout 160,360 multiple disease appearances in a

short-term period (<4 years, 3.5 diseases per patient). This overlooked and substantial het-

erogeneity of disease patients and outcomes in the real world is unraveled in our trajectory

map at the disease-wide level. For example, the converged dead-end in our trajectory map

presents an extreme diversity of sepsis patients based on 43 prior diseases, including lym-

phoma and cardiac diseases. The trajectories involving the largest number of deaths for

each age group highlight the essential predisposing diseases, such as acute myocardial

infarction and liver cirrhosis, which lead to over 14,000 deaths. In conclusion, the decipher-

ing of the debilitation processes of patients, consisting of the temporal correlations of dis-

eases that tend towards hospital death at a population-wide level is feasible.

Introduction

Understanding which clinical risks lead to fatal consequences, such as prognosis variations

among cardiac patients based on comorbidities, is a key component for the establishment of

risk stratifications and health policy [1–3]. Data-driven approaches using large-scale medical

records for non-research purposes have demonstrated the validity of establishing correlated
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diseases, including patterns in the timing of each disease’s appearance [4–7]. However, unrav-

eling mortality patterns with fatal outcomes, which belongs to the diagnostic timeline, is indis-

pensable and directly helps clinical care and healthcare strategies in the population.

Heretofore, the landscape of the temporal appearance of diseases leading to hospital deaths in

populations has not been actively established. A recent reported study was conducted using

data from 7.2 million patients to create the Danish Disease Trajectory Browser (DTB), which

could identify diagnostic pairs with statistically significant directionality and explore disease

progression patterns [8].

Here, we used large-scale healthcare records, consisting of diagnosis records and fatal out-

comes, to provide a comprehensive map of mortality-associated disease patterns in real clinical

boards. To identify mortality trajectories across all diseases in multiple hospitals in the US, we

analyzed population-wide administrative healthcare records using the Healthcare Cost and

Utilization Project (HCUP) [9]. HCUP is the comprehensive source of national hospital data

in the US, used to study health care delivery and patient outcomes over time at the national,

regional, state, and community levels. HCUP has released State Inpatient Databases (SID) as

encounter-level longitudinal records (over 20 years of hospital records). We used the SID for

California (SIDCA), which contains data for over 10.4 million hospitalized patients from over

350 non-federal hospitals in California. These records contain no direct patient identifiers and

are publicly available for use upon submission of a data use application. In our previous work,

using the identical data resource, we highlighted the identification of unknown risk of schizo-

phrenia patients, and discovered the association between schizophrenia and rhabdomyolysis, a

rare muscle disease from the disease trajectories [10].

We performed a systematic investigation to assess mortality trajectories in these records. By

this term, we mean the sequential patterns of disease preceding to death that were shared

among patients across California hospitals. The sequences in each mortality trajectory include

subsequent diagnoses for each admission (< 1 year and FDR <0.1 of temporal correlations of

diseases) and associated fatal outcomes. We identified 300 trajectories with strong temporal

directionality and statistical significance that thereby yield a global view of the most populated,

directional co-morbidities and fatal outcomes observed in the US in California hospitals. This

study presents explicit pathways from the initial diagnosis records to the final ones that tend

toward fatal outcomes in hospitals at a population level. The data analyses presented here are

useful for healthcare strategy and policy, as they exhibit fatal outcomes in a corresponding tra-

jectory and are thus amenable to stratify patients by mortality and associated diseases.

From the data, we found that the proportion of hospital deaths and diseases accrued from

multiple admissions for significantly correlated disease appearances is considerable. In three

major mortality trajectories involving the largest number of fatal outcomes, we highlighted key

diagnoses that tend toward over 14,000 fatal consequences throughout sequential diseases for

each age group. Thus, our findings can be used to define groups of patients to include in prog-

nosis research studies and diverse cohort studies. Our analyses show the importance of strati-

fying a cohort by preceding diseases to understand the heterogeneity of disease prognosis in

clinics.

Materials and methods

Population-wide administrative healthcare records

The data used in this analysis was obtained from the California set of HCUP, http://www.

hcup-us.ahrq.gov/), called SIDCA (State Inpatient Database, California). This database con-

tains de-identified admission and discharge information for >350 community hospitals in

California. These include nonfederal, general, other specialty hospitals, and academic medical
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centers. It excludes non-community hospitals, such as federal hospitals (e.g., Veterans Affairs),

long-term care hospitals, and clinical units within institutions (e.g., prisons). For each hospital-

ized patient, the database contains up to 25 diagnosis codes by chart order using the Interna-

tional Classification of Disease, Ninth Revision, Clinical Modification (ICD-9-CM).

We assumed that the first reported diagnosis code reflected the primary diagnosis for each

hospital stay. Because SIDCA contains a unique identifier for every individual, we were able to

identify readmissions for the same patients over time and across hospitals. We merged five

SIDCA versions, which were generated annually (2006 to 2010). Each of the five SIDCA data-

sets involves accumulated records covering up to over 20 years in a longitudinal manner.

While each SIDCA version involved unique identifiers for each patient, meta-mapping of the

patient identifiers across data versions is not available. To prevent data redundancy in the

merged SIDCA data set, we used records of only deceased individuals and their hospitalization

records in 2006–2009 generated SIDCA dataset, except for the latest version of the SIDCA gen-

erated in 2010.

In this study, all diagnosis codes were rounded to the 3-digit code level (a 3-digit code pro-

viding a general description of a disease, such as “250” for diabetes) to preserve accuracy [11]

and minimal overlap of diagnoses; 250.41 for diabetes with renal manifestations, juvenile type

is a subclass of diabetes.

Statistical significance of the temporal correlation of disease

To determine the disease correlation in time-directional order, the method of our previous

attempts was used [10]. In summary, we used relative risk (RR) measurement to quantify the

occurrence of disease pairs (Disease i–Disease j) within 1 year in a patient [12]. When RR> 1,

the co-occurrence of the two diseases was higher than that expected for diseases co-occurring

by random chance. Then, we quantified the likelihood that one disease would occur before or

after another (δi!j for Disease i! Disease j) using the dates of admissions associated with two

diseases in each patient [4]. To calculate δi!j, we begin counting date differences between

when disease i was diagnosed before disease j in patient p and represent this number as dpi!j

(d p
i!j = sign (date of admission for disease j in patient p–date of admission for disease i in

patient p), where sign stands for the Signum function, d p
i!j = [-1,1]). Multiple re-diagnoses or

re-hospitalizations for the same disease in a patient p were ignored, and only the initial date of

admission for a disease was used as a date of diagnosis for disease i or disease j to determine

the timing of each disease in a pair for patient p (d p
i!j). In addition, we only counted d p

i!j

when the length of duration between dates of admissions for disease j and disease i was less

than 1 year. A value of d p
i!j> 0 indicates the following: an initial admission for disease i

occurred before the first admission for disease j in a patient p within one year. Then, the value

of δi!j was determined by the mean value of d p
i!j among the set of patients who were diag-

nosed with diseases i and j in one year. Thus, a value of δi!j > 0 indicates that over half of

admissions for disease i occurred before the admissions for disease j by one year among the

patients who were diagnosed as both of these diseases. Alternatively, a value of δi!j < 0

denotes the opposite. The statistical significance of co-occurrences (RR) and the temporal

directionality of diseases (δi!j) were determined using a binomial test (Benjamini–Hochberg

FDR< 0.1) [7]. Finally, we used pairs of correlated diseases with time directionality whose

mathematical relationships were statistically significant (RR> 1, FDR < 0.1; δi!j 6¼ 0,

FDR< 0.1) for further analysis. We use the term temporal correlation to describe this

relationship.
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Defining one mortality trajectory and clusters of trajectories

Based on patients sharing two pairs of temporally correlated diseases (Disease 1! 2 and Dis-
ease 2! 3), we joined multiple disease-to-disease correlations by concatenating two pairs of

sequential disease diagnoses into three or more steps of overall disease occurrences among

patients (Disease 1! 2! 3) [7]. A greedy algorithm was used to find further steps in disease

paths that encompassed more patients. Disease pairs were sorted in descending order accord-

ing to patient counts. Pairs with an overlapping diagnosis were found starting from the top of

the list, and the number of patients following the full trajectory to death was counted. We

stopped when a trajectory had no patients following it.

Results

Study set and patient characteristics

To build mortality trajectories, we needed sufficiently broad and longitudinal health records

within a unified format and without redundancy of records. We used the California SID data

set (SIDCA), which contains inpatient records, ICD-9-CM diagnosis codes, and patient out-

comes for each hospitalization across >350 community hospitals in California (mean number

of hospitals = 358.6 ± 4.4: 354 hospitals in the SIDCA built at 2010, 354 hospitals in the 2009

version, 361 hospitals in the 2008 version, 360 hospitals in the 2007 version and 364 hospitals

in the 2010 version).

The first diagnosis code in a patient’s chart was used as the primary disease for each hospital

stay. Each patient had a unique identification code, making it possible to detect readmission of

the same patient in a longitudinal manner across hospitals. We used ICD-9-CM diagnosis

codes to filter out records for non-disease conditions, such as diagnosis chapters referring to

injuries, obstetrics, and healthcare-related contacts as defined in ICD-9-CM chapters (Fig 1A).

Because the SIDCA data sets are built and released annually, we independently selected rec-

ords of deceased patients in early data sets and subsequently added later data releases. This

process minimized redundancy of records in the merged SIDCA (Fig 1A).

The merged SIDCA study set covered 2,272,018 hospitalizations of 1,488,551 individuals

from all non-federal hospitals in California, and 290,253 death outcomes (S1 Table). As

depicted in Fig 1B, most of the merged SIDCA data were drawn from the latest version (build

year 2010, gray bar in Fig 1B), and covered the filtered set from the 2006 to 2009 versions.

Patient age in the merged SIDCA had a skewed distribution from middle age (40s) to old age

(80s). Pediatric groups were excluded. The mean age of patients in the data (merged SIDCA)

was 63.77 ± 19.58. Of this group, 46.4% were male, 52.4% were female, and 1.2% were

unknown (S1 Table). Fig 1C shows power-law distributions of observation times for each indi-

vidual in the merged SIDCA data, based on the length of time between the first and last admis-

sion dates. Most of the merged SIDCA data included diagnostic timelines for each patient for

4 years (median interval between first and last admission dates of a patient = 40.58 months ± 2.5

months) (Fig 1C). The longest duration between the first and most recent admission dates in a

patient was 26 years. Thus, the merged SIDCA data represent diagnosis timelines of 1.4 million

adults leading to 290,253 hospital deaths from 1980 to 2010 (19.5% of patients).

Tracing patients from the initial disease diagnosis to fatal outcome in the

clinics

In each of the mortality trajectories, the sequence followed by a prior disease condition

included subsequent diagnoses in different admissions in one year, with strong correlation

and temporal directionality. Thus, a pair of temporally correlated diseases is a building block
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of a trajectory. As noted in the Methods section, we used the relative risk (RR) measurement

and the date of admission for a disease to identify the occurrence of two diseases in one year in

one patient and the time spans between the diagnoses. This process allowed us to define the

temporal order of disease diagnoses that occurred more frequently than expected by chance

[4,12]. The statistical significance of the identified order of disease-associated admissions and

co-occurrence of diseases in a patient was determined using a binomial test (FDR< 0.1) [7].

Fig 1. Overview of study set. (A) Overview of the data set build. We prepared the study data set by combining five

SIDCA data sets, which were released annually (2006–2010). In summary, the merged SIDCA covers longitudinal

records (1980–2010) for>1.4 million patients without data redundancy. (B) Age distribution of the merged SIDCA.

Each color represents the build year of that data set. (C) Distribution of time intervals (Data are presented as mean)

between the first and last admission for each individual. Based on the first and latest admissions for each individual, we

calculated the traced dates. The merged SIDCA represents mainly the disease progression for 1.4 million adult patients

within 5 years, leading to 290,253 hospital deaths in the US.

https://doi.org/10.1371/journal.pone.0257894.g001
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To model this process for near-term disease appearances, we considered only disease pairs that

occurred in the same patient within one year. Of the 691 diseases in the merged SIDCA (S1

Table), 168 diseases were associated with at least one temporally aligned comorbid disease

(FDR<0.1, S2 Table).

We then re-constructed diagnosis timelines of patients by combining these temporally cor-

related disease pairs (number of disease pair with significant temporal correlations = 300). We

built trajectories that started with all possible diseases using a greedy algorithm that identified

major mortality timelines in patients. Subgroups of subsequent diagnoses after the selected ini-

tial disease pair or non-significant disease diagnoses in following steps were omitted. By indi-

vidually iterating over each starting disease state, we mapped the details of 300 trajectories on

each timeline from initial diagnosis through intermediate states to death. In total, the mortality

trajectories started with 118 diseases and 311,309 patients, went through 175,556 distinct dis-

ease-to-disease transitions, and reached 59,794 fatal outcomes.

Of the 300 trajectories, the longest mortality trajectory had four of admissions steps by

sequential disease appearances. In 257 trajectories, death outcomes occurred at the final condi-

tion in the trajectory (Fig 2A, dark gray bar), while in 43, the traced patients were still alive, or

there were no death outcomes at the final disease diagnosed (Fig 2A, light gray bar).

The population-wide trajectory map quantifies the heterogeneity of the

disease patients

Based on the established trajectory map, we investigated the patterns of diseases that precede

to fatal consequences, such as the conserved temporal sequence of diseases among the mortal-

ity pathways and degree of diversity within the disease patients. We aligned the non-truncated

257 trajectories that terminated with death outcomes at the latest disease and sorted them by

the number of patients (Fig 2C) and deaths (Fig 2B). As shown in Fig 2D, in the x-axis, each

circle node represents each subsequent disease step in each trajectory, which is strongly corre-

lated with prior diseases within 1 year. The y-axis denotes trajectories for each initial disease

with the same order of Fig 2B and 2C. The varied colors of circle nodes visualize the overall

disease trends in each step for each trajectory based on ICD-9-CM codes for a circle node (Fig

2D). The trajectory in brackets denotes one example, which started with dementia. The ICD-

9-CM dementia code is categorized as a mental disorder, which filled the circle as cyan color.

In the second admission (< 1 year from the first), the dementia patients were diagnosed with

either sepsis (infectious diseases in magenta) or aspiration pneumonia (i.e., pneumonia due to

liquid and solid, respiratory diseases in yellow). As a result, for the first time, we profiled the

landscape of mortality trajectories for 287,118 patients and 58,257 deaths from 100 initial dis-

eases via strongly correlated interim diseases and ranked them by mortality.

The initial and interim disease nodes were heterogeneous. Nevertheless, the majority of

dead-ends converged into either sepsis (magenta circles for infectious diseases) or pneumonia

(yellow nodes for respiratory diseases; Fig 2D). In addition, none of the identified trajectories

started with sepsis. The global view of the trajectory map indicates that sepsis is a predominant

dead-end stage in hospitals and a common consequence mediated by the debilitation process

of patients consisting of sequentially correlated diseases. Thus, sepsis is a non-sporadic disease,

and we identified 43 prior diseases of sepsis, including an interesting association between

malignant neoplasms of lymphoid and sepsis (ICD-9 code = 202, “other malignant neoplasms

of lymphoid and histiocytic tissue”). Without the evidence of time directionality between lym-

phoma and sepsis, the co-occurrence of sepsis among cancer patients has been reported in an

earlier national-wide study [13]. Our analysis presents an explicit pathway from cancer to
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sepsis that has progressed within a short time span with a furcate pathway (the mean time

interval = 83.17 ± 61.99 days; the mean age of patients = 66.95, S3 Table).

Including sepsis (an extreme case), a substantial proportion of diverse interim diseases pre-

ceding the end stage manifested that the heterogeneity of disease patients in the real world is

Fig 2. Scaffold map of mortality trajectories in the US hospitals. (A) Distribution of the identified trajectory lengths.

The dark gray bar represents trajectories with fatal outcomes recorded as the latest disease progressions. The light gray

bars denote trajectories with censored fatal outcomes. (B-D) We present the overview of 257 trajectories among 300

total identified trajectories (the dark bars in Fig 2A). (C) In the y-axis, the trajectories are arranged according to the

total number of deaths in descending order. The x-axis represents the total number of deaths in log10 scale. (B) This

plot shows the number of deaths for each trajectory by the identical order in Fig 2C. (D) An aligned view of disease

steps by following the admissions for the diseases within each trajectory. The y-axis denotes the drawn trajectories by

the identical order in Fig 2C. The x-axis represents each admission step for the correlated diseases. Each node color

denotes the type of disease as determined using the ICD-9-CM codes.

https://doi.org/10.1371/journal.pone.0257894.g002
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prevalent. From our map, patients underwent 175,556 multiple hospitalizations in a series of

correlated diseases, and then patients reached the fatal outcomes. Out of 59,794 disease

patients and associated fatal outcomes, 74.5% (44,598) accrued throughout 160,360 multiple

disease appearances in a short-term period (<4 years, 3.5 diseases per patient). For example,

osteomyelitis periostitis patients (i.e., inflammation of bone, ICD-9 code: 730) were stratified

based on the correlated previous diagnoses, cellulitis and diabetes (S3 Table). The subgroup of

patients, osteomyelitis patients with diabetes, were likely to be in polypharmacy states, and

also extended to heterogeneity in treatment responses due to glucose-induced proinflamma-

tory cytokines [14]. By suggesting the heterogeneity of diseases based on correlated pre- or

post-diseases, our results facilitated the adequate stratification of patients for cohort studies.

Moreover, our offers a clustered view of mortality trajectories by overlaying them by shared

diagnoses and patterns of disease-to-disease progressions [7,15]. A total of 16 clusters com-

prised the landscape of a set of associated trajectories, including Cluster 12, a merged set of tra-

jectories that comprise chronic obstructive pulmonary diseases (COPDs), and Cluster 7, a set

of cancers and metastasis patterns, such as colorectal lung metastasis among elderly patients

[16] (S2 Fig).

In summary, we provide a comprehensive and widely applicable model that can be useful

for risk stratification of patients by displaying confounding factors, such as predispositions

and future disease patterns of patients.

Prioritization of trajectories using the number of fatal outcomes

In addition to providing an important analysis of temporal disease associations at the popula-

tion scale, the fatal outcome of a disease in our model facilitates the ranking of risk by the

number of fatal outcomes in each mortality trajectory. Thus, we prioritized the key preceding

diagnoses associated with subsequent diseases and substantial numbers of fatal outcomes. We

ranked the deadliest trajectories by the total number of deaths in each trajectory, and then

selected the deadliest ones for each age group based on the mean age of patients in each trajec-

tory, including younger patients (mean age, <60 years), moderately older patients (mean age,

�60 and�75 years), and elderly patients (mean age, >75 years). We visualized the trajectories

as connected paths through nodes for diseases (circle nodes) that terminated in death (square

nodes). We drew a line (i.e., edge) between diseases (circle nodes) and fatal outcomes (square

nodes) to signify the transition of patients in each step of the traced trajectory. Edge colors and

widths signify the mean age and number of traced patients in the disease and death nodes,

respectively.

The selected trajectories present the essential predisposing diseases in each life-cycle phase,

which led to over 14,000 deaths and other subsequent diseases, such as liver cirrhosis for youn-

ger patients, pneumonia for elders and acute myocardial infarction (AMI) for overall groups.

The deadliest trajectory in all age groups (and mid age groups) started with acute myocardial

infarction (AMI; 11,624 patients) (Fig 3A). After the diagnosis of AMI, 4,267 of the 11,624

patients (36.7%) were diagnosed with ischemic heart disease by the next admission (mean age,

68.12 years). However, 44% of elderly patients (5,166 patients) were diagnosed with heart fail-

ure within 1 year (mean age, 75.01 years). Of note, the traced subsequent diseases of AMI in

elderly patients showed serious outcomes, with higher case fatality ratios (CFR) in heart failure

(0.15 = 674/5168), whereas the younger patient group was transferred to ischemic heart dis-

ease, resulting in lower CFR (0.05 = 250/4267). Interestingly, a total of 103 surviving patients

from the second or third comorbid disease were eventually hospitalized with sepsis, which led

to death in half of them. Although there are diverse confounding factors, such as undetected

infections, it is an opposite order to the known pattern, sepsis-induced cardiomyopathy [17].
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Otherwise, among the younger patients (mean age<60 years), the deadliest trajectory started

with chronic liver diseases and cirrhosis (Fig 3B). Approximately 31% of patients (1,678 of

5,411) followed mortality pathways that spanned diverse diseases, leading to 836 deaths from

sepsis (Fig 3B). Fig 3C depicts the trajectory starting with pneumonia in 27,631 patients, which

accounted for the most deaths in elderly patients (10,486 fatal outcomes). Patients developed a

Fig 3. The deadliest trajectory. The deadliest trajectory in California, based on the number of associated deaths

according to age group: (A) all ages and moderately aged (60–75 years) group; (B) younger group (mean age,<60

years); and (C) elderly age group (mean age,>75 years). The pattern for the moderately aged group was similar to the

overall pattern in (A).

https://doi.org/10.1371/journal.pone.0257894.g003
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distinct series of diseases after pneumonia, including heart failure (19% of pneumonia

patients) or sepsis (29%), by the next admission.

Owing to the diverse subsequent diagnoses and death outcomes after the initial presenta-

tion of disease, our trajectory model allowed us to prioritize key diagnoses that can precede to

fatal consequences and can thus be used to define groups of patients to include in cohort-

based studies, including prevention studies for health policy and clinical trials.

Discussion

This study was an extensive temporal analysis of disease-to-disease comorbidity relationships

for>600 diseases in 10.4 million patients and 290,253 fatal outcomes in California, US hospi-

tals. In total, we identified 300 mortality trajectories beginning with 118 diseases in 311,309

patients. They consequent to 59,794 fatal outcomes throughout 175,556 of disease-to-disease

transitions by distinct admissions. For the first time, our approach presented the time-aligned

patterns of diagnoses that led to fatal outcomes in the hospital by leveraging large-scale health-

care records, which were routinely gathered for billings. A substantial proportion of re-hospi-

talization for sequential diagnoses and associated fatal consequences showed the validity of

our trajectory approach to stratifying a disease cohort into the traced disease patterns and

prognosis to understand the heterogeneity of disease patients in a time-dimensional space.

Several limitations of the study should be noted. First, health records are not intended spe-

cifically for research, as the codes may not be accurate. Our data captures only inpatient rec-

ords in the hospitals; outpatient diseases, such as common flu, and fatal outcomes after the

discharge of patients are invisible in our dataset, including home deaths and deaths in hospice

(e.g., cancer deaths) [18]. A nationwide study describing participants’ primary, multimorbid

and outpatient diseases from birth to death would be ideal. However, practical constraints

make such a large study unfeasible. In addition, we used the Greedy algorithm to find further

steps in disease paths that encompassed more patients and to identify major mortality time-

lines. The algorithm is known to have limitations because it determines the optimal path selec-

tion for that moment at every step, regardless of the overall information. Taken as a whole, it

has the downside of not being able to guarantee that the path selection is optimal at each step.

Tracked sequences in each mortality trajectory included subsequent diagnoses and co-

occurred fatal outcomes by re-admissions among a selected initial disease and patients. Here,

we note that the main cause of deaths are retrospectively determined by a medical examiner

regarding the overall condition of patients, then reported to the death registry of US. As we

depicted, we’ve conjugated co-occurred fatal outcomes to disease diagnoses without consider-

ation of causality. Therefore, our trajectory model shows the propensity of diageneses

sequences to the death outcome in clinic. Although the records of death registry present the

main cause of death, such as heart failure, detailed progressions are absent. Adequate stratifica-

tion of patients preceding fatal outcome is a premise of tailored care of patients. Thus, the

unique advantage of our approach over traditional statistical analysis is its ability to map the

debilitation course resulting in deaths and to stratify patients into distinct groups according to

disease patterns related to mortality.

We acknowledge that non-disease associated cause of death are not involved in our model,

such as severe trauma. However, the majority of the injury-associated hospitalization are con-

ducted via the visit of Emergency Room (ER). Owing to the truncation of those ER visits in

our SIDCA, we focused disease associated mortality trajectory in our study. For the modeling

of diagnosis trajectory from external trauma, an ER visit data, such as SEDD (the State Emer-

gency Department Database) of HCUP (https://www.hcup-us.ahrq.gov/seddoverview.jsp)

would be analyzed in further study. Altogether, we were able to rank trajectories based on the
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accrued mortality and suggest the illness worsening course resulting in hospital deaths. This

helps to conceptualize patterns of clinical timelines and mortalities of patients who were diag-

nosed with a correlated disease.

Comparing other previous work [8] (Danish Disease Trajectory Browser; http://dtb.cpr.ku.

dk/), the originality of our study is that our trajectory model traced a fast disease progression

within 1-year intervals among more severe diseases. For in-depth comparison of our results

and other previous attempts, we presented all the detail of the modeled trajectory of ours in

the S3 Table.

For the clinical inference of each mortality trajectory, it is essential to assess to what extent

the directionality reflects underlying causal patterns in a hospital. For example, it is interesting

to deduce whether the AMI (Acute Myocardial Infarction) is the cause, or whether AMI is a

surrogate disease of other confounding factors for the deaths from sepsis-induced cardiac dys-

functions. Including an interesting disease correlation (i.e., lymphoma), our analysis suggests

the major prior diseases of sepsis by each age group within a short time span (< 3 years), such

as cirrhosis for young patients, pneumonia for elders and AMI for the middle or overall group.

The presented global picture of sepsis manifests the presumed underlying mechanism of heart

failure in sepsis, such as abnormal cytokine release under lymphoma and cirrhosis states

among sepsis [19,20]. It is supportive that AMI is a pre-existing disease of sepsis patients,

which might be associated with myocardial depressant factor for the cardiac dysfunction of

sepsis [17,21]. The ability to make data-supported inferences of disease mortality (inflamma-

tion of cirrhosis associated with sepsis) and of medical systems issues (under-recognition of

co-morbidity of AMI in sepsis) demonstrates the power of the trajectory analysis. For decades,

numbers of possible mechanisms have been independently proposed based on the limited

scale of the population [22–24]. A study proposed in 2016 used relatively large-scale data from

6.6 million patients to identify trajectories that significantly altered sepsis mortality. The

authors found an increase in sepsis mortality from key starting points such as alcohol abuse,

diabetes, cardiovascular diagnosis and cancer in the sepsis network [25].

This study presents a large-scale examination of the temporal pattern of death in hospitals

from the initial presentation of disease in the records across the diverse disease spectrum by

tracking millions of healthcare records. The insight gained from this study may promote clini-

cal outcomes that benefit from considering the most probable next step in disease progression,

including fatality and the heterogeneity of prior chronic or acute diseases. Owing to the direct

use of the health records from hospitals, a major prospective application in using the trajecto-

ries established here is the stratification of patients for precision medicine by combining them

with the molecular signatures of each patient, for example via whole-exome sequencing, for

better disease prognosis of individual patients along the course each patient will take.

Supporting information

S1 Fig. Dynamic visualization of all mortality trajectories in the US. This figure presents the

captured images from the dynamic visualization of all mortality trajectories (https://www.

youtube.com/watch?v=jJMds31-e2g). Sequential presentations of disease nodes were deter-

mined according to mean age of patients at disease incidence. We traced 311,309 patients.

Interestingly, 38.1% of fatal outcomes involved septicemia via diverse disease progressions in

the hospitals (green box).

(PDF)

S2 Fig. Cluster of trajectories. We offers a clustered view of mortality trajectories by overlaid

them by shared diagnoses and patterns of disease-to-disease progressions. (A-B) Of total 16

clusters, we present the first and second largest clusters. (A) The largest cluster, Cluster 12,
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covered disease patterns for>90,000 patients who had developed chronic obstructive pulmo-

nary disease (COPD) and other circulatory heart diseases. (B) Cluster 7 depicts cancer and

metastasis by tracking 17,781 patients and 1,566 deaths. Death nodes are hidden to improve

the visibility of the clusters.

(PDF)

S1 Table. Data statistics of the State Inpatient Database of California (SIDCA). Data

resource of the Healthcare Cost and Utilization Project (HCUP) covering 97% of hospitals in

the USA. 1Years of data set generations. Merged data set covers up to ~26.1 years of longitudi-

nal events for a patient counted by administration month. For each inpatient event, up to 25

diagnosis codes were assigned. 2Covered years of records by build year versions. 3Excluded by

diagnosis chapters for injury, symptom, childbirth, pregnancy, and healthcare service.

(DOCX)

S2 Table. List of temporally correlated disease pairs.

(XLSX)

S3 Table. Data summary of traced disease trajectories.

(XLSX)
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