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P E R S P E C T I V E

Hormonally active phytochemicals and vertebrate evolution

Abstract
Living plants produce a diversity of chemicals that share structural 
and functional properties with vertebrate hormones. Wildlife spe-
cies interact with these chemicals either through consumption of 
plant	materials	or	aquatic	exposure.	Accumulating	evidence	shows	
that	 exposure	 to	 these	 hormonally	 active	 phytochemicals	 (HAPs)	
often has consequences for behavior, physiology, and fecundity. 
These fitness effects suggest there is potential for an evolutionary 
response	by	vertebrates	to	HAPs.	Here,	we	explore	the	toxicologi-
cal	HAP–vertebrate	relationship	in	an	evolutionary	framework	and	
discuss the potential for vertebrates to adapt to or even co- opt the 
effects of plant- derived chemicals that influence fitness. We lay out 
several	hypotheses	about	HAPs	and	provide	a	path	forward	to	test	
whether plant- derived chemicals influence vertebrate reproduction 
and evolution. Studies of phytochemicals with direct impacts on 
vertebrate reproduction provide an obvious and compelling system 
for	 studying	evolutionary	 toxicology.	Furthermore,	an	understand-
ing	of	whether	animal	populations	evolve	in	response	to	HAPs	could	
provide insightful context for the study of rapid evolution and how 
animals cope with chemical agents in the environment.

1  | INTRODUCTION

Beginning	in	the	1940s,	there	have	been	numerous	reports	from	Australia	
that grazing sheep on fields of subterranean and red clover (Trifolium sub-
terraneum and T. pretense)	leads	to	“clover	disease,”	a	condition	of	infer-
tility	that	can	cause	lambing	rates	to	drop	by	60%–80%	(Adams,	1995;	
Bennetts,	1944;	Biggers	&	Curnow,	1954;	Croker,	Nichols,	Barbetti,	&	
Adams,	2005).	Clover	disease	is	attributed	to	the	consumption	of	hor-
monally	 active	 phytochemicals	 (HAPs),	 particularly	 phytoestrogens	
present in clover forage (e.g., formononetin, coumestrol, genistein, and 
biochanin	A).	A	ewe	affected	by	clover	disease	can	develop	mammary	
gland hypertrophy, infertility, cervical deformities preventing conception, 
a	prolapsed	uterus	(the	uterus	falls	out	through	the	vulva),	or	difficulty	
lambing.	Such	dramatic	results	have	motivated	development	of	low-	HAP	
clover	varieties	in	Australia.	In	the	United	Kingdom,	farmers	are	encour-
aged to avoid pasturing cattle and sheep on red clover or other legumes 
before and during mating to prevent clover disease (Marley, McCalman, 
Buckingham,	Downes,	&	Abberton,	2011).	However,	Marley	et	al.	(2011)	
note that more specific recommendations are not yet possible due to in-
adequate	understanding	of	HAP	biology.	According	to	trade	publications	

intended	for	farmers,	clover	disease	has	always	been	rare	in	the	United	
States	(U.S.),	in	part	because	subterranean	clover	is	not	used	in	the	U.S.	
and because animals may be fed a broader diet that includes clover in 
lower	proportions	(Hudson,	2013;	Kintzel,	2013).

The	need	for	better	understanding	of	HAP	biology	inspired	by	clo-
ver disease has since developed into a broad toxicological research field 
focused	on	how	HAPs	 influence	reproduction	 in	a	diversity	of	verte-
brates (Rochester & Millam, 2009; Wasserman, Milton, & Chapman, 
2013).	Several	frameworks	have	emerged	for	conceptualizing	the	influ-
ence	of	HAPs	on	vertebrate	reproduction	(Figure	1).	These	hypotheses	
primarily	focus	on	the	role	of	HAPs	on	either	plant	or	animal	fitness.	
Despite	 different	 interpretations	 of	 HAP	 effects	 on	 vertebrates,	 the	
dominant	research	theme	frames	HAPs	as	harmful	toxins	that	 impair	
animal	reproduction.	How	environmental	context	(e.g.,	season,	drought)	
shapes	HAP	production	and	composition	and	concomitant	effects	on	
vertebrates	 is	 rarely	considered.	Additionally,	 little	 research	attention	
has focused on the evolutionary consequences or adaptive potential 
of	vertebrate	HAP	exposure.	This	is	surprising	because	environmental	
influences on reproduction could reasonably affect fitness and there-
fore	evolutionary	outcomes.	Here,	we	discuss	how	HAPs,	modulating	
reproductive success, might drive evolutionary change in vertebrates.

Historically,	 HAP	 research	 has	 focused	 on	 plant	 chemicals	 that	
elicit	 an	 estrogenic	 response	 (i.e.,	 phytoestrogens)	 in	 vertebrates.	
However,	we	will	consider	HAPs	to	more	broadly	include	plant	chem-
icals and mixtures with agonistic or antagonistic effects on a range of 
endocrine outcomes including lipid metabolism, steroid or thyroid hor-
mones, prolactin, or luteinizing hormone (Bovee, Schoonen, Hamers, 
Bento,	 &	 Peijnenburg,	 2008;	 Chen	 &	 Chang,	 2007;	 Higham,	 Ross,	
Warren,	 Heistermann,	 &	 MacLarnon,	 2007;	 Ji,	 Domanski,	 Skirrow,	
&	 Helbin,	 2007;	 Markiewicz,	 Garey,	 Adlercreutz,	 &	 Gurpide,	 1993;	
Thompson,	Wilson,	Gobbo,	Muller,	&	Pusey,	2008;	Wang	et	al.,	2015).	
Our review is representative of the hormonal pathways discussed in 
the literature, which is currently dominated by estrogenic compounds. 
We	will	explore	how	HAPs	might	fit	 into	an	evolutionary	framework	
for vertebrates and discuss what research is needed to understand 
whether	HAPs	could	act	as	a	selective	pressure	for	wildlife.

2  | HAPS: WHAT AND WHERE THEY ARE

With	 some	exceptions,	most	 identified	HAPs	 are	 flavonoids,	 lignins	
and lignans, coumestans, or saponins. There are over 9,000 distinct 
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flavonoid and lignan structures produced via the general phenylpropa-
noid	pathway	(Ferrer,	Austin,	Stewart,	&	Noel,	2008;	Winkel-	Shirley,	
2001).	Of	these,	about	100	are	known	to	be	HAPs,	including	genistein,	
daidzein, formononetin, luteolin, quercetin, resveratrol, anthocyanins, 
lignins and lignans, and coumestrol. Similarly, numerous saponins are 
produced from squalene and cholesterol via the mevalonate pathway 
(Faizal	&	Geelen,	2013;	Moses,	Papadopoulou,	&	Osbourn,	2014).

Both flavonoids and saponins are widely distributed across taxa. 
Flavonoids	 have	 been	 isolated	 from	 algae	 (Yoshie-	Stark,	 Hsieh,	
&	 Suzuki,	 2003);	 cyanobacteria	 and	 diatoms	 (Scholz	 &	 Liebezeit,	
2012);	 fungi	 (Qiu,	 Xie,	 Shi,	 Zhang,	 &	 Chen,	 2010);	 and	 a	myriad	 of	
land	 plants,	 including	 liverworts	 (Markham	&	Porter,	 1979),	mosses	
(Brinkmeier,	Hahn,	Seeger,	Geiger,	&	Zinsmeister,	1999),	ferns	(Swain,	
1980),	horsetails	and	Ginkgo	(Pietta	et	al.,	1991),	other	gymnosperms	
(Krauze-	Baranowska,	Baczek,	Glod,	Kaliszan,	&	Wollenweber,	2004),	
and numerous angiosperms (i.e., Condrat, Crisan, Szabo, Chambree, 
&	 Lupea,	 2009).	Angiosperm	 families	with	 species	 that	 contain	 en-
docrine	 active	 flavonoids	 include	 Amaranthaceae,	 Amaryllidaceae,	
Brassicaceae,	 Cannabaceae,	 Dioscoreaceae,	 Fabaceae,	 Lamiaceae,	
Moraceae, Myrtaceae, Rosaceae, Theaceae, and Vitaceae (Bacciottini 
et	al.,	2007;	Mikšátková,	Lanková,	Huml,	&	Lapčík,	2014;	Wasserman,	
Chapman,	et	al.,	2012;	Wasserman,	Taylor-	Gutt,	et	al.,	2012).	Saponins	
are also broadly distributed, with medically relevant saponins being 
found	 in	members	 of	 at	 least	 53	 plant	 families	 (Sparg,	 Light,	&	van	
Staden,	2004)	as	well	as	endophytic	fungi	(Wu,	Yang,	You,	&	Li,	2013).

Plant	 part,	 life	 stage,	 and	 environment	 all	 affect	 HAP	 content,	
distribution,	 and	 quantities	 in	 plants	 at	 any	 given	 time	 (Du,	Yue,	 &	
Tian,	 2012).	 For	 example,	 in	 soybean	plants,	HAP	 content	 is	 low	 in	
stems, pods, flowers, and seeds, moderate in leaves, and very high 
in roots, with absolute amounts changing throughout ontogeny 
(Morgan,	Dillaway,	&	Edwards,	2014).	Because	HAPs	often	 regulate	
protective chemical strategies in plants, they accumulate in plant tis-
sues in response to stressors such as light intensity, herbivory, patho-
gens, metals, competition, or extreme soil moisture or temperature 
(Chaves,	Sosa,	&	Escudero,	2001;	Deng	et	al.,	2012;	Ferrer	et	al.,	2008;	
Harborne	&	Williams,	2000;	Iriti	&	Faoro,	2009;	Lozovaya	et	al.,	2005;	
Skadhauge,	 Thomsen,	 &	 von	 Wettstein,	 1997;	 Wang	 et	al.,	 2012;	

Weston	&	Mathesius,	 2013;	Winkel-	Shirley,	2002).	 In	 fact,	 environ-
mentally	induced	HAP	production	is	a	major	cause	of	variation	across	
individual plants, even within the same population (Romani et al., 
2003).

In	addition	to	the	above	HAPs,	plants	produce	several	compounds	
typically thought of as vertebrate sex steroids, their metabolites, and 
the	enzymes	necessary	to	synthesize	them	(Hewitt,	Hillman,	&	Knights,	
1980;	Janeczko	&	Skoczowski,	2005;	Simersky,	Novak,	Morris,	Pouzar,	
&	Strnad,	2009).	Estradiol	and	estrone	have	been	detected	 in	seeds	
or pollen of apples, date and doum palm, plums, and pomegranates 
(Amin,	Awad,	El	Samad,	&	Iskander,	1969;	Amin	&	Paleologou,	1973;	
Awad,	1974;	Bennett,	Ko,	&	Heftmann,	1966;	Gawienowski	&	Gibbs,	
1969;	Heftmann,	Ko,	&	Bennett,	1966)	as	well	as	quaking	aspen	cat-
kins	 (Khaleel,	Dillman,	&	Gretch,	2003),	 common	beans	 (Kopcewicz,	
1971),	 moghat	 roots	 (Amin	 et	al.,	 1969),	 and	 waxyleaf	 nightshade	
(Milanesi,	Monje,	&	Boland,	2001).	Similarly,	progesterone	was	found	
in extracts of loblolly pine, common foxglove, tobacco, and elecam-
pane	(Carson,	Jenkins,	Wilson,	Howell,	&	Moore,	2008;	Simersky	et	al.,	
2009);	17-	alpha-	hydroxyprogesterone	and	16-	dehydro-	progesterone	
occurred at significant concentrations in foxglove; and andro-
stenedione	was	 found	 in	 tobacco	 and	 elecampane	 (Simersky	 et	al.,	
2009).	 Leaves	 and	 flowers	 of	 chaste	 trees	 contain	 progesterone,	
17- alpha- hydroxyprogesterone, testosterone, epitestosterone, and 
androstenedione	(Sadenkrehula,	Kustrak,	&	Blazevic,1991). In aspen, 
estradiol content is correlated with flower maturation, suggesting 
that this estrogen has important, conserved reproductive functions in 
plants	as	well	as	animals	(Khaleel	et	al.,	2003).	In	fact,	the	surprising	
presence of these steroids in plants suggests that some vertebrate 
hormones	might	be	more	generally	classified	as	eukaryotic	hormones.

3  | PHYSIOLOGICAL AND ECOLOGICAL 
FUNCTION OF HAPS IN PLANTS

Given	 the	 wide	 distribution	 and	 diversity	 of	 HAPs,	 it	 follows	 that	
HAPs	 are	 both	 evolutionarily	 old	 and	 also	 support	 a	wide	 array	 of	
plant	functions	(Buer,	Imin,	&	Djordjevic,	2010).	It	is	likely	that	prod-
ucts of phenylpropanoid biosynthesis were critical in the evolution of 
land plants: Lignins provide structural support for terrestrial plants, 
and	some	flavonoids	are	UV	protective	(Ferrer	et	al.,	2008;	Pollastri	&	
Tattini,	2011;	Tossi,	Lombardo,	Cassia,	&	Lamattina,	2012;	Yoo,	Lee,	
&	Patil,	2013).	Both	saponins	and	 flavonoids	 function	 in	allelopathy	
and	plant	defense	against	foreign	organisms	(Biate	et	al.,	2014;	Faizal	
&	Geelen,	2013;	Iriti	&	Faoro,	2009;	Weston	&	Mathesius,	2013);	they	
regulate seed dormancy and germination, root growth and gravit-
ropism, movement of auxin, and root nodulation (Brown et al., 2001; 
Buer	&	Muday,	 2004;	Carlsen,	Understrup,	 Fomsgaard,	Mortensen,	
&	Ravnskov,	2008;	Faizal	&	Geelen,	2013;	Jia	et	al.,	2012;	Nair,	Safir,	
&	 Siqueira,	 1991;	 Peer,	 Blakeslee,	 Yang,	 &	 Murphy,	 2011;	 Peters,	
Frost,	&	Long,	1986).	In	fact,	isoflavonoids	involved	in	recruitment	of	
nitrogen fixing bacteria and root nodulation can account for 9% of 
the	dry	weight	of	red	clover	(Dornstauder	et	al.,	2001).	This	high	iso-
flavonoid content no doubt contributes to clover’s ability to disturb 

F IGURE  1 Conceptual	framework	illustrating	the	range	of	
hypotheses	explaining	evolution	of	HAPs,	influence	of	HAPs	on	
animal physiology, and fitness outcomes for both plants and animals
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sheep	 fertility.	 As	 noted	 by	 Morgan	 et	al.	 (2014),	 HAP	 content	 in	
plants tends to be highest in roots, which come in contact with a wide 
range of soil organisms, some symbiotic and some pathogenic (Balmer, 
Villacres	de	Papajewski,	Planchamp,	Glauser,	&	Mauch-	Mani,	2013).	
Presumably	 plants	 employ	 different	 phytochemicals	 to	 accomplish	
these	contradictory	tasks	of	nurturing	some	microbes	while	deterring	
others. Coevolution of plants and their symbionts might also select 
for	 symbionts	 that	 tolerate	 antipathogen	 phytochemicals.	 Finally,	
many flavonoids contribute to pollen fertility and serve as pigments 
in flowers, fruits, and seeds (Harborne & Williams, 2000; Thompson 
et	al.,	2008;	Winkel-	Shirley,	2001).	Given	that	HAPs	play	many	roles	
in	plants,	it	is	likely	these	chemicals	evolved	originally	for	ecological	or	
physiological functions in plants, rather than as a reproductive toxi-
cant for vertebrates.

4  | HAP EFFECTS ON VERTEBRATES

In	the	context	of	biodiversity,	HAPs	exemplify	the	principle,	with	their	
numerous	structures	and	functions.	More	remarkable	is	their	ability	to	
communicate	 across	 taxonomic	 boundaries.	Genistein,	 for	 example,	
recruits nitrogen fixing bacteria to legume roots (Subramanian, Stacey, 
&	 Yu,	 2006)	 and	 binds	 vertebrate	 estrogen	 receptors	 that	 modu-
late reproduction, behavior, and metabolism (Casanova et al., 1999; 
Cederroth	 &	Nef,	 2009;	 Nowicka-	Stanczyk,	 Szkudelski,	 Szkudelska,	
&	Nogowski,	2012;	Patisaul	&	Polston,	2008;	Viglietti-	Panzica,	Mura,	
&	Panzica,	2007).	In	frogs	and	rats,	genistein	alters	thyroid	hormone	
signaling and thyroid morphology and reduces thyroid hormone re-
ceptor	 transcription	 (Ji	 et	al.,	 2007;	 Sosić-	Jurjević	 et	al.,	 2010).	 In	
cancer	models,	genistein	 limits	metastasis	by	inhibiting	Notch-	1	and	
TGF-	beta	signaling	and	promoting	tumor	cell	apoptosis	(Lee,	Hwang,	
&	Choi,	2016;	Liu-	Smith	&	Meyskens,	2016).	It	is	remarkable	that	one	
molecule can influence physiological function in plants and animals 
through such diverse mechanisms with a variety of outcomes. We hy-
pothesize below that this convergence could be due to constraints in 
the anatomy of signaling molecules generally and/or shared common 
ancestry among signaling molecules that later radiated out to diver-
gent taxa.

In	fishes,	amphibians,	mammals,	and	birds,	HAPs	can	change	the	
timing, frequency, or duration of reproductive behaviors or events 
such as gonadal development, sexual maturation, estrous, and spawn-
ing	(examples	in	Table	1).	Additionally,	HAPs	can	reduce	gamete	qual-
ity, fertilization rates, fecundity, or offspring mass and viability; alter 
circulating steroid hormone concentrations or gonad morphology; and 
feminize	or	masculinize	sex	ratios	(Table	1).	Although	reported	effects	
of	HAPs	tend	toward	negative	influences,	such	as	reduced	egg	num-
ber,	there	are	also	examples	where	HAPs	have	increased	reproductive	
output	(Rearick	et	al.,	2014).	Moreover,	some	studies	report	no	effects	
of	HAP	exposure	(e.g.,	Stevenson,	Brown,	Montgomery,	&	Clotfelter,	
2011).

Not	 surprisingly,	 the	 effects	 of	 HAPs	 on	 vertebrate	 physiology,	
anatomy, and behavior vary depending on the context of exposure. 
Contextual	elements	include	the	identity	of	the	HAP	or	HAPS	mixture,	

dose, and route of exposure as well as animal species, sex, age/devel-
opmental stage, and environmental conditions (Rochester & Millam, 
2009;	Vajda	&	Norris,	 2006;	Wasserman	 et	al.,	 2013).	 For	 example,	
adding	 daidzein	 to	 the	 feed	 of	 younger	 ducks	 (Anas platyrhynchos)	
decreased	egg-	laying	rate	and	egg	mass,	whereas	in	older	ducks,	the	
daidzein diet increased egg- laying rate, although those eggs had de-
creased	yolk	volume	and	lower	hatchability	(Zhao	et	al.,	2005).

It is worth noting that many of the abovementioned studies on 
how	HAPs	affect	vertebrates	make	the	inherent	value	judgment	that	
increased fertility is positive and reduced fertility is negative. This as-
sumption	biases	interpretation	of	results.	For	example,	if	limited	food	
is available to feed offspring, then temporarily reduced fertility could 
be adaptive because the organism would save reproductive energy 
for	 more	 productive	 times.	 Alternatively,	 enhanced	 fertility	 caused	
by accelerated maturation, for example, could cause an organism to 
reproduce too early when the environment is not supportive of off-
spring survival. Therefore, valuation of the observed effect should be 
interpreted in the broader context of an animal’s ecology.

4.1 | Mechanisms of HAP effects in vertebrates

HAPs	affect	animal	physiology	by	a	variety	of	physiological	mecha-
nisms.	HAPs	can	bind	or	block	animal	hormones,	in	large	part	due	to	
structural	 similarity	 (Figure	2),	 and	 thereby	 alter	 hormone-	regulated	
gene expression and downstream control of hormone synthesis, re-
ceptor	 expression,	 and	 feedback	 loops	 (Boonchird,	 Mahapanichkul,	
&	Cherdshewasart,	2010;	Mueller,	Simon,	Chae,	Metzler,	&	Korach,	
2004).	Interestingly,	closely	related	species	can	exhibit	different	lev-
els	of	receptor	activation	by	HAPs,	as	shown	for	southern	white	rhi-
noceros and one- horned rhinoceros (Tubbs, Hartig, Cardon, Varga, & 
Milnes,	 2012).	HAPs	 also	 participate	 in	 nongenomic	 signaling	 path-
ways that alter phosphorylation reactions, enzymatic activity, and sec-
ond	messenger	cascades	(Greathouse	et	al.,	2012;	Lee	et	al.,	2016).	A	
recent	survey	of	eleven	plant	species	in	Uganda	found	that	extracts	of	
leaves,	bark,	or	flowers	showed	varying	degrees	of	receptor	binding	
in estradiol, progesterone, androgen, and cortisol assays (Wasserman 
et	al.,	 2013).	 This	 survey	 shows	 that	 a	diversity	of	 plants	 and	plant	
tissues have the potential to influence several pathways within the 
hypothalamic–pituitary–adrenal axis, with downstream effects on 
development, growth, reproduction, and behavior. We note, though, 
that structure and receptor binding do not necessarily confer func-
tion. Receptor binding could result in agonistic, antagonistic, or no 
response effects.

4.2 | Exposure of vertebrates to HAPs

Wild	 vertebrates	 can	 be	 exposed	 to	 HAPs	 by	 consuming	 HAP-	
containing	foods	or	through	aqueous	exposure.	As	noted	previously,	
HAP	content	in	plant	foods	is	highly	variable	and	responsive	to	chang-
ing	 environmental	 conditions	 (reviewed	 by	 Morgan	 et	al.,	 2014).	
There is also an apparent connection between human activity and 
HAP	exposure	among	vertebrates.	For	example,	many	birds	with	diets	
high	in	HAPs	are	eating	agricultural	crops	(Rochester	&	Millam,	2009).	
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This	suggests	that	agricultural	conditions	elevate	HAP	levels	in	plants,	
a	hypothesis	supported	by	Rochester	et	al.	 (2009)	who	showed	that	
extracts of irrigated clover contained more estrogenic activity than 
extracts of nonirrigated clover.

In	aquatic	systems,	there	is	also	a	connection	between	HAPs	and	
human	 activity.	 HAPs,	 such	 as	 isoflavones,	 are	 commonly	 detected	
in agricultural waterbodies such as those near clover fields (Hoerger, 
Wettstein,	 Hungerbuhler,	 &	 Bucheli,	 2009;	 Kolpin	 et	al.,	 2010;	
Hoerger	et	al.	2011).	A	recent	survey	of	contaminants	in	a	mixed	use	
landscape found the isoflavone daidzein in waters influenced by agri-
culture,	 golf	 courses,	 and	urban	wastewater	 (Karpuzcu	et	al.,	 2014).	
Similarly,	work	on	frog	ponds	along	a	gradient	of	undisturbed,	forested	
habitats to high- density suburban neighborhoods did not detect any 
HAPs	 in	 forested	ponds	but	 found	a	diversity	of	HAPs	 (coumestrol,	

F IGURE  2 Structural examples of representative vertebrate 
hormones with representative hormonally active phytochemicals 
(HAPs).	Structures	provided	by	ChemSpider

Sp
ec

ie
s

Co
m

m
on

 n
am

e
Ex

po
su

re
Ef

fe
ct

s
Re

fe
re

nc
e(

s)

 C
ot

ur
ni

x 
ja

po
ni

ca
Ja

pa
ne

se
 q

ua
il

G
en
ist
ei
n

Re
du

ce
d 

pr
im

ar
y 

ge
rm

 c
el

l c
ou

nt
In

ta
ra

pa
t, 

Sa
ila

su
ta

, &
 S

at
ay

al
i, 

20
16

 C
ot

ur
ni

x 
ja

po
ni

ca
Ja

pa
ne

se
 q

ua
il

G
en
ist
ei
n-
	en
ric
he
d	
di
et
s

In
cr

ea
se

d 
eg

g 
pr

od
uc

tio
n,

 e
gg

 m
as

s, 
sh

el
l 

th
ic
kn
es
s,	
an
d	
sh
el
l	m
as
s

A
kd
em
ir	
&
	S
ah
in
,	2
00
9

 G
al

lu
s g

al
lu

s
Ch
ic
ke
ns

D
ai
dz
ei
n-
	en
ric
he
d	
di
et
	a
ft
er
	p
ea
k	
eg
g-
	la
yi
ng
	p
er
io
d

In
cr

ea
se

d 
eg

g-
 la

yi
ng

 ra
te

N
i	e
t	a
l.,
	2
01
2

 A
na

s p
la

ty
rh

yn
ch

os
M
al
la
rd
	d
uc
ks

D
ai

dz
ei

n
Re

du
ce

d 
eg

g-
 la

yi
ng

 ra
te

 a
nd

 e
gg

 m
as

s 
in

 
yo
un
ge
r	d
uc
ks
,	b
ut
	in
	o
ld
er
	d
uc
ks
,	e
gg
-	la
yi
ng
	

ra
te
	in
cr
ea
se
d	
bu
t	y
ol
k	
vo
lu
m
e,
	h
at
ch
ab
ili
ty
,	

an
d 

ov
er

al
l f

er
til

ity
 d

ec
re

as
ed

.

Zh
ao
	e
t	a
l.,
	2
00
5

T
A
B
LE
 1
 

Co
nt

in
ue

d



     |  425PersPective

daidzein,	formononetin,	prunetin)	in	suburban	ponds	(Lambert,	Giller,	
Barber,	 Fitzgerald,	&	Skelly,	2015)	which	were	 later	 shown	 to	 influ-
ence	 frog	 sex	 ratios	 (Lambert,	 2015).	 Likewise,	 genistein,	 daidzein,	
and formononetin were found in two urbanized waterways but were 
not	detected	in	more	pristine	waterways	(Rearick	et	al.,	2014).	Along	
rivers, pulp and paper mills are associated with male- biased sex ra-
tios, development of male secondary sex characteristics in females, 
reduced gonad size, and lower fecundity in fish (Table 1, Larsson, 
Hallman,	&	Forlin,	2000;	Larsson	&	Forlin,	2002;	McMaster,	Hewitt,	
&	Parrott,	2006;	Parrott,	McMaster,	&	Hewitt,	 2006).	These	effects	
are attributed to β-	sitosterol	and	other	HAPs	present	in	pine	pulp	and	
paper	mill	effluent	(Table	1).

In addition to the endocrine effects of woody tissues from trees, 
there	is	emerging	evidence	that	chemicals	in	foliage	can	act	as	HAPs	
to aquatic systems. Twenty- four hour aqueous extracts of dead leaves 
from	reeds,	English	oak,	and	beech	show	varying	degrees	of	(anti)an-
drogenic	and	 (anti)estrogenic	properties	 in	yeast	assays,	with	oak	 in	
particular showing strong estrogenic and antiandrogenic in vitro prop-
erties	(Hermelink	et	al.,	2010).	When	tadpoles	were	exposed	to	vary-
ing	concentrations	of	oak	leaf	leachate,	males	had	higher	frequencies	
of testicular lacunae as well as the presence of testicular oogonia, both 
of	which	are	signs	of	demasculinized	testes	(Hermelink	et	al.,	2010).

For	the	most	part,	the	detection	of	aqueous	HAPs	has	been	tar-
geted to human- dominated landscapes. Outside the two studies 
referenced	above,	no	other	research	to	our	knowledge	has	assessed	
the	 presence	 of	 HAPs	 in	 relatively	 pristine	 environments.	 This	 is	
problematic as it limits inferences about the environmental contexts 
where	vertebrate	populations	are	exposed	to	HAPs.	Regardless,	 it	 is	
clear	that	HAPs	are	commonly	associated	with	human-	impacted	en-
vironments and have the potential to influence vertebrate fitness and 
therefore evolution.

5  | HAPS IN A VERTEBRATE 
EVOLUTIONARY FRAMEWORK

As	we	have	 shown,	 it	 is	well	 documented	 that	HAPs	can	alter	 ver-
tebrate reproductive physiology, behavior, and performance. It is 
therefore	possible	that	HAPs	influence	vertebrate	fitness	and	natural	
selection, assuming there is variation in susceptibility to the effects of 
HAPs.	Current	hypotheses	(sensu	Wynne-	Edwards,	2001;	Rochester	
&	 Millam,	 2009;	 Wasserman	 et	al.,	 2013)	 take	 different	 views	 of	
the	 evolutionary	 consequences	 of	 HAPs	 for	 vertebrates	 (Figure	1).	
Hughes	(1988)	proposed	that	plants	make	HAPs	to	inhibit	vertebrate	
fertility,	 potentially	 reducing	 herbivory	 pressure.	 In	 this	 case,	HAPs	
may have evolved for other physiological and ecological reasons but 
were repurposed to inhibit vertebrate herbivory. However, it is un-
clear whether reduced herbivore fecundity would minimize herbivory 
sufficiently	 in	a	relevant	time	frame	for	HAPs	to	be	adaptive	 in	this	
context for plants.

A	 second	 hypothesis	 suggests	 co-	evolutionary	 interactions	 be-
tween	 plants	 and	 vertebrate	 herbivores	 where	 HAP	 consumption	
may	be	beneficial	by	stimulating	fertility	(Wynne-	Edwards,	2001).	An	

extension of this hypothesis is that vertebrates co- evolved with di-
etary	HAPs	as	a	means	 to	 regulate	 reproductive	status,	using	HAPs	
as	indicators	of	environmental	conditions	(Berger,	Negus,	Sanders,	&	
Gardner,	1981;	Rochester	&	Millam,	2009;	Wasserman	et	al.,	2013).	
For	example,	 in	California	quail,	 a	 temporary	 loss	of	 fertility	may	be	
beneficial when the environment will not support offspring survival 
(Leopold,	 Erwin,	Oh,	&	Browning,	 1976).	 In	 this	 system,	plants	 pro-
duced	abundant	HAPs	during	drought	and	almost	no	HAPs	during	rains.	
Consequently,	HAPs	reduced	quail	fertility	when	food	was	scarce	but	
not	during	rains	when	food	was	plentiful.	Similarly,	Negus	and	Berger	
(1977)	showed	that	nonreproductive,	wintering	montane	voles	could	
be stimulated into precocious reproductive activity by feeding the 
voles fresh green wheatgrass. The authors concluded that voles used 
chemical	 signals	 in	 the	 grass	 to	 “know”	 that	 spring	 had	 arrived	 and	
reproduction should begin. There is similar correlation between con-
sumption of estrogenic Millettia dura leaves and induced reproductive 
activity	in	red	colobus	monkeys	from	Uganda	(Wasserman,	Chapman,	
et	al.,	2012;	Wasserman,	Taylor-	Gutt,	et	al.,	2012).

A	 third	 hypothesis	 explaining	 interactions	 between	 HAPs	 and	
vertebrate	physiology	is	that	plants	evolved	HAPs	to	meet	their	own	
physiological	 and	ecological	 needs	and	 that	HAPs	affect	 animals	by	
chance or due to shared ancestry in biochemical pathways. Certainly, 
the	chemical	structures	of	various	HAPs	are	very	similar	to	those	of	
vertebrate hormones and not easily distinguished by animal hormone 
receptors	 (e.g.,	 Bovee	 et	al.,	 2008;	 Figure	2).	 Such	 similarities	 could	
arise due to constraints in the anatomy of signaling molecules gener-
ally. The carbon ring structure, in concert with particular side groups 
(such	as	hydroxyl	groups)	may	be	energetically	or	physically	favored	in	
molecular	partnerships	such	as	ligands	and	receptors.	Aromatic	rings,	
which	are	found	in	many	hormones	and	HAPS,	are	particularly	stable	
(Figure	2).	To	this	end,	signaling	molecules	may	share	common	ances-
try	across	taxa	(Eick	&	Thornton,	2011).

The	 idea	 that	 HAPs	 and	 vertebrate	 hormones	 share	 a	 common	
ancestry	 is	 partially	 supported	 by	 several	 observations.	 First,	 flavo-
noids, estrogens, and estrogen receptors are ancient molecules (Buer 
et	al.,	2010;	Pollastri	&	Tattini,	2011;	Thornton,	Need,	&	Crews,	2003).	
Flavonoids	are	found	in	algae	and	were	likely	present	before	the	evolu-
tion	of	land	plants	(Yoshie-	Stark	et	al.,	2003).	Work	by	Thornton	(2001)	
indicates that estrogens were the first steroid ligands and they proba-
bly evolved before their receptors. The first steroid receptor is thought 
to	be	a	primordial	estrogen	receptor-	like	gene	that	arose	before	the	
origin of bilaterally symmetric animals and then radiated out to the 
constellation	 of	 steroid	 receptors	we	 know	 today	 (Thornton,	 2001;	
Thornton	 et	al.,	 2003).	 Second,	 Eick,	 Colucci,	 Harms,	 Ortlund,	 and	
Thornton	(2012)	report	that	ancient	vertebrate	steroid	receptors	rec-
ognized aromatized estrogens and evolved according to a principle of 
“minimal	specificity”	that	enabled	just	enough	variation	to	discriminate	
among endogenous steroids. In addition to minimal specificity, the an-
cestral binding cavity of steroid receptors was large compared to tar-
get ligands and exhibited excess hydrogen- bonding capacity. Together, 
these features enable promiscuous binding of steroid receptors to a 
range of generally similar molecules, even if they come adorned with 
additional	functional	groups	(Eick	et	al.,	2012).	The	ill-	fitting	nature	of	
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ancestral steroid receptors may underlie their modern- day ability to 
bind	both	HAPs	and	vertebrate	hormones.	 If	modern-	day	HAPs	and	
vertebrate hormones share a common ancestor, it would explain the 
remarkable	similarities	and	cross	talk	observed	between	plant	and	an-
imal signaling cascades.

6  | TESTING HYPOTHESES ABOUT  
THE ROLES OF HAPS IN VERTEBRATE 
TOXICOLOGY AND EVOLUTION

Because	of	their	direct	impact	on	reproductive	parameters,	HAPs	can	
have fitness consequences and may therefore drive evolution. The 
toxicological modus operandi is to expose laboratory strains or wild- 
caught individuals from putatively naïve populations to a chemical of 
interest to infer whether the chemical has an effect. In published stud-
ies,	HAPs	have	been	shown	to	alter	sex	ratios,	fertilization	success,	re-
productive behaviors, gonadal development, and/or gamete quantity 
and	quality	(Table	1).	While	useful	for	understanding	the	toxicological	
effect of a particular chemical, this method limits our inference for 
how species may evolve in response to continued or variable expo-
sure in the context of other environmental conditions.

More useful approaches include common garden and reciprocal 
transplant experiments that provide evidence that species can adapt 
to	 lethal	 chemicals.	 For	 example,	Whitehead,	 Triant,	 Champlin,	 and	
Nacci	 (2010)	 showed	that	killifish	 (Fundulus heteroclitus)	populations	
are	 locally	 adapted	 to	 polychlorinated	 biphenyls	 (PCBs;	Whitehead	
et	al.,	 2010).	 Similarly,	 spotted	 salamanders	 (Ambystoma maculatum)	
have become locally adapted to toxic road salt contamination (Brady, 
2012),	and	wood	frog	 (Rana sylvatica)	populations	are	more	adapted	
to pesticides if they live near agriculture (Cothran, Brown, & Relyea, 
2013;	Hua,	Morehouse,	&	Relyea,	2012).	 In	 these	 studies,	 the	pop-
ulations in question have adapted to lethal chemicals, or chemicals 
that substantially impair development, and exert strong selective pres-
sures.	 However,	 HAPs	 are	 interesting	 because	 they	 exert	 sublethal	
fitness effects by acting through reproductive pathways. To investi-
gate adaptation to the positive and negative reproductive effects of 
HAPs,	experimental	work	will	need	to	assess	reproductive	endpoints	
rather than focusing on developmental rates or mortality. Such experi-
ments are staples to the study of local adaptation (reviewed in Carroll, 
Hendry,	Reznick,	&	Fox,	2007;	Merila	&	Hendry,	2014)	and	have	been	
widely used on studies in different contexts (e.g., Trinidadian guppies, 
Reznick,	Bryga,	&	Engler,	1990;	Anolis	lizards	in	the	Caribbean,	Losos,	
2009).	 As	 such,	 these	 well-	established	 methods	 are	 not	 unique	 to	
evolutionary toxicology but would provide useful insight into whether 
HAPs	have	influenced	vertebrate	evolution.

6.1 | Mechanisms of adaptation

Populations	become	locally	adapted	when	they	exhibit	a	shift	in	ge-
netically based traits that provide fitness advantages in their local 
environment	 relative	 to	alternative	environments	 (Kawecki	&	Ebert,	
2004;	 Richardson,	 Urban,	 Bolnick,	 &	 Skelly,	 2014).	 In	 particular,	 if	

natural	 selection	 acts	 upon	 standing	 genetic	 variation	 in	 HAP	 sen-
sitivity,	 favoring	 individuals	 with	 lower	 susceptibility	 to	 HAPs	 and	
therefore higher fecundity, populations may become locally adapted 
to	HAP	ingestion	or	exposure.	Similarly,	 if	HAPs	improve	the	repro-
ductive capacity and/or outcomes such as offspring survival in a given 
environment, then natural selection might favor individuals that re-
spond	more	to	HAP	exposure.	Genetic	variation	in	sensitivity	to	the	
effects	of	HAPs	on	fecundity	could	therefore	provide	an	impetus	for	
adaptive evolution.

Such	genetic	variation	may	in	fact	exist.	Recent	work	shows	that	
fish	 from	 a	 relatively	 pristine	 lake	 exhibit	 genetic	 variation	 in	 toler-
ance to a synthetic estrogen (17α-	ethynylestradiol)	at	the	embryonic	
stage	(Brazzola,	Chevre.,	&	Wedekind,	2014).	While	this	study	evalu-
ated mortality and development of embryos, rather than reproductive 
parameters, it shows standing genetic variation in how individuals in 
a given population respond to exogenous hormonally active chemi-
cals, indicating the potential for species to adapt to chemicals such 
as	HAPs.

One possible mechanism for adaptation, while arguably specula-
tive,	is	through	changes	in	steroid	receptor	binding	affinity	for	HAPs.	
Experimental	work	suggests	that	just	two	amino	acid	changes	are	re-
sponsible for shifting the affinity of the ancestral vertebrate estrogen 
receptor from estrogens to other steroids such as androgens and corti-
costeroids	(Harms	et	al.,	2013).	This	work	indicates	that	subtle	molec-
ular changes in steroid receptor structure can have substantial effects 
on the receptor–ligand binding affinity as well as function. While it 
is unclear whether subtle evolutionary changes to the structure of 
steroid receptors can occur on ecologically relevant time scales and 
whether	they	can	influence	the	affinity	of	these	receptors	for	HAPs,	it	
is	possible	that	microevolutionary	adaptation	to	HAPs	might	occur	by	
modulating receptor–ligand interactions.

Although	shifts	 in	gene	frequencies	are	a	common	sign	of	adap-
tive processes, they are not the only way that populations can se-
cure	differential	 reproduction	and	survival	 in	 response	to	HAPs.	For	
example, women who consume soy isoflavones will derive greater 
health	benefits	(e.g.,	reduced	breast	cancer	risk)	if	their	intestinal	mi-
croflora includes bacteria that produce favorable isoflavone metab-
olites	 (Sanchez-	Calvo,	Rodriguez-	Iglesias,	Molinillo,	&	Macias,	2013).	
Between	25%	and	65%	of	the	human	population	hosts	symbiotic	bac-
teria that alter absorption and transformation of isoflavones into me-
tabolites	with	higher	biological	 activity	 (Sanchez-	Calvo	et	al.,	 2013).	
Microflora are transmitted to offspring by contact and during vaginal 
delivery,	making	this	trait	transferable	between	generations.	This	ex-
ample illustrates how an environmental, transgenerationally acquired 
trait, such as gut microbiota, can influence susceptibility to the effects 
of	HAPs.

Similarly, environmental exposures can also cause heritable pheno-
typic changes by modifying the epigenome rather than the genome. In 
a	landmark	study,	Anway,	Cupp,	Uzumcu,	and	Skinner	(2005)	showed	
that temporary exposure of a gestating female rat to hormonally ac-
tive pesticides reduced her sons’ sperm counts, quality, and fertility; 
importantly, these effects continued through the succeeding four gen-
erations with no additional chemical exposure and were accompanied 
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by	heritable	changes	in	DNA	methylation	patterns	in	the	germ	line.	No	
studies	 to	date	have	 investigated	 transgenerational	effects	of	HAPs	
mediated by the epigenome. But, genistein has been shown to reverse 
DNA	hypermethylation	by	 inhibiting	DNA	methyltransferase	activity	
(Fang	et	al.,	2005).

Of	 course,	 populations	may	 also	 not	 be	 able	 to	 adapt	 to	HAPs.	
It	 is	possible	 that	 the	toxicological	effect	of	HAPs	does	result	 in	 re-
duced fitness but there is no genetic variation in susceptibility for 
natural selection to act upon. Maladaptive patterns may also emerge 
where	populations	exposed	 to	HAPs	have	more	 severe	 fitness	con-
sequences	 than	 populations	where	 HAPs	 are	 absent.	 This	 principle	
has been shown in wood frog (Rana sylvatica)	populations	 impacted	
by	road	salt	contamination	(Brady,	2013).	Specifically,	wood	frog	lar-
vae from ponds contaminated by road salt suffered higher rates of 
deformities and lower survival when experimentally exposed to road 
salt when compared to larvae from forested ponds with no road salt 
contamination.

7  | FUTURE DIRECTIONS

HAP	research	would	benefit	 from	a	 focus	on	five	main	areas	of	 re-
search.	First,	we	need	 to	better	understand	where	HAPs	are	 in	 the	
environment, their quantities, degradation patterns, and under what 
conditions they are induced in plants. This should include studies 
of landscapes that are both undeveloped and anthropogenically im-
pacted. Second, we need studies of how, when, and to what degree 
animals	are	exposed	to	HAPs,	be	it	through	aqueous	or	dietary	con-
tact.	Studies	that	consider	HAP	exposure	in	the	context	of	other	en-
vironmental	conditions	(seasonality),	endogenous	endocrinology	(e.g.,	
estrous),	 and	 developmental	 stage	 (embryos,	 puberty,	 adulthood)	
would be the especially useful.

This	work	necessitates	also	understanding	 the	agonistic	and	an-
tagonistic	properties	of	HAPs	and	HAP	mixtures	as	they	interact	with	
different	physiological	pathways	(estrogenic,	androgenic,	thyroid,	etc.).	
Fully	understanding	the	physiology	of	HAPs	in	vertebrate	systems	re-
quires a third area of research, investigating the evolutionary history 
of	hormonally	active	molecules	(HAPs	and	vertebrate	hormones)	and	
their receptors. The timing of when different ligands and receptors 
evolved	would	 clarify	whether	HAPs	are	adaptations	or	exaptations	
in plants.

Fourth,	 to	assess	evolutionary	consequences	 for	vertebrates,	 re-
search	should	evaluate	whether	HAP	exposure	promotes	or	reduces	
lifetime	fecundity	and	offspring	survival.	Assessing	whether	different	
HAP	exposure	results	in	fitness	differences	between	populations	is	a	
key	step	for	inferring	fitness	effects	of	HAPs.

The fifth area of research involves testing whether individuals 
within	populations	vary	 in	 their	 susceptibility	 to	HAPs	and	whether	
different susceptibilities explain variation in fitness. Related questions 
would	 ask	 whether	 individuals	 from	 populations	 exposed	 to	 HAPs	
have	higher	HAP	tolerances	than	individuals	from	other	environments	
and	whether	populations	have	the	capacity	to	adapt	to	HAPs	or	are	
already	 locally	 adapted.	 For	 species	with	 long	 life	 spans,	 this	 latter	

step may be particularly challenging due to the logistical constraints 
of rearing animals from different populations to maturity or for mul-
tiple generations for common garden or reciprocal transplant experi-
ments. However, modern molecular techniques may allow us to infer 
patterns of adaptation through genomic or transcriptional variations 
among	populations	(Harris,	Munshi-	South,	Obergfell,	&	O’Neill,	2013;	
Leionen,	McCairns,	O’Hara,	&	Merila,	2013;	Munshi-	South,	Zolnik,	&	
Harris,	2016;	Storz,	2005).

Powerful	 genomics	 advances	 have	 ushered	 us	 into	 the	 “omics”	
era where we can now understand vast variation in gene transcrip-
tion	(transcriptomics),	protein	production	and	structures	(proteomics),	
and	 cell	 or	 tissue	metabolites	 (metabolomics).	 Prior	work	has	 called	
for	increasing	genomics	work	in	the	study	of	hormonally	active	chem-
icals	(Iguchi,	Watanabe,	&	Yoshinao,	2006).	And	recent	work	has	high-
lighted the fact that transcriptomics, for instance, can complement and 
enhance population- level studies on the effects of hormonally active 
chemicals	 (Brander	 et	al.,	 2013).	HAP	 research	 can	 similarly	 benefit	
from	increased	integration	of	“omics”	approaches.

8  | BENEFITS OF STUDYING HAPS IN  
TOXICOLOGY AND ENDOCRINE  
DISRUPTION

Toxicology traditionally investigates biological effects of anthropo-
genic chemicals in the environment, particularly with regard to cancer, 
overt birth defects, and mortality. The field of endocrine disruption 
has advanced classical toxicology to include more subtle effects of 
contaminants on health outcomes such as fertility, sexual develop-
ment, metabolism, and immunity. In the course of endocrine disrup-
tion science, much has been learned about basic biology, particularly 
the importance of developmental processes in the establishment of 
dynamic	 lifetime	 physiology.	 For	 example,	 work	 in	 Lou	 Guillette’s	
laboratory revealed new information about the role of steroidogenic 
enzymes in alligator temperature- dependent sex determination while 
investigating the effects of estrogenic contaminants on sex reversal in 
alligators	(Crain,	Guillette,	Rooney,	&	Pickford,	1997).

The	study	of	how	HAPs	influence	development	and	reproduction	
has similar benefits for understanding plant and animal physiology as 
well	as	ecological	 relationships	between	plants	and	animals.	Perhaps	
more	 interestingly,	 because	 HAPs	 are	 effectively	 natural	 endocrine	
disruptors, their study may illuminate why animal endocrine systems 
are capable of being disrupted by contaminants. Concepts such as re-
ceptor promiscuity (the ability of a hormone receptor to bind multiple, 
structurally	variable	ligands,	including	ligands	that	are	manmade)	may	
be understood more fully in the light of evolution. There may be fitness 
advantages in being able to respond to diverse environmental signals, 
such	as	HAPs,	which	convey	contextual	environmental	information.	If	
HAPs	 increase	 in	plant	 foods	due	 to	drought-	induced	stress,	 for	ex-
ample, that stress might be signaled to animals through their diet and 
enable endocrine- regulated acclimation to environmental change, in-
cluding	altered	reproduction	and	metabolism.	As	global	climate	change	
progresses,	 HAP-	related	mechanisms	may	 play	 an	 important	 role	 in	
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how	animals	 respond.	Because	HAPs	 represent	 relatively	natural	 in-
teractions among plants and animals, they can provide useful evolu-
tionary insight into broader toxicological mechanisms and responses.
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