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Abstract: The linear stepped frequency and linear frequency shift keying (FSK) signal has been widely
used in radar systems. However, such linear modulation signals suffer from the range–Doppler
coupling that degrades radar multi-target resolution. Moreover, the fixed frequency-hopping or
frequency-coded sequence can be easily predicted by the interception receiver in the electronic
countermeasures (ECM) environments, which limits radar anti-jamming performance. In addition, the
single FSK modulation reduces the radar low probability of intercept (LPI) performance, for it cannot
achieve a large time–bandwidth product. To solve such problems, we propose a novel chaos-based
stepped frequency (CSF) synthesized wideband signal in this paper. The signal introduces chaotic
frequency hopping between the coherent stepped frequency pulses, and adopts a chaotic frequency
shift keying (CFSK) and phase shift keying (PSK) composited coded modulation in a subpulse,
called CSF-CFSK/PSK. Correspondingly, the processing method for the signal has been proposed.
According to our theoretical analyses and the simulations, the proposed signal and processing method
achieve better multi-target resolution and LPI performance. Furthermore, flexible modulation is
able to increase the robustness against identification of the interception receiver and improve the
anti-jamming performance of the radar.

Keywords: chaotic signal; stepped frequency; FSK/PSK; low probability of intercept (LPI)

1. Introduction

Low probability of intercept (LPI) is important for modern radar survival [1–3]. The LPI radar
typically uses a frequency shift keying (FSK) or phase shift keying (PSK) modulation signal. The PSK
signal has the advantages of waveform agility and excellent anti-jamming capability, but suffers from
Doppler mismatch problems [4]. The FSK signal can easily achieve a large bandwidth and larger main
lobe-to-peak-sidelobe ratio [5]. The most important limitation is that single FSK or PSK modulation
step cannot attain a large time–bandwidth product [6,7], thereby limiting the anti-intercept ability of
the LPI radar. FSK and PSK composited coded modulation can obtain large time–bandwidth products,
achieve complementary advantage between the single-modulation methods, and improve the range
resolution and velocity resolution [8–10]. FSK/PSK composited coded modulation can significantly
improve the LPI performance of radar [11,12].

In addition, many types of radar adopt stepped frequency modulation to increase the signal
bandwidth, reduce the system instantaneous bandwidth [13,14] and reduce the challenges associated
with modulation technology. For either stepped frequency or frequency-coded applications, linear
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modulation produces a range–Doppler coupling effect. A previous study [15,16] used Costas sequences
to solve this problem. The maximum ambiguity sidelobe is the reciprocal of the coded sequence length.
Several methods exist to construct a Costas sequence. Although the Costas array is inherent to any
positive integer, these analytical methods are typically limited to prime numbers [17,18]. Also, in the
electronic countermeasures (ECM) environments, the Costas frequency-hopping code is relatively
fixed, and can be predicted in a straightforward manner using the interceptor to implement precise
interference, which reduces the radar anti-jamming performance and robustness against identification
of the interception receiver [19–21]. Another previous study [22] presented the random stepped
frequency signal. Randomized stepped frequency radar is related to random noise radar [22]. The real
random noise radar transmits the noise waveform and spectrum with high range resolution [23,24],
but faces many challenges in engineering, including reference signal storage, low signal-to-noise ratios
(SNRs), and transmitter–receiver isolation [25]. Consequently, much research is focused on the topic of
chaos [26–30]. Chaotic nonlinear dynamics can be considered a physical phenomenon that bridges
the regular evolution of systems with random evolution [31]. Chaotic systems are relatively easily
controlled and sensitive to initial conditions and have noise-like, random-like, and wideband spectrum
features [32]. This approach benefits the system by providing a high sensitivity to initial conditions
and a sufficient supply of a reproducible non-correlation pseudorandom signal [33].

Based on the analysis above, we present a new chaos-based stepped frequency (CSF) synthesized
wideband signal. The signal introduces chaotic frequency hopping between the coherent stepped
frequency pulses and chaotic frequency coded in subpulse FSK/PSK composited modulation,
which is called CSF-chaotic frequency shift keying (CFSK)/PSK. Through the reasonable design
of chaotic parameters, this approach can effectively overcome the range–Doppler coupling caused
by linear frequency modulation and provide a “thumbtack”-shaped average ambiguity function.
CFSK/PSK composited modulation in a subpulse can overcome the inherent shortcomings of the two
single-modulation methods and improve the Doppler resolution. In theory, chaotic frequency hopping
is straightforward to generate, and the sequences are infinite and aperiodic. Because they are more
flexible than are the Costas and pseudorandom sequences, the CSF-CFSK/PSK signal offers relatively
strong anti-jamming performance.

This paper is organized as follows: Section 1 introduces the LPI radar signal features and
technology disadvantages of linear stepped frequency or linear frequency-coded signals; Section 2
builds the CSF-CFSK/PSK signal model and then analyzes the optimal signal parameter design;
Section 3 first analyzes the signal ambiguity function and then investigates the range and Doppler
resolution and LPI performance; Section 4 presents the CSF-CFSK/PSK signal processing method;
Section 5 describes the simulations used to validate the effectiveness of the proposed method; and
Section 6 presents the conclusion.

2. CSF-CFSK/PSK Signal Model and Parameter Design

2.1. Signal Model

The model of the CFSK/PSK signal is expressed as follows:

s(t) =
N−1

∑
n=0

M−1

∑
m=0

anmrect

 t−mτc − nτs −
τc

2
τc

 exp(j2π fbnt) (1)

The CFSK/PSK uses chaotic frequency-coded modulation in FSK, and each FSK subpulse is
modulated by PSK. Figure 1 presents the structure block diagram of CFSK/PSK signal. In the above

equation, rect(t) =

{
1, |t| ≤ 1/2
0, Others

, N is the chaotic frequency-coded length of CFSK, M is the

phase-coded length of PSK in every CFSK subpulse, τc is the phase-coded pulse width, τs = Mτc is
the frequency-coded pulse width, fbn = Cbn∆ f are the frequency-coded values, Cbn ∈ {1, 2, 3, · · · , N}
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is the chaotic sequence, ∆ f is the stepped frequency in CFSK, and anm is the mth phase-coded
element in the nth frequency-coded subpulse. Various frequency-coded subpulses may have different
phase-coded elements.

Figure 1. Structure block diagram of chaotic frequency shift keying (CFSK)/phase shift keying (PSK) signal.

The model of the CSF-CFSK/PSK signal is

z(t) =
L−1
∑

l=0
s(t− lTr) exp(j2π frlt)

=
L−1
∑

l=0

N−1
∑

n=0

M−1
∑

m=0
anmrect

 t−mτc − nτs − lTr −
τc

2
τc

 exp[j2π fbn(t− lTr)] exp(j2π frlt)
(2)

where s(t) is the CFSK/PSK subpulse of the stepped frequency; frl = f0 + Crl∆F is the carrier
frequency of the lth subpulse, f0 is the starting stepped frequency, Crl ∈ {0, 1, 2, · · · , L− 1} is the
chaotic coded sequence, ∆F is the stepped frequency in CSF, and Tr is the pulse repetition time (PRT).
The same matching coherent frame has the same subpulse s(t). To enhance the waveform agility and
anti-interference ability, various coherent process intervals (CPIs) can follow the disparate parameters,
including anm, fbn and frl . The structure block diagram of CSF-CFSK/PSK signal is shown in Figure 2.
The time–frequency block diagram is shown in Figure 3.

Figure 2. Structure block diagram of chaos-based stepped frequency (CSF)-CFSK/PSK signal.

Figure 3. Time–frequency block diagram of CSF-CFSK/PSK signal.
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2.2. Parameter Design

2.2.1. FSK/PSK Parameter Design

There are many phase codes in PSK modulation, including binary or polyphase codes. This study
uses Baker binary PSK codes in every FSK modulation. The bandwidth of PSK is similar to the
single-coded element bandwidth, i.e., 1/τc. The FSK stepped frequency ∆ f should be smaller than
or equal to the PSK bandwidth, i.e., ∆ f ≤ 1/τc. To reduce the high-resolution profile grating lobe of
CSF-CFSK/PSK, the stepped frequency ∆F should also be smaller than or equal to the bandwidth of
FSK/PSK. In this study, ∆F = N∆ f and ∆ f = 1/τc.

2.2.2. Chaotic Frequency-Hopping Sequence Design

Figure 4 presents the block diagram of chaotic frequency-hopping sequence generation.
The challenge lies in the selection of the chaotic mapping and one-to-one mapping F between the
discrete chaotic sequence and the frequency-hopping sequence [29]. Different chaotic sequences
result in substantial differences in performance in terms of the autocorrelation and the ambiguity
function. Therefore, the corresponding chaotic sequences must be selected according to the signal
performance requirements. The preferred method of chaotic frequency-hopping sequence generation
is to quantify the discrete chaotic mapping trajectory and optimize the quantization threshold,
as previously described [34]. These methods must construct the corresponding quantitative criterion
according to the various chaotic trajectory characteristics. Because the quantization precision is limited,
certain frequency-hopping sequences may fall into the same quantized interval, thereby worsening the
coherent processing results. A previous report [35] presented a one-to-one mapping method using
queuing theory. In that study, the mapping method was used to generate chaotic frequency-hopping
sequences. We use the same method and equate chaotic frequency-hopping sequences with CFSK
codes in this study. The mapping method is described as follows:

1. Identify the initial value x1 of the chaos mapping and iteration number N and obtain the chaotic
sequence {x1, x2, . . . , xN−1, xN};

2. Sort the chaotic sequence {x1, x2, . . . , xN−1, xN} from small to large to form the new sequence{
xl , xk, . . . , xj, . . . , xp

}
;

3. Find each element decimal position number of the chaotic sequence {x1, x2, . . . , xN−1, xN} in
the new ordered sequence

{
xl , xk, . . . , xj, . . . , xp

}
. Replace the chaotic sequence corresponding

element with these decimal location numbers and obtain the decimal number sequence collection
{C1, C2, . . . , CN−1, CN};

4. The collection {C1, C2, . . . , CN−1, CN} is the frequency-hopping sequence obtained using the
chaotic sequence {x1, x2, . . . , xN−1, xN}.

Figure 4. Block diagram of chaotic frequency-hopping sequence generation.
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Appendix A lists several common one-dimensional discrete chaotic mapping methods.
The modified Bernoulli and modified skew tent sequences are corrected based on the autocorrelation
phase-space axial symmetric (APAS) theorem. These two modified sequences have better
autocorrelation characteristics than does primal mapping sequences [36].

The process is as follows. Allow the chaotic mapping described in Appendix A to iterate
205,000 times for various initial values. Abandon the data from the first 5000 iterations, and then
use the remaining 200,000 data values to generate 20,000 groups of frequency-hopping sequences,
each with a length of 10 elements. Figure 5 shows the Costas FSK code (length 10) and the block
diagram of ambiguity function. Using the same calculation method, count the ambiguity function’s
highest sidelobe value for every sequence and the percentage of different highest sidelobe values
for 20,000 group chaotic frequency-hopping sequences for the various initial values. The percentage
approximates the probability that the maximum sidelobe value appears in ambiguity function. Figure 6
shows the statistical results of the modified Bernoulli and modified skew tent sequences. The variation
in initial values of chaotic mapping has a minor effect on the sequence ambiguity function maximum
sidelobe level. Appendix B presents the statistical average percentage of the maximum ambiguity
function sidelobe level for various chaotic sequences generated by chaotic mapping for various initial
values. The modified Bernoulli and modified skew tent mapping has a similar performance to the
Gaussian random and uniform random sequences; thus, this study uses these two sequences to obtain
the final CFSK codes and frequency-hopping sequences.

Figure 5. (a) Block diagram of the Costas FSK code; (b) block diagram of the Costas FSK code
ambiguity function.

Figure 6. Highest sidelobe statistical percentage of chaotic sequence ambiguity function for various
mapping initial value (a) modified Bernoulli sequences; (b) modified skew tent sequences.
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Chaotic mapping is sensitive to the initial value, and by changing the initial value, completely
different and infinite non-repetitive frequency-hopping sequences can be obtained. By contrast,
the chaotic frequency-hopping sequence has the possibility of being predicted. To increase the
prediction challenge of the interceptor, two or more discrete chaotic sequences with better performance
can be combined to increase the complexity of the sequences, enhance the coding performance [37] and
greatly reducing the possibility of prediction. Many methods of obtaining hybrid chaotic sequences
are available. In this study, 2 elements from the modified Bernoulli and the modified skew tent
sequence are extracted in turn to produce new codes [37]. The block diagram of the hybrid chaotic
frequency-hopping sequence generation is shown in Figure 7. The hybrid discrete chaotic mapping
trajectory and hybrid chaotic frequency-hopping sequences generated via the modified Bernoulli and
modified skew tent are shown in Figure 8. The composited frequency-hopping sequence accurately
preserves the characteristics of the hybrid trajectory.

Figure 7. Block diagram of the hybrid chaotic frequency-hopping sequence generation.

Figure 8. (a) Hybrid discrete chaotic mapping trajectory; (b) hybrid chaotic frequency-hopping sequences.

3. Ambiguity Function and Resolution Analysis

3.1. CSF-CFSK/PSK Ambiguity Function

The CSF-CFSK/PSK signal ambiguity function is

|χz(τ, ξ)| =
∣∣∣∫ +∞
−∞ z(t)z∗(t + τ)ej2πξtdt

∣∣∣
=

∣∣∣∣∣∫ +∞
−∞

[
L−1
∑

l=0
s(t− lTr) exp(j2π frl t)

]{
L−1
∑

q=0
s∗(t + τ − qTr) exp

[
−j2π frq(t + τ)

]}
exp(j2πξt)dt

∣∣∣∣∣
=

∣∣∣∣∣L−1
∑

l=0

L−1
∑

q=0

∫ +∞
−∞ s(t− lTr)s∗(t + τ − qTr) exp

{
j2π
[(

frl − frq
)
t− frqτ + ξt

]}
dt

∣∣∣∣∣
=

∣∣∣∣∣∣L−1
∑

l=0

L−1
∑

q=0

exp
{

j2π
[(

frl − frq
)
lTr − frqτ + ξlTr

]}
∫ +∞
−∞ s(t)s∗(t + τ + lTr − qTr) exp

{
j2π
[(

frl − frq
)
t + ξt

]}
dt

∣∣∣∣∣∣

(3)
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If χb(τ, ξ) =
∫ +∞
−∞ s(t)s∗(t + τ) exp(j2πξt)dt is the CFSK/PSK ambiguity function, then Equation (3)

can be derived as Equation (4). The term s(t) represents the CFSK/PSK signal.

|χz(τ, ξ)|

=

∣∣∣∣∣L−1
∑

l=0

L−1
∑

q=0
exp

{
j2π
[(

frl − frq
)
lTr − frqτ + ξlTr

]}
χb
(
τ + lTr − qTr, ξ + frl − frq

)∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

L−1
∑

l = 0
q = l

exp
[
j2π
(
ξlTr − frqτ

)]
χb(τ, ξ)

+
L−1
∑

l=0

L−1
∑

q = 0
q 6= l

exp
{

j2π
[(

frl − frq
)
lTr − frqτ + ξlTr

]}
χb
(
τ + lTr − qTr, ξ + frl − frq

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(4)

The CFSK/PSK ambiguity function |χb(τ, ξ)| can be derived as

|χb(τ, ξ)| =
∣∣∣∫ +∞
−∞ s(t)s∗(t + τ)ej2πξtdt

∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫ +∞
−∞

N−1
∑

n=0

M−1
∑

m=0
anmrect

 t−mτc − nτs −
τc

2
τc

 exp(j2π fbnt)


N−1

∑
k=0

M−1
∑

p=0
a∗kprect

 t + τ − pτc − kτs −
τc

2
τc


∗

exp[−j2π fbk(t + τ)]

 exp(j2πξt)dt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
∫ +∞
−∞

N−1
∑

n=0

M−1
∑

m=0

N−1
∑

k=0

M−1
∑

p=0

anma∗kprect

 t−mτc − nτs −
τc

2
τc

rect

 t + τ − pτc − kτs −
τc

2
τc


∗

exp[j2π( fbn − fbk + ξ)t] exp(−j2π fbkτ)dt

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣
N−1
∑

n=0

M−1
∑

m=0

N−1
∑

k=0

M−1
∑

p=0
anma∗kp exp(−j2π fbkτ)

∫ +∞
−∞

rect

 t−mτc − nτs −
τc

2
τc

rect

 t + τ − pτc − kτs −
τc

2
τc


∗

exp[j2π( fbn − fbk + ξ)t]dt

∣∣∣∣∣∣∣∣∣∣

(5)

The integral element in Equation (5) can be simplified as

∫ +∞
−∞ rect

 t−mτc − nτs −
τc

2
τc

rect

 t + τ − pτc − kτs −
τc

2
τc


∗

exp[j2π( fbn − fbk + ξ)t]dt

= exp[j2π( fbn − fbk + ξ)(mτc + nτs)]

∫ +∞
−∞ rect

 t− τc

2
τc

rect

 t + τ + (m− p)τc + (n− k)τs −
τc

2
τc


∗

exp[j2π( fbn − fbk + ξ)t]dt

= exp[j2π( fbn − fbk + ξ)(mτc + nτs)] exp{jπ( fbn − fbk + ξ)[τc − τ − (m− p)τc − (n− k)τs]}

sin[π( fbn − fbk + ξ)(τc − |τ + (m− p)τc + (n− k)τs|)]
π( fbn − fbk + ξ)

(6)

Note that |τ + (m− p)τc + (n− k)τs| < τc in Equation (6).
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If Fd = fbn − fbk + ξ, then td = τ + (m− p)τc + (n− k)τs, and Equation (6) has the similar result
as the multicarrier phase coded (MCPC) signal in reference [38]. The CFSK/PSK ambiguity function
|χb(τ, ξ)| can be simplified as

|χb(τ, ξ)|

=

∣∣∣∣∣∣∣∣
N−1
∑

n=0

M−1
∑

m=0

N−1
∑

k=0

M−1
∑

p=0

anma∗kp exp(−j2π fbkτ) exp[j2πFd(mτc + nτs)]

exp[jπFd(τc − td)]
sin[πFd(τc − |td|)]

πFd

∣∣∣∣∣∣∣∣
|td| = |τ + (m− p)τc + (n− k)τs| < τc

(7)

Equation (7) can be continuously derived as

|χb(τ, ξ)|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N−1
∑

n = 0

k = n

M−1
∑

m = 0

p = m

anma∗kp exp(−j2π fbkτ) exp[j2πξ(mτc + nτs)] exp[jπξ(τc − τ)]

sin[πξ(τc − |τ|)]
πξ

+
N−1
∑

n=0

M−1
∑

m=0

N−1
∑

k = 0

k 6= n

M−1
∑

p = 0

p 6= m

anma∗kp exp(−j2π fbkτ) exp[j2πFd(mτc + nτs)] exp[jπFd(τc − td)]

sin[πFd(τc − |td|)]
πFd

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|td| = |τ + (m− p)τc + (n− k)τs| < τc

(8)

According to reference [38], the first term of Equation (8) is the autocorrelation element of the
CFSK/PSK ambiguity function. The second term is the cross-correlation element. We calculate the
average ambiguity function of multiple frame sequences based on Equations (4) and (8). The linear
frequency shift keying (LFSK)/PSK ambiguity function is shown in Figure 9a. All FSK adopt 13 Baker
binary PSK codes in these figures, with τc = 1 µs. The length N of FSK codes is 10, and ∆ f = 1 MHz.
Range–Doppler coupling peaks can be observed on the skew ridge in Figure 9b. The CFSK/PSK
average ambiguity function is shown in Figure 10; and this ambiguity function is approximately equal
to the ideal thumbtack. Of course, the sidelobe level of CFSK/PSK is still relatively high because of the
higher sidelobe level of the Baker binary codes.

Figure 9. (a) Linear frequency shift keying (LFSK)/PSK ambiguity function; (b) range–Doppler
coupling peak.
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Figure 10. (a) CFSK/PSK average ambiguity function; (b) thumbtack average ambiguity function.

Figure 11 presents the linear stepped frequency (LSF)-CFSK/PSK average ambiguity function
near the center area. Figure 12 shows the corresponding CSF-CFSK/PSK average ambiguity function.
The CFSK/PSK parameters are Baker binary codes (τc = 0.25 µs and M = 13), N = 10, and
∆ f = 4 MHz. Moreover, ∆F = 40 MHz, Tr = 100 µs, and L = 4. Similar to the LFSK/PSK,
LSF-CFSK/PSK also has range–Doppler coupling peaks. However, this phenomenon does not occur
in the CSF-CFSK/PSK. Moreover, the CSF-CFSK/PSK ambiguity function appears as a thumbtack.

Figure 11. (a) LSF-CFSK/PSK average ambiguity function; (b) range–Doppler coupling peak.

Figure 12. (a) CSF-CFSK/PSK average ambiguity function; (b) thumbtack average ambiguity function.

Figure 13 presents the CSF-CFSK/PSK range average ambiguity function. The range ambiguity
function is similar to Sinc in the center, and also contains the grating lobes. The Doppler average
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ambiguity function in Figure 14 presents a periodic grating in addition to the main lobe. Section 3.2.2
will provide the related analysis.

Figure 13. (a) CSF-CFSK/PSK range average ambiguity function; (b) range average ambiguity function
partial enlarged view.

Figure 14. CSF-CFSK/PSK Doppler average ambiguity function.

3.2. CSF-CFSK/PSK Resolution Analysis

3.2.1. CFSK/PSK Resolution

Since the ambiguity function of CFSK/PSK is approximately equal to the ideal thumbtack and
its main energy is concentrated on the center area. It can be considered that |τ| < τc and |ξ| < ∆ f .
The second element in Equation (8) is approximated as zero, and the CFSK/PSK range ambiguity
function can be simplified as

|χb(τ, 0)| ≈ |τc − |τ||

∣∣∣∣∣∣∣∣∣∣∣∣∣
N−1
∑

n = 0

k = n

M−1
∑

m = 0

p = m

anma∗kp exp(−j2π fbkτ)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= |τc − |τ||

∣∣∣∣N−1
∑

n=0
exp(−j2π fbnτ)

M−1
∑

m=0
anma∗nm

∣∣∣∣

= M|τc − |τ||
∣∣∣∣N−1

∑
n=0

exp(−j2πCbn∆ f τ)

∣∣∣∣ = M|τc − |τ||
∣∣∣∣ sin(πN∆ f τ)

sin(π∆ f τ)

∣∣∣∣

(9)

We obtain |td| = |τ + (m− p)τc + (n− k)τs| = |τ| < τc.
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Because |τ| is small in Equation (9), |τc − |τ|| ≈ |τc|. When τ = ± 1
2N∆ f

, |χb(τ, 0)| is

approximately−4 dB relative to |χb(0, 0)|. Thus, the CFSK/PSK signal range resolution is ∆R =
c

2N∆ f
,

where c is the speed of light. Similarly, the Doppler ambiguity function is

|χb(0, ξ)|

=

∣∣∣∣∣∣∣∣∣∣∣
N−1
∑

n = 0
k = n

M−1
∑

m = 0
p = m

anma∗kp exp[j2πξ(mτc + nτs)] exp(jπξτc)
sin(πξτc)

πξ

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣ sin(πξτc)

πξ

∣∣∣∣∣∣∣∣N−1
∑

n=0

M−1
∑

m=0
anma∗nm exp[j2πξ(m + nM)τc]

∣∣∣∣
=

∣∣∣∣ sin(πξτc)

πξ

∣∣∣∣∣∣∣∣N•M−1
∑

i=0
exp(j2πξiτc)

∣∣∣∣ = ∣∣∣∣ sin(πξτc)

πξ

∣∣∣∣∣∣∣∣ sin(πξτcNM)

sin(πξτc)

∣∣∣∣

(10)

We obtain |td| = |τ + (m− p)τc + (n− k)τs| = |τ| < τc.

Because |ξ| is small,
∣∣∣∣ sin(πξτc)

πξ

∣∣∣∣ ≈ τc in Equation (10). When ξ = ± 1
2NMτc

, |χb(0, ξ)|

is approximately −4 dB relative to |χb(0, 0)|. Thus, the CFSK/PSK signal Doppler resolution

is ∆ξ =
1

NMτc
. The velocity resolution is ∆v =

λ

2NMτc
, where λ is the transmitting carrier

frequency wavelength.

3.2.2. CSF-CFSK/PSK Resolution

The ambiguity function of CSF-CFSK/PSK is also approximately equal to the ideal thumbtack
shape. In practical applications, the resolution performance with a small time delay and frequency
shift is of more concern. Under this condition, |τ| < Tr, |ξ| < ∆F and q = l in Equation (4).
The ambiguity function |χb(τ, ξ)| of CFSK/PSK is approximately equal to the ideal thumbtack shape;
thus, χb

(
τ + lTr − qTr, ξ + frl − frq

)
≈ 0, q 6= l in Equation (4). As a result, the CSF-CFSK/PSK

ambiguity function in the central area can be simplified as

|χz(τ, ξ)| ≈
∣∣∣∣∣L−1

∑
l=0

exp[j2π(ξlTr − frlτ)]χb(τ, ξ)

∣∣∣∣∣ = |χb(τ, ξ)|
∣∣∣∣∣L−1

∑
l=0

exp[j2π(ξlTr − frlτ)]

∣∣∣∣∣ (11)

The central area ambiguity function envelope of the CSF-CFSK/PSK signal depends mainly on
the CFSK/PSK signal, which can be obtained from Equation (11). The CSF-CFSK/PSK range ambiguity
function is

|χz(τ, 0)| ≈ |χb(τ, 0)|
∣∣∣∣L−1

∑
l=0

exp(−j2π frlτ)

∣∣∣∣ = |χb(τ, 0)|
∣∣∣∣L−1

∑
l=0

exp(−j2πl∆Fτ)

∣∣∣∣
= |χb(τ, 0)|

∣∣∣∣ sin(πL∆Fτ)

sin(π∆Fτ)

∣∣∣∣ (12)

When |τ| is small, |χb(τ, 0)| ≈ |χb(0, 0)|. Similar to the CFSK/PSK signal, |χz(τ, 0)| is

approximately −4 dB when τ = ± 1
2L∆F

relative to |χz(0, 0)|. The CSF-CFSK/PSK signal range

resolution is ∆R =
c

2L∆F
. The CSF-CFSK/PSK Doppler ambiguity function is

|χz(0, ξ)| ≈ |χb(0, ξ)|
∣∣∣∣∣L−1

∑
l=0

exp(j2πξlTr)

∣∣∣∣∣ = |χb(0, ξ)|
∣∣∣∣ sin(πLTrξ)

sin(πTrξ)

∣∣∣∣ (13)
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According to the analyses above, the Doppler resolution is ∆ξ =
1

LTr
. The velocity resolution

is ∆v =
λ

2LTr
. Note that |χz(0, ξ)| has grating lobes with periodic 1/Tr because of the fixed PRT,

which indicates that the signal still contains velocity measurement blurs.

3.3. LPI Performance Analysis

The LPI performance of the radar can be measured using the interception factor α proposed by
Schleher [39]. If α < 1, then the radar cannot be detected by the interceptor and possesses satisfactory
stealth performance. A smaller value of α corresponds to a better LPI performance of the radar.
According to intercept factor theory, the interception factor α ∝

√
1/Bτ [39], where B is the signal

bandwidth, and τ is the signal time width. The CSF-CFSK/PSK has the relationship ∆ f = 1/τc;
thus, α ∝

√
1/∆ f Mτc =

√
1/M for single PSK modulation. In addition, α ∝

√
1/N∆ f Nτc =

1/N for single CFSK modulation; α ∝
√

1/N∆ f NMτc = 1/
√

N2M for CFSK/PSK modulation;
α ∝

√
1/LN∆ f NMτc = 1/

√
LN2M for the CSF-CFSK/PSK signal. The above analysis clearly shows

that the interception factor α of the CFSK/PSK signal is decreased by a factor of
√

1/M and 1/N relative
to the single CFSK or PSK modulation, respectively. By adopting the stepped frequency synthesized
bandwidth accumulation, the interception factor is further reduced by

√
1/L, which improves the

LPI performance.

4. CSF-CFSK/PSK Signal Processing Method

4.1. Echo Model

According to Equation (2), the transmit signal is

z(t) =
L−1

∑
l=0

s(t− lTr) exp(j2π frlt) =
L−1

∑
l=0

s(t− lTr) exp[j2π( f0 + Crl∆F)t] (14)

The echo signal is

ze(t) =
L−1

∑
l=0

s[t− lTr − τ(t)] exp{j2π( f0 + Crl∆F)[t− τ(t)]} (15)

The local oscillator signal is

zr(t) =
L−1

∑
l=0

rect

 t− lTr −
Tr

2
Tr

 exp[j2π( f0 + Crl∆F)t] (16)

The baseband signal after mixing is

zB(t) =
L−1
∑

l=0
s[t− lTr − τ(t)] exp[−j2π( f0 + Crl∆F)τ(t)]

=
L−1
∑

l=0
s
[(

1 +
2v
c

)
t− lTr − τ0

]
exp[−j2π( f0 + Crl∆F)τ0] exp

[
j2π( f0 + Crl∆F)

2v
c

t
] (17)

where τ(t) = 2(R− vt)/c, τ0 = 2R/c, R is the target echo time delay, c is the speed of light, and v is
the velocity of the target. The velocity is positive when the target is close to the radar, whereas the
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velocity is negative when the target is far from the radar. If t′ = t− lTr, then the baseband echo of the
l + 1 subpulse can be derived according to Equation (18) in the fast time domain.

zsl(t′) = s
[(

1 +
2v
c

)
t′ − τ0 +

2lvTr

c

]
exp[−j2π( f0 + Crl∆F)τ0]

exp
[

j2π( f0 + Crl∆F)
2v
c

t′
]

exp
[

j2π( f0 + Crl∆F)
2lvTr

c

] (18)

Equation (18) indicates that the target velocity leads to the time scale compression and
range walk 2lvTr/c of the subpulses. The time scale compression factor is 1 + 2v/c, and the
target delay time and range walk are also compressed by this factor. However, considering
v � c, the compression factor is 1 + 2v/c ≈ 1. Thus, only the range walk must be corrected.
In addition,exp[−j2π( f0 + Crl∆F)τ0] is the echo time delay phase term, which is mainly used to
obtain the target profile; exp[j2π( f0 + Crl∆F)2vt′/c] is the intra-pulse Doppler frequency term of the
subpulse, and it causes the range profile of the subpulse to diverge, which must be compensated; and
exp[j2π( f0 + Crl∆F)2lvTr/c] is the inter-pulse fixed Doppler phase term. Because the relationship
between Crl and l is nonlinear, a divergence of the high-resolution range profile arises in coherent
processing, and it must be corrected. This divergence explains why the nonlinear stepped frequency
synthesized wideband signal ambiguity function is thumbtack-shaped, i.e., improves the multi-target
resolution performance.

4.2. Synthesized Wideband Processing Based on Frequency Spectrum Splicing

The spectrum splicing algorithm moves multiple narrowband pulse signals in the frequency
domain to synthesize a wideband spectrum and uses weighted inverse matched filtering to achieve
a high-resolution range profile [40–42]. A schematic diagram of spectrum splicing algorithm for the
CSF-CFSK/PSK signal is shown in Figure 15. The algorithm is as follows.

Figure 15. Schematic diagram of spectrum splicing algorithm for the CSF-CFSK/PSK signal.

Assuming that the target velocity is 0, the baseband echo of Equation (18) is

zsl
(
t′
)
= s
(
t′ − τ0

)
exp[−j2π( f0 + Crl∆F)τ0] (19)
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Taking the Fourier transform of Equation (19) in the fast time domain, the following spectrum
is obtained:

Zsl( f ) = S( f ) exp(−j2π f τ0) exp[−j2π( f0 + Crl∆F)τ0] (20)

where S( f ) is the frequency spectrum of s(t′). According to the stepped frequency sequence Crl ,
the lth subpulse spectrum Zsl( f ) is shifted by Crl∆F in the frequency domain. After coherent synthesis,
the wideband spectrum is

Z( f ) =
L−1
∑

l=0
Zsl( f − Crl∆F) = exp[−j2π( f + f0)τ0]

L−1
∑

l=0
S( f − Crl∆F)

= exp[−j2π( f + f0)τ0]
L−1
∑

i=0
S( f − i∆F)

(21)

When the subpulse bandwidth is B = N∆ f = ∆F, the coherent synthesized frequency spectrum
is continuous. However, the amplitude spectrum of S( f ) contains a ripple at the top and the spectrum
beyond the effective bandwidth also affects the flatness of synthesized spectrum, thereby affecting the
coherent processing profile. A better solution is to construct the weighted inverse matched filter H( f )
to compensate for the amplitude spectrum fluctuation. H( f ) can be constructed as [40,42]

H( f ) =


S′∗( f )/|S′( fH)|, f ≥ fH

S′∗( f )/|S′( f )|2, fL ≤ f ≤ fH

S′∗( f )/|S′( fL)|, f ≤ fL

(22)

where fL and fH are the minimum and maximum frequencies in the effective synthesized bandwidth,
respectively; and S′( f ) is obtained by coherent superposition of the reference subpulse spectrum S( f )
and is given by Equation (23). Note that H( f ) is no longer a simple complex conjugate of the reference
signal spectrum; specifically, H( f ) is weighted by 1/|S′( f )|2 [42].

S′( f ) =
L−1

∑
i=0

S( f − i∆F) (23)

Using Equation (22) to filter Equation (21), we obtain

P( f ) = Z( f )H( f )

=
S′∗( f )

|S′( f )|2
·S′( f ) exp[−j2π( f + f0)τ0]

= rect
(

f − f ′m
Bt

)
exp[−j2π( f + f0)τ0], fL ≤ f ≤ fH

(24)

where Bt is the effective bandwidth of the synthesized spectrum and f ′m is the central frequency of
Bt. Performing the inverse Fourier transform, we obtain a high-resolution range profile as given in
Equation (25). The peak value of high-resolution profile appears at τ0. The−4 dB main lobe width is 1/Bt.

p(t) = FT−1[P( f )] = sinc[Bt(t− τ0)] exp
(
2π f ′mt

)
exp

[
−j2π

(
f0 + f ′m

)
τ0
]

(25)

If the target velocity is not equal to zero and is independent of the effect of the time scale
compression factor, then the synthesized frequency spectrum without compensations and corrections
is given by Equation (26).
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Z( f ) =
L−1
∑

l=0
Zsl( f − Crl∆F)

=
L−1
∑

l=0
S( f − fdl − Crl∆F) exp[−j2π( f − fdl + f0)τ0] exp

[
j2π( f − fdl)

2lvTr

c

]
exp

(
j2π f0

2lvTr

c

) (26)

fdl = ( f0 + Crl∆F)2v/c is the Doppler frequency shift produced by the subpulse carrier frequency.
Because fdl occurs, the synthesized spectrum is mismatched with the reference spectrum and coupled
to the phase term caused by the inter-pulse Doppler and the range walk. The matched filtering result
is diverged, and the sidelobe rises when the previous weighted inverse filter is directly used. Thus,
compensations and corrections are necessary before the spectrum splicing.

The above derivation is based on the condition of subpulse bandwidth B = N∆ f = ∆F. When
B = N∆ f > ∆F, the spectrum of subpulses are overlapped, and the frequency spectrum must be
divided using the splicing processing method. When B = N∆ f < ∆F, the synthesized frequency
spectrum appears concave or contains gaps, which causes the grating lobe level of the matched result
to be prominently raised. N∆ f < ∆F should be avoided in the design of parameters. According to the
analyses above, the flow chart of CSF-CFSK/PSK signal synthesized wideband processing method
based on the frequency spectrum splicing is shown in Figure 16 and described as follows:

1. Obtain the subpulse baseband data and take the fast Fourier transformation (FFT) in time domain;
2. Compensate the intra-pulse Doppler frequency shift fdl = ( f0 + Crl∆F)2v/c;
3. Correct the inter-pulse range walk phase term exp(jπ f 2lvTr/c) and the inter-pulse Doppler

phase term exp[j2π( f0 + Crl∆F)2lvTr/c];
4. Take the spectrum splicing synthesis and the weighted inverse matched filter processing;
5. Perform the inverse fast Fourier transformation (IFFT) for the synthesized wideband spectrum

and get the high-resolution range profile.

Figure 16. Flow chart of CSF-CFSK/PSK signal synthesized wideband processing method based on
the frequency spectrum splicing.

5. Simulation and Discussion

The processing simulation parameter of CSF-CFSK/PSK signal is shown in Table 1.
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Table 1. Signal processing simulation parameters.

Parameter Value

τc 0.25 µs
M 13
N 10
L 10

∆ f 4 MHz
∆F 40 MHz
f0 10 GHz
Tr 500 µs
v 500 m/s
τ0 250 µs

The synthesized wideband high-resolution range profile is shown in Figure 17. The profile in
Figure 17a has 2N − 1 grating lobes with a period of approximately τc M = 3.25 µs, and the amplitude
of the grating lobes is lower than that of the main lobe. The period and amplitude of these grating
lobes exactly correspond to the CSF-CFSK/PSK range average ambiguity function, but are consistent
with Equation (25), which is primarily because the actual target echo frequency spectrum is not the
ideal rectangle after performing compensation, corrections, and weighted inverse matched filtering.
However, as shown in Figure 18, the weighted inverse matched filtering can significantly reduce the
grating lobes level around the main lobe. The period of these grating lobes is τc2 = 0.5 µs. Figure 17b
shows the main lobe of the high-resolution range profile.

Figure 17. (a) Synthesized wideband high-resolution range profile; (b) range profile partial enlarged view.

Figure 18. Comparison of various matched filtering imaging results.
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The profiles using the various compensation and correction conditions are shown in Figure 19.
If Doppler and range walk are not compensated for and corrected, respectively, then the high-resolution
profile diverges. Relative to the other conditions, ignoring the range walk correction has fewer effects
on the profile. The profile image has a certain divergence; however, the main lobe can still be identified.
Compensating for the intra-pulse Doppler shift only or ignoring the inter-pulse Doppler correction
also lead to divergence in the coherent processing range profile. Figure 19 indicates that the flow chart
in Figure 16, and the processing methods proposed are effective.

Figure 19. Processing results of various compensation and correction conditions (a) no compensation
and corrections; (b) compensation for intra-pulse Doppler shift only; (c) no range walk correction;
(d) no inter-pulse Doppler correction.

The previous study [22] analyzed the random stepped frequency (RSF) signal. The received
signal vector of RSF is correlated with a reference signal to achieve high-resolution range profile, and
the correlation output is accompanied by a random noise component, which increases the sidelobe
level [22]. Figure 20a presents the high-resolution range profile of RSF and CSF. The RSF output adopts
Monte Carlo simulation with the Gaussian distribution random frequency hopping and the results
indicate that CSF possesses better coherent performance. The study [29] proposed the chaotic-based
random stepped frequency (CRSF) signal. The CRSF signal also introduced chaotic frequency hopping
between the coherent stepped frequency pulses but adopted simple rectangular pulse modulated in
subpulses. The received echo vector could be rearranged to the linear order according to the transmitted
frequency-hopping sequence in CRSF. Therefore, the target pick-up algorithm based on IFFT was
used to obtain the high-resolution range profile. For the CSF-CFSK/PSK signal, frequency spectrum
splicing method possesses larger computational burden than the target pick-up algorithm based on
IFFT, but can effectively suppress the profile grating lobes around main lobe through the weighted
inverse matched filter processing. The high-resolution range profile in Figure 20b demonstrates the
superiority of the method we proposed.
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Figure 20. High-resolution range profile comparisons (a) random stepped frequency (RSF) and
CSF; (b) Target pick-up after inverse fast Fourier transformation (IFFT) and frequency spectrum
splicing processing.

6. Conclusions

We have proposed a chaos-based stepped frequency synthesized wideband signal. The novel
CSF-CFSK/PSK signal introduces chaotic frequency hopping between the coherent stepped frequency
pulses and chaotic frequency coded in subpulse FSK/PSK composited modulation. Theoretical
analyses and the simulations show that the signal exhibits a “thumbtack”-shaped ambiguity function
with the optimized discrete chaotic mapping and chaotic frequency-hopping sequence generation
method, thus improving the radar’s multi-target resolution. Moreover, the CSF-CFSK/PSK signal
can overcome the inherent shortcomings of single FSK or PSK modulation and attain a better LPI
performance. In theory, chaotic frequency hopping can be generated easily, and the sequences are
infinite and aperiodic. Thus, the proposed signal is more flexible than are Costas and pseudorandom
sequences, and has better anti-jamming performance. In addition, a synthesized wideband coherent
processing method based on frequency spectrum splicing was presented for the CSF-CFSK/PSK signal.
The simulation results demonstrate the effectiveness and the superiority of the method we proposed.
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Appendix A

Table A1. Selected one-dimensional discrete chaotic mapping examples (here, ε is the minimal
positive number).

Chaotic Mapping Bernoulli Modified Bernoulli

Iterative formula

{
x(n + 1) = bx(n) + a, x(n) < 0

x(n + 1) = bx(n)− a, x(n) ≥ 0

a = 0.5; b = 2− ε

x(n) ∈ (−0.5, 0.5)



x(n + 1) = bx(n) + 1.5, if − 0.5 ≤ x(n) < −0.25

x(n + 1) = bx(n) + 0.5, if − 0.25 ≤ x(n) < 0

x(n + 1) = −bx(n) + 0.5, if 0 ≤ x(n) < 0.25

x(n + 1) = −bx(n) + 1.5, if 0.25 ≤ x(n) < 0.5

b = 4− ε; x(n) ∈ [−0.5, 0.5]
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Table A1. Cont.

Chaotic Mapping Logistic Tent

Iterative formula

x(n + 1) = b
[
a2 − x2(n)

]
− a

a = 0.5; b = 4− ε

x(n) ∈ (−0.5, 0.5)

x(n + 1) = a− b|x(n)|
a = 0.5; b = 2− ε

x(n) ∈ (−0.5, 0.5)

Chaotic Mapping Skew Tent Modified Skew Tent

Iterative formula


y(n + 1) =

y(n)
a

if 0<y(n) ≤ a

y(n + 1) =
y(n)− 1

a− 1
if a<y(n) ≤ 1

x(n + 1) = y(n + 1)− 0.5

x(n) ∈ (−0.5, 0.5); a ∈ (0, 1)



y(n + 1) =
y(n)

a
, if 0 ≤ y(n) ≤ a

y(n + 1) =
y(n)− 0.5

a− 0.5
, if a < y(n) ≤ 0.5

y(n + 1) =
y(n)− 0.5

0.5− a
, if 0.5<y(n) ≤ 1− a

y(n + 1) = − y(n)− 1
a

, if 1− a < y(n) ≤ 1

x(n + 1) = y(n + 1)− 0.5

x(n) ∈ [−0.5, 0.5]; a ∈ (0, 0.5)

Appendix B

Table A2. Statistical average percentage of the maximum ambiguity function sidelobe level for various
chaotic sequences generated by chaotic mapping for various initial values.

Sidelobe Level Bernoulli Logistic Tent Skew Tent

1 0.48% 0% 0% 0%
2 10.2% 23.35% 21.78% 1.89%
3 33.26% 42.3% 43.17% 10.57%
4 28.94% 19.36% 19.67% 19.88%
5 15.54% 9.38% 9.63% 16.1%
6 7.39% 3.34% 3.43% 14.12%
7 2.85% 1.18% 1.21% 6.09%
8 0.94% 0.83% 0.83% 17.64%
9 0.4% 0.26% 0.26% 13.71%

Sidelobe Level Modified Bernoulli Modified Skew Tent Gaussian Random Uniform Random

1 0.055743% 0.07055% 0.057% 0.074%
2 34% 34.04% 39.07% 38.82%
3 48.56% 49.3467% 49.4% 49.66%
4 13.55% 12.97% 10.123% 10.04%
5 3.04% 2.84% 1.23% 1.27%
6 0.64% 0.59% 0.11% 0.128%
7 0.13% 0.11% 0.009% 0.0075%
8 0.0188% 0.0286% 0.001% 0.0005%
9 0.005495% 0.00415% 0% 0%
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