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Abstract

Aiming at the problem that the weak features of non-stationary vibration signals are difficult

to extract under strong background noise, a multi-layer noise reduction method based on

ensemble empirical mode decomposition (EEMD) is proposed. First, the original vibration

signal is decomposed by EEMD, and the main intrinsic modal components (IMF) are

selected using comprehensive evaluation indicators; the second layer of filtering uses wave-

let threshold denoising (WTD) to process the main IMF components. Finally, the virtual

noise channel is introduced, and FastICA is used to de-noise and unmix the IMF compo-

nents processed by the WTD. Next, perform spectral analysis on the separated useful sig-

nals to highlight the fault frequency. The feasibility of the proposed method is verified by

simulation, and it is applied to the extraction of weak signals of faulty bearings and worn

polycrystalline diamond compact bits. The analysis of vibration signals shows that this

method can efficiently extract weak fault characteristic information of rotating machinery.

Introduction

Identification and elimination of fault conditions in rotating machinery significantly increase

the working efficiency and service life. Since the failure of rotating machinery can cause acci-

dental damage to the equipment, to ensure the long-term and safe operation of the equipment,

timely monitoring of the early operating status of the rotating machinery is essential. However,

considering the complex and changeable physical signal transmission path, environmental

interference, and human factors, the signal contains considerable noise, and it is difficult to

extract the characteristic data of the device. Therefore, denoising the early weak signals of

rotating machinery and extracting fault features have become the research topic of many

scholars [1–4]. Due to the high sensitivity of vibration signals to the failure degree of rotating

machinery, extracting the fault characteristics of rotating machinery from the vibration signals

has become a key link in condition monitoring. The feature extraction can be carried out in

the time domain, frequency domain, and time-frequency domain [5–7]. When rotating

machinery has a local failure, pulses will be periodically generated during the working process.
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At this time, the collected vibration signal has the characteristics of non-stationary and non-

linearity, which makes it difficult to extract mechanical failure features.

Various signal processing methods have been applied to solve this feature extraction problem,

including short-time Fourier transform (STFT) [8, 9], Wavelet transform (WT) [10–14], Sparse

decomposition (SD) [15], etc. Although these methods can reduce the interference of noise on

weak signals, they all have their shortcomings. For example, WT needs to determine the wavelet

base and mother wavelet in advance. Also, although SD has good signal decomposition capabili-

ties, it has a strong dependence on the aton library and decomposition methods. Therefore, the

above methods are not suitable for processing nonlinear and non-stationary vibration signals

containing a lot of noise. For this reason, some scholars have proposed time-frequency domain

adaptive analysis methods to analyze vibration signals, such as empirical mode decomposition

(EMD) and local mean value decomposition (LMD) [16–21]. EMD can decompose a complex

signal into a limited number of intrinsic modal function (IMF) components and is an efficient

method for decomposing signals. However, when the information in a certain frequency band of

the signal to be measured is not continuous, modal aliasing and end effect will occur when the

signal is decomposed by EMD, which makes the IMF component lose its physical meaning.

To avoid the occurrence of end effect and modal aliasing, many scholars have proposed the

ensemble empirical mode decomposition (EEMD) method [22–24] when extracting fault fea-

tures. By changing the characteristics of the extreme points of the fault signal, the modal alias-

ing and end effects caused by abnormal disturbances are effectively suppressed. Among them,

Li et al. [22] combined improved frequency band entropy and EEMD for fault diagnosis of

rotating machinery and improved ability to remove noise in the process of fault feature extrac-

tion. Žvokelj et al. [23] combine independent component analysis (ICA) with the EEMD

method, adaptively decomposes the signal into different time scales, and realizes the fault diag-

nosis of the bearing while providing a multivariable signal denoising mechanism. Guo et al.

[24] use the combination of EEMD, WT and the modulation signal bispectrum to perform

multi-level noise reduction of signal characteristics. The analysis results show that this method

is more accurate and reliable in diagnosing bearing faults than using EEMD alone.

Although the above method solves the problems of mode aliasing and end effect, considerable

noise still remains in the decomposed IMF component. Therefore, the problem of denoising IMF

components has become the core of dynamic monitoring and fault diagnosis of rotating machin-

ery. Among them, some multi-scale noise reduction analysis methods have received widespread

attention. Liu et al. [25] combined LMD and wavelet noise reduction to perform fault diagnosis of

large power equipment. Wang et al. [26] used the energy method to eliminate and update the PF

component obtained from the EMD decomposition and used the envelope spectrum entropy to

determine the optimal modal component and penalty factor of the variational modal decomposi-

tion. By combining the two to extract the fault features of the gearbox, the method is demonstrated

to be superior to EMD for fault diagnosis. In recent years, some scholars have combined the

multi-scale analysis method with the singular value decomposition (SVD) method to improve the

efficiency of noise reduction. For example, the combination of the SVD and Hankel matrix-based

denoising method in Ref [27] improves the reliability of bearing fault detection. Tian et al. [28]

combined the LMD-SVD with the extreme learning machine for bearing fault diagnosis, which

shortened the time for fault identification. Jiang et al. [29] combined the adaptive Morlet wavelet

and SVD to de-noise the vibration signal. However, there are some shortcomings in the above-

combined methods, which may cause some important information to be lost; among them, SVD

is not very effective for denoising small pulses in vibration signals. WTD can reduce the interfer-

ence of noise on characteristic signals, but it cannot extract characteristic signals efficiently [30].

ICA is a method of redundancy cancellation based on high-order statistical analysis theory.

When the source signal is unknown, independent source signals are reconstructed from
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multiple observed mixed signals and are not affected by interference noise. It is suitable for the

detection and extraction of early weak signals. Considering the unique advantages of ICA noise

reduction, it is widely used in many fields such as medical signal processing [31, 32] and rotat-

ing machinery dynamic monitoring [33, 34]. However, ICA requires that the number of obser-

vation signals is greater than or equal to the number of signal sources when extracting weak

signals, which is not applicable in the common single-channel underdetermined situation.

Based on the above problems, and considering the weak early fault signals of the equipment,

variable working conditions, and the presence of external environmental interference, a multi-

stage noise reduction method based on EEMD to realize the feature extraction of weak signals

is proposed, which overcomes the defect that a single method is difficult to achieve high-preci-

sion fault detection. The original signal of the faulty equipment is decomposed by the principle

of EEMD, and the single-channel vibration measurement data is decomposed into a series of

IMF components. Since the original signal contains noise, after EEMD decomposition, the

generated IMF component is composed of a true component and a pseudo component. There-

fore, to highlight the characteristics of the fault, the IMF components are processed by a multi-

layer noise reduction method: the first layer of noise reduction uses a multi-index comprehen-

sive evaluation method to select IMF components that contain more original signals; the sec-

ond layer of noise reduction uses WTD to process the selected IMF components. Also, the

IMF components processed by WTD are used as observation signals. By constructing a virtual

noise channel, using the FastICA algorithm to unmix and separate it, the useful signal and the

noise signal are obtained, and the envelope spectrum of the useful signal is analyzed to high-

light the characteristic frequency. The framework of the rest of this article is as follows: Section

2 introduces the basic principles of EEMD. Section 3 analyzes the multi-layer noise reduction

algorithm. Section 4 uses simulation signals to verify the feasibility of the proposed method.

Section 5 applies the proposed method to the extraction of weak features of faulty bearings and

worn polycrystalline diamond composite (PDC) bits. The article concludes in the last Section.

The basic principle of EEMD

The core of the EEMD method is EMD. Although EMD is efficient when decomposing the sig-

nal, if the signal in a certain frequency band of the signal to be measured is not continuous, it

will cause modal aliasing in the decomposed signal. To solve this problem, white noise is usu-

ally added to the original signal. Also, considering the feature that the mean value of white

noise is zero, the lumped average calculation is performed on the effect after multiple decom-

positions, which avoids the interference of the introduced white noise on the fault feature

extraction. The process of EEMD decomposition is as follows:

1): To construct the original signal xi(t), add N-th Gaussian white noise ni(t) with zero

mean and constant standard deviation to the input signal x(t). The equation is as follows:

xiðtÞ ¼ xðtÞ þ niðtÞ ð1Þ

Among them, i = 1,2,. . .,N, N is generally 100–300. After research [35], the added Gaussian

white noise conforms to the following law:

ε ¼
k
N

ð2Þ

The formula ε represents the standard deviation of the signal and k represents the intensity

of added noise.
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2): Use the EEMD method to decompose the signal xi(t) into a series of IMF components

and margins, and get the following equation:

xiðtÞ ¼
Xm

j¼1

ci;jðtÞ þ riNðtÞ ð3Þ

Among them, m is the number of IMF components, ci,j(t) is the j-th IMF component of the

i-th experiment, i =1,2,. . .,N; j = 1,2,. . .,m.

3): Because in each decomposition step, the sequence of noise is different, and there is no

correlation between them. Therefore, to offset the influence of noise, sufficient experimental

steps are taken, and the aggregate mean value of the corresponding IMF components is taken

as the final result:

cjðtÞ ¼
1

N

XN

i¼1

ci;jðtÞ ð4Þ

Where cj(t) indicates the j-th IMF decomposed by EEMD.

It can be seen that the EEMD method can enhance the modulation component caused by

the failure of the rotating machinery, thereby suppressing the noise component.

Multi-layer noise reduction method

The early fault signal strength of rotating machinery is weak, contains a lot of noise, and is non-

linear and non-stationary, which makes it difficult to extract fault features. Therefore, to avoid

the interference of external noise on the weak signal, this article has carried out multi-layer noise

reduction processing on the original vibration signal, and the flowchart is shown in Fig 1. The

vibration signal of the faulty equipment is decomposed by EEMD to obtain a series of IMF com-

ponents, it shows the local signal of the fault. However, this signal contains a lot of interference

noise (e.g., Gaussian white noise, impact noise, interference noise between devices), which is not

conducive to highlighting the fault frequency. Therefore, use the comprehensive evaluation index

to select the IMF components that contain more original information, and perform WTD on the

selected IMF components. Also, the remaining components are summed to construct a virtual

channel. Then use the FastICA algorithm to reduce noise and unmix to separate the noise from

the useful signal. The multi-layer noise reduction method can eliminate powerful noise interfer-

ence, when feature extraction is performed on the fault signal, the characteristic frequency extrac-

tion performance is enhanced, which is beneficial to highlight the fault characteristics.

Principle of IMF selection

Considering that the IMF component is not entirely a useful signal, to improve the fault detec-

tion performance, the IMF component containing more original signals is extracted. Among

them, the correlation coefficient (CC) [36] reflects the degree of similarity between the original

signal and the output signal. The higher the CC value, the greater the similarity between the

input signal and the output signal. Therefore, CC is used as an index for selecting IMF
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components. CC is defined as follows:

CC ¼

XN

i¼1

ðyi � �yÞðxi � �xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

ðyi � �yÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN

i¼1

ðxi � �xÞ2
s ð5Þ

Among them, �y and �x are the average values of the output signal y(t) and the input signal x
(t), respectively.

Although CC has a certain sensitivity to noise, to avoid the loss of characteristic informa-

tion, some other methods (kurtosis [37], root mean square (RMS) [38]) are also used as the

selection index of IMF components. Kurtosis is a numerical statistic that reflects the distribu-

tion of signal amplitude, and it has a certain sensitivity to vibration and shock signals, which is

highly efficient in describing the pulse characteristics of vibration signals. The model is as

Fig 1. The multilayer noise reduction algorithm scheme.

https://doi.org/10.1371/journal.pone.0254747.g001
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follows:

Kurtosisx ¼
M
XM

a¼1
ðxi � �xÞ4

ð
XM

a¼1
ðxi � �xÞ2Þ2

ð6Þ

Among them, �x is the mean value of signal x, and M is the number of sampling points.

The RMS is defined as follows:

RMSx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

a¼1
xi

2

M

s

ð7Þ

Among them, M is the number of sampling points.

Because the early fault signals of rotating machinery are weak and contain a lot of noise, CC

only considers the similarity between the input signal and the output signal. RMS alone is not effi-

cient for the early feature extraction of weak signals. Although the kurtosis is highly sensitive to

impact signals, when the fault is severe, the kurtosis cannot maintain a rising trend during the full

life cycle of the rotating machinery, and it is only efficient in the early fault identification of the

rotating equipment. Therefore, considering the shortcomings of a single index when selecting IMF

components, this paper proposes a comprehensive evaluation index to select IMF components,

which avoids wrong signal selection in the process of single index evaluation. The EEMD principle

is used to decompose the original signal into a series of IMF components, and the CC, kurtosis,

RMS, energy ratio (the ratio of the IMF component to the original signal) of the i-th component

[39] is defined as Hi,1,Hi,2,Hi,3,Hi,4. In the process of feature extraction of rotating machinery, due to

the complex working environment, different indicators have different diagnostic capabilities for dif-

ferent fault degrees. Therefore, each indicator is given the same weight, and a comprehensive evalu-

ation indicator Qi (the average of the four evaluation indicators) is defined. This method avoids the

shortcomings of loss of characteristic information when selecting IMF for a single indicator. Set the

threshold for the comprehensive performance evaluation index: To retain most of the important

information, select the IMF component to occupy more than 85% of the original information.

IMFs denoising based on wavelet threshold

After EEMD decomposition of the original signal, a series of IMF components are obtained,

all of which do not completely contain the real information of the vibration signal. Although

the IMF components containing the main information were selected by using the comprehen-

sive evaluation index, these components were still covered by a lot of noise. To avoid noise

interference, further de-noising of decomposed IMF components has become the key to

improve the fault diagnosis of rotating machinery.

WT is widely used in the field of signal noise reduction, using multi-resolution time-fre-

quency distribution diagrams to represent the signal and decomposing the signal into different

sizes. WTD is a WT-based noise reduction algorithm. Discrete Wavelet Transform (DWT) is

described as follows:

WTða; bÞ ¼
1
ffiffiffiffiffi
2a
p

XT

t¼1

sðtÞ � cð
t � b � 2a

2a Þ ð8Þ

Among them, a is the decomposition level, b is the translation parameter, T is the number

of sampling points, and ψ is the wavelet basis function.

Performing WTD on the main IMF components, to some extent, avoids the shortcomings

of WTD directly acting on the original signal and causing some useful signal loss. The basic
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principle of wavelet threshold is to use high-amplitude components to reconstruct the

denoised information, and wavelets smaller than the threshold are set to zero. Choosing an

appropriate threshold method is very important for WTD. Two main threshold operators

[34]: hard threshold and soft threshold are described as Eqs (9) and (10), respectively.

o⏜ j;k ¼
oj;k joj;kj � l

0 joj;kj < l
ð9Þ

(

o⏜j;k ¼
sgnðoj;kÞðoj;k � lÞ joj;kj � l

0 joj;kj < l
ð10Þ

(

Among them, ωj,k is the k-th wavelet coefficient of the j-th layer of the wavelet transform,

and λ is the threshold.

Compared with the hard threshold method, the reconstruction coefficient of the soft

threshold method has good continuity at the threshold point, and there is no breakpoint.

Therefore, this article chooses the soft threshold method to apply to WTD.

ICA extracts characteristic components

WTD has good noise reduction performance, but it is not very effective for the extraction of

weak signals. Considering that ICA is a blind source separation technology when the source sig-

nal is unknown, the source signal is reconstructed from the observed mixed signal, and it is

unmixed and denoised to highlight the weak characteristics. Because of its unique advantages, it

is widely used in the extraction of weak signals. Taking into account the underdetermined single

channel in the project, the IMF component processed by WTD is used as the observation signal,

and the rest of the IMF components are summed and reconstructed into the virtual noise channel

signal. The observation signal and the virtual noise channel signal are used as the input matrix of

FastICA, which effectively solves the problem of underdetermined blind source separation.

Use FastICA to separate noise and useful source signals. The ICA model is described as fol-

lows:

X ¼ AS ð11Þ

Among them, X(t) = [x1(t),x2(t),. . .,xn(t)] is an n-dimensional observation signal, s(t) =

[s1(t),s2(t),. . .,sm(t)] is an m-dimensional mutually independent source signal, and A repre-

sents an m×n unknown mixing coefficient matrix, and the number of observation points m is

greater than or equal to the number of source signal points n.

The purpose of ICA analysis is to estimate the inverse matrix A−1 of the coefficient matrix

A based on certain optimization criteria without prior knowledge. The independent signal

source S can be obtained through the inverse matrix of A, that is S = A−1X, which is used to cal-

culate the independent signal. Where the inverse matrix A−1 is represented by W, and the fol-

lowing expression is obtained:

yðtÞ ¼W � xðtÞ ¼W � A � sðtÞ ð12Þ

y(t) = [y1(t),y2(t),. . .,yN(t)]T is an approximate estimate of the independent source signal.

Finally, the flowchart of the fault extraction method for multi-layer noise reduction is

shown in Fig 2. The specific implementation steps are as follows:

1. Decompose the vibration signal of the rotating machine through EEMD;
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2. Calculate the CC, spectral kurtosis, RMS, and energy ratio of each IMF, find the Qi value of

each IMF component; also, select the main IMF component through the Qi value;

3. Perform WTD noise reduction processing on the main IMF components;

4. Use the IMF component processed by WTD as an observation signal and introduce a vir-

tual noise channel;

5. Use FastICA to unmix and separate the observed signal and virtual noise signal to obtain

useful signals;

6. Perform spectrum analysis on useful signals to highlight characteristic signals.

Simulation analysis

To verify the feasibility of the method proposed, a sine signal with Gaussian white noise is

used for simulation analysis, where the simulated signal is s = 0.8sin(60πt), and the signal-to-

noise ratio (SNR) with Gaussian white noise is -20dB. To avoid the occurrence of modal

Fig 2. Multilayer noise reduction flow chart.

https://doi.org/10.1371/journal.pone.0254747.g002

PLOS ONE Rotating machinery weak fault signal extraction

PLOS ONE | https://doi.org/10.1371/journal.pone.0254747 July 19, 2021 8 / 24

https://doi.org/10.1371/journal.pone.0254747.g002
https://doi.org/10.1371/journal.pone.0254747


aliasing, when performing EEMD decomposition of the simulated signal, 100 times white

noise with an amplitude of 0.2 times the standard deviation of the original signal is added. Fig

3 shows the time domain and frequency spectrum of the simulated signal, although there is a

certain impact signal in the original waveform, the characteristic frequency of the signal is dif-

ficult to highlight in the frequency spectrum due to the interference of external noise.

The multi-layer noise reduction method is applied to the simulation signal. Due to the

interference of noise, each IMF component does not completely contain useful signals.

Observing Fig 4, we can see that the impact signals of the first few-order IMF components are

obvious. Considering the space, this section calculates the comprehensive evaluation indica-

tors of the first six-order IMF components, as shown in Table 1. According to Table 1, the first

fourth-order IMF components contain more than 85% of the original signal. Therefore, the

first four-order IMF components are further processed by WTD, and the signal is recon-

structed and analyzed by FFT after noise reduction. The result is shown in Fig 5. Comparing

Figs 3 and 5, it is found that after WTD transformation, the noise is suppressed to a certain

extent, but the characteristic signal is not prominent. Therefore, to highlight the characteristic

frequency of the weak signal, further processing of the IMF component processed by the WTD

is required.

Next, to solve the problem of ICA single-channel underdetermination, this section uses the

IMF component processed by WTD as the observation signal, and the sum of the remaining

IMF components is used as the virtual noise channel signal. Introduce the virtual channel, use

the observation signal and the virtual noise signal as the input matrix of ICA, and use the Fas-

tICA algorithm to reduce noise and unmix. The spectrum analysis of the unmixed useful signal

is shown in Fig 6. Compared with the WTD noise reduction analysis, the noise interference is

suppressed after the ICA processing, and the characteristic amplitude of the simulated signal is

highlighted.

Fig 3. Original waveform and FFT spectrum of the simulated signal. (A) Original waveform (B) Spectrogram.

https://doi.org/10.1371/journal.pone.0254747.g003
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To evaluate the advantages of the proposed method, three methods (EMD-WTD [40],

EEMD-ICA [41], LMD-WTD-SVM [30]) were used to process the same signal and perform

comparative analysis. Adding different degrees of Gaussian white noise (0, 5, 10, 15, and 20dB)

Fig 4. Decomposition result of original signal EEMD.

https://doi.org/10.1371/journal.pone.0254747.g004

Table 1. The Qi value of the simulated signal IMF component.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

H1 0.531 0.216 0.125 0.062 0.021 0.009

H2 0.243 0.164 0.182 0.159 0.092 0.061

H3 0.569 0.157 0.093 0.068 0.035 0.027

H4 0.732 0.126 0.064 0.037 0.003 0.003

Qi 0.519 0.166 0.116 0.082 0.038 0.025

https://doi.org/10.1371/journal.pone.0254747.t001
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to the sinusoidal signal, the evaluation index of noise reduction performance is the SNR.

Under the same noise interference, the larger the SNR after noise reduction processing, the

better the noise reduction performance of this method. Under different noise interference, the

SNR processed by different noise reduction methods is shown in Fig 7. Comparing these four

methods, it can be found that the noise reduction performance of the proposed method is sig-

nificantly better than the other three methods, which again verifies the effectiveness of the pro-

posed method.

Experimental analysis and engineering application

Failure bearing analysis

Data acquisition. This section uses the data of the inner-race fault bearing of Western

Reserve University [42] to conduct experiments to analyze and verify the effectiveness of the

proposed multilayer noise reduction method. The experimental device is shown in Fig 8.

Among them, the 2 hp motor and the dynamometer are connected through a torque sensor.

The test bearing type is 6205-2RS deep groove ball bearings. The diameter of the pitch circle of

the bearing is 39mm, the contact angle is zero, the diameter of the rolling element is 8mm, and

the motor speed is 1797rpm. During the experiment, the experimental data were measured by

a vibration acceleration sensor mounted on the inner-ring of the drive end bearing. The sam-

pling frequency was 12kHz and the inner-race fault size of the drive end bearing was 0.007-in.

Feature extraction of inner-ring fault bearing. In actual operation, due to the harsh

working environment, multi-source vibration excitation, and the influence of human factors,

the early vibration signal is weak and the fault characteristics are difficult to extract. This sec-

tion studies the effectiveness of the proposed method under two different working conditions,

Fig 5. Spectrogram after WTD processing.

https://doi.org/10.1371/journal.pone.0254747.g005

Fig 6. Spectrum after multi-layer noise reduction.

https://doi.org/10.1371/journal.pone.0254747.g006
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working condition 1: motor speed 1797rpm, motor load 0hp; working condition 2: motor

speed 1772rpm, motor load 1hp. The time-domain and frequency-domain diagrams of the

vibration signal of the inner-ring fault bearing obtained under the first working condition are

shown in Fig 9.

Although periodic shocks can be clearly seen in the time-domain waveform of Fig 9A, it is

difficult to find fault characteristics from the waveform and FFT spectrum of Fig 9B due to the

influence of external interference factors.

The multi-layer noise reduction method proposed first needs to perform EEMD decompo-

sition of the original signal to obtain IMF components. Considering that there are less useful

signals in the low-frequency IMF components, only the first eight-order IMF components are

Fig 7. Noise reduction effect of four methods under different noise SNR.

https://doi.org/10.1371/journal.pone.0254747.g007

Fig 8. Experimental platform for failed bearings.

https://doi.org/10.1371/journal.pone.0254747.g008
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drawn, as shown in Fig 10. Observing Fig 10, to select the main IMF components more accu-

rately, the comprehensive evaluation index is used to select the components occupying more

than 85% of the original signal for analysis. According to Table 2, it is found that the first three

orders of IMF components contain more than 85% of the information of the original signal.

Therefore, the noise reduction process is performed on the first three orders of the IMF com-

ponent. Simulation analysis shows that WTD has a certain noise reduction effect on the signal,

but it is not very effective for feature extraction. Therefore, the first three-order IMF compo-

nents are used as the observation signal after WTD noise reduction, the remaining compo-

nents are summed as the virtual noise signal, and the FastICA algorithm is used for noise

reduction and unmixing. Fig 11 shows the frequency spectrum of the proposed method to pro-

cess the original vibration signal and it is observed that the amplitude at 162.1 Hz is obvious.

Comparing the frequency spectrum of the original vibration signal, it is found that after the

vibration signal of the inner-ring fault has been processed by multi-layer noise reduction, the

characteristic signal is displayed; when the motor speed is 1797rpm, the fault frequency of the

rolling bearing is calculated to be 162.1Hz according to the bearing specification. The theoreti-

cal calculation value is consistent with the experimental analysis of the fault frequency, which

again verifies the effectiveness in extracting weak characteristic signals of rotating machinery.

Since WTD has a good effect on noise suppression, it is not very effective in extracting

weak signal features. To verify the advantages of ICA in extracting features in the proposed

method, the EEMD-WTD-SVD method is used to process the original signal as shown in Fig

12. Comparing Figs 11 and 12, it is further verified that ICA has certain advantages for the

extraction of weak characteristic signals while reducing noise interference. The results show

that the effectiveness of the method proposed is not only achieved by WTD, but by EEMD

decomposition, selection of IMF components, WTD and ICA.

In addition, in order to verify the versatility of the proposed method, the vibration signal of

the bearing under the second working condition is analyzed. First, obtain the time domain

Fig 9. Time-domain waveform and spectrogram of inner-race fault. (A) Original waveform (B) Spectrogram.

https://doi.org/10.1371/journal.pone.0254747.g009
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and FFT spectrograms of the bearing under working condition 2 as shown in Fig 13. The peri-

odic signal in the time-domain waveform in Fig 13A indicates that the bearing has failed, but

the fault frequency in Fig 13B is difficult to highlight due to the presence of external interfer-

ence signals. For this reason, the multi-layer noise reduction method proposed in this paper is

Fig 10. EEMD decomposition of vibration signal of inner-ring fault bearing.

https://doi.org/10.1371/journal.pone.0254747.g010

Table 2. The Qi value of IMF component of the vibration signal.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

H1 0.573 0.212 0.105 0.062 0.023 0.012

H2 0.258 0.223 0.198 0.132 0.119 0.064

H3 0.624 0.251 0.067 0.021 0.012 0.011

H4 0.702 0.193 0.042 0.031 0.024 0.003

Qi 0.539 0.220 0.103 0.062 0.045 0.023

https://doi.org/10.1371/journal.pone.0254747.t002
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used to process the original signal. The IMF component of the original signal was obtained by

EEMD decomposition. As can be seen from Fig 14, a total of 12 order was obtained. Then, the

comprehensive evaluation index was used to select the main IMF component, as shown in

Table 3. Since the former 4 order of the IMF component occupied more than 85% of the infor-

mation of the original signal. Therefore, the former 4 order component was processed by

WTD as the observation signal, the remaining components were summed as the virtual noise

signal, and the two were input into FastICA for noise reduction and de-mixing. The spectrum

diagram after processing is shown in Fig 15. By comparing Fig 13B with Fig 15, it is found that

the proposed multi-layer noise reduction method can effectively reduce the noise and high-

light the characteristic frequency. Through the above two experiments, the results show that

the proposed method can extract the fault characteristics of rotating machinery under different

working conditions.

Engineering application

Data acquisition. The above experimental studies prove that the multi-layer noise reduc-

tion method proposed in this paper can carry out feature extraction for fault signals under dif-

ferent working conditions. Thus, in this section, to verify the practicability of the proposed

method, the method proposed is applied to the extraction of weak signals in the working pro-

cess of worn core bits. Among them, the drilling machine uses the ZLJ-350 tunnel drilling rig

for coal mines. The drilling machine is connected to the ground through a stand. The experi-

mental device is shown in Fig 16, which includes a drill pipe and a clamp for holding the speci-

men. The specimen is a concrete block with a compressive strength of 40 MPa cast by cement.

During the experiment, the vibration signal was obtained using the FA1105-A1 acceleration

sensor. The layout of the sensor is shown in Fig 17. Considering that axial vibration mainly

Fig 11. Spectrum diagram of vibration signal after multi-layer noise reduction.

https://doi.org/10.1371/journal.pone.0254747.g011

Fig 12. Spectrogram after EEMD-WTD-SVD processing.

https://doi.org/10.1371/journal.pone.0254747.g012
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occurs in the process of drilling and coring, in the following analysis, the data measured by

sensor 1 is taken as the analysis object. The vibration signal is collected and analyzed by

DEWESoft v6.6, the sampling frequency is set to 20kHz, the drilling speed of the drill bit is

110rpm, and the inner diameter of the core bit is 52mm. In the process of data collection, due

to the influence of the vibration signal transmission path and multi-source vibration excita-

tion, the obtained signal has a large amount of interference noise. Therefore, the proposed

method is used to extract the feature of the weak signal.

Feature extraction of worn PDC bit. Considering that the characteristic frequency of the

worn bit vibration signal will appear periodically in a short time, observe the original wave-

form of the worn bit and the FFT spectrum graph as shown in Fig 18. Although obvious peri-

odic shock signals can be observed in the time domain diagram, the characteristic frequencies

in the spectrogram are difficult to highlight due to the influence of external noise and human

factors during the vibration signal measurement process. Therefore, it is necessary to de-noise

the vibration signal. The original signal is decomposed by EEMD to obtain IMF components,

as shown in Fig 19. Due to the presence of noise, the IMF component contains false compo-

nents, and as the frequency of the IMF component decreases, the less useful signal is con-

tained. To reduce the noise interference, the comprehensive evaluation index of the first six-

order IMF components is calculated, and the IMF components with more original signals are

selected. Observing Table 4, we can see that the first four-order IMF components contain

more than 85% of the original signal. Therefore, the first four-order IMF components are

selected for further noise reduction processing. To highlight the characteristic signals, FastICA

analysis is performed on the IMF components. Among them, the first four-order IMF compo-

nents are subjected to WTD noise reduction and used as the observation signal, and the

remaining IMF components are summed as the virtual noise signal. By taking the observation

Fig 13. Time-domain and frequency-domain diagrams of the original signal under working condition 2. (A)

Time-domain graph (B) Frequency domain graph.

https://doi.org/10.1371/journal.pone.0254747.g013
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signal and the virtual noise signal as the input matrix of the ICA, and using FastICA for noise

reduction and unmixing, the final spectrogram of the vibration signal after noise reduction is

obtained, as shown in Fig 20.

To verify the effectiveness of the method proposed in this paper, using LMD-WTD [25]

and EEMD-ICA [40] to process the frequency spectrum of vibration signals are shown in Figs

21 and 22. Observing Fig 21, it is obvious that WTD can suppress noise to a certain extent, but

WTD is not very effective for extracting weak signals. In Fig 22, although the characteristics of

the weak signal can be highlighted to a certain extent, the noise suppression effect when using

EEMD-ICA to extract the weak signal is not very good; comparing Figs 20–22, it verifies the

noise suppression effect of WTD and the advantage of ICA in weak signal extraction.

Fig 14. IMF components after EEMD decomposition of the original signal. (A) IMF1-IMF6, (B) IMF7-IMF11 and a residual component.

https://doi.org/10.1371/journal.pone.0254747.g014

Table 3. The Qi value of IMF component of the vibration signal.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

H1 0.561 0.231 0.126 0.054 0.014 0.006

H2 0.229 0.176 0.152 0.184 0.106 0.134

H3 0.642 0.196 0.083 0.042 0.015 0.009

H4 0.763 0.122 0.059 0.026 0.014 0.004

Qi 0.548 0.181 0.105 0.076 0.037 0.038

https://doi.org/10.1371/journal.pone.0254747.t003
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Fig 15. Spectrum diagram of the original signal after multi-layer denoising.

https://doi.org/10.1371/journal.pone.0254747.g015

Fig 16. Experimental drilling machine.

https://doi.org/10.1371/journal.pone.0254747.g016
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Conclusions

Aiming at the problem of extracting weak fault features in strong noise, this paper proposes a

multi-layer noise reduction method combining comprehensive evaluation indicators, WTD

and ICA. Experimental analysis and engineering applications have verified the practicability

and effectiveness of the method. The conclusions are as follows:

1. The use of EEMD to decompose the original signal solves the problem of the loss of charac-

teristic information caused by the modal aliasing and end effect of EMD. Using EEMD

Fig 17. Sensor placement and data processing.

https://doi.org/10.1371/journal.pone.0254747.g017

Fig 18. Time-domain frequency domain diagram of worn PDC bit vibration signal. (A) Original time domain (B)

Frequency domain diagram.

https://doi.org/10.1371/journal.pone.0254747.g018
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decomposition to obtain a series of IMF components, blindly choosing IMF components

may cause the loss of fault characteristics. For this reason, this paper proposes a compre-

hensive evaluation index to select the main IMF components.

Fig 19. Vibration signal EEMD decomposition IMF components.

https://doi.org/10.1371/journal.pone.0254747.g019

Table 4. Qi value of vibration signal IMF.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

H1 0.552 0.243 0.102 0.066 0.021 0.005

H2 0.216 0.173 0.155 0.162 0.149 0.132

H3 0.536 0.167 0.125 0.091 0.052 0.013

H4 0.526 0.228 0.156 0.043 0.006 0.003

Qi 0.458 0.203 0.135 0.091 0.057 0.038

https://doi.org/10.1371/journal.pone.0254747.t004
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2. To extract the characteristic frequency of weak signals, considering that WTD has a certain

inhibitory effect on high-frequency noise, WTD is used as the pre-filter of ICA to process

the main IMF components.

3. The main IMF components processed by WTD are used as observation signals, and the

remaining IMF components are input into ICA as virtual noise channel signals; the intro-

duction of virtual channels effectively solves the problem of underdetermined blind source

separation in the ICA algorithm. Experimental analysis shows that the proposed multi-

layer noise reduction method is obvious for the extraction of weak signals under complex

Fig 20. The frequency spectrum of the vibration signal after multi-layer noise reduction.

https://doi.org/10.1371/journal.pone.0254747.g020

Fig 21. The frequency spectrum of LMD-WTD processing vibration signal.

https://doi.org/10.1371/journal.pone.0254747.g021

Fig 22. The frequency spectrum of EEMD-ICA processing vibration signal.

https://doi.org/10.1371/journal.pone.0254747.g022
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working conditions in engineering applications, and it is theoretically suitable for weak sig-

nal detection of various types of rotating machinery.
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23. Žvokelj M, Zupan S, Prebil I. EEMD-based multiscale ICA method for slewing bearing fault detection

and diagnosis. Journal of Sound and Vibration. 2016; 370: 394–423.

24. Guo JC, Zhen D, Li HY, Shi ZQ, Gu FS, Ball A. Fault feature extraction for rolling element bearing diag-

nosis based on a multi-stage noise reduction method. Measurement. 2019; 139: 226–235.

25. Liu ZW, He ZJ, Guo W, Tang ZC. A hybrid fault diagnosis method based on second generation wavelet

de-noising and local mean decomposition for rotating machinery. ISA Transactions. 2016; 61: 211–

220. https://doi.org/10.1016/j.isatra.2015.12.009 PMID: 26753616

26. Wang JY, Li JG, Wang HT. Composite fault diagnosis of gearbox based on empirical mode decomposi-

tion and improved variational mode decomposition. Journal of Low Frequency Noise, Vibration and

Active Control. 2020; 2020: 1–15.

27. Golafshan R, Sanliturk KY. SVD and Hankel matrix based de-noising approach for ball bearing fault

detection and its assessment using artificial faults. Mechanical Systems and Signal Processing. 2016;

70–71: 36–50.

28. Tian Y, Ma J, Lu C, Wang ZL. Rolling bearing fault diagnosis under variable conditions using LMD-SVD

and extreme learning machine. Mechanism and Machine Theory. 2015; 90: 175–186.

29. Jiang YH, Tang BP, Qin Y, Liu WY. Feature extraction method of wind turbine based on adaptive Morlet

wavelet and SVD. Renewable Energy. 2011; 36: 2146–2153.

30. Yu JB, Lv JX. Weak Fault Feature Extraction of Rolling Bearings Using Local Mean Decomposition

Based Multilayer Hybrid Denoising. IEEE Transactions on Instrumentation and Measurement. 2017;

66: 3148–3159.

31. Jung TY, Makeig S, McKeown M. Imaging Brain Dynamics Using Independent Component Analysis,

Proceedings of the IEEE. Institute of Electrical and Electronics Engineers. 2001; 89: 1107–1122.

32. Zhou BY, Wu XP, Ruan J, Zhao L, Zhang L. How many channels are suitable for independent compo-

nent analysis in motor imagery brain-computer interface. Biomedical Signal Processing and Control.

2019; 50: 103–120.

33. Ajami A, Daneshvar M. Data driven approach for fault detection and diagnosis of turbine in thermal

power plant using Independent Component Analysis (ICA). International Journal of Electrical Power

and Energy Systems. 2012; 43: 728–735.

34. Guo LL, Wu P, Lou SW, Gao JF, Liu YC. A multi-feature extraction technique based on principal compo-

nent analysis for nonlinear dynamic process monitoring. Journal of Process Control. 2020; 85: 159–

172.

35. Zhang SN, Tian JY, Banerjee A, Li JL, Rodino LG. An Efficient Porcine Acoustic Signal Denoising Tech-

nique Based on EEMD-ICA-WTD. Mathematical Problems in Engineering. 2019; 2019: 2858740.

36. Wang J, He QB, Kong FR. Adaptive Multiscale Noise Tuning Stochastic Resonance for Health Diagno-

sis of Rolling Element Bearings. IEEE Transactions on instrumentation and measurement. 2015; 64:

564–577.

37. Zhou P, Lu SL, Liu F, Liu YB, Li GH, Zhao JW. Novel synthetic index-based adaptive stochastic reso-

nance method and its application in bearing fault diagnosis. Journal of Sound and Vibration. 2017; 391:

194–210.

38. Lv Y, Yuan R, Song GB. Multivariate empirical mode decomposition and its application to fault diagnosis

of rolling bearing. Mechanical Systems and Signal Processing. 2016; 81: 219–234.

PLOS ONE Rotating machinery weak fault signal extraction

PLOS ONE | https://doi.org/10.1371/journal.pone.0254747 July 19, 2021 23 / 24

https://doi.org/10.1016/j.isatra.2018.12.002
http://www.ncbi.nlm.nih.gov/pubmed/30558907
https://doi.org/10.1016/j.isatra.2015.12.009
http://www.ncbi.nlm.nih.gov/pubmed/26753616
https://doi.org/10.1371/journal.pone.0254747


39. Shen ZY, Shi ZQ, Zhen D, Zhang H, Gu FS. Fault Diagnosis of Planetary Gearbox Based on Adaptive

Order Bispectrum Slice and Fault Characteristics Energy Ratio Analysis. Sensors. 2020; 20:

20082433. https://doi.org/10.3390/s20082433 PMID: 32344737

40. Ji N, Ma L, Dong H, Zhang XJ. EEG Signals Feature Extraction Based on DWT and EMD Combined

with Approximate Entropy. Brain Sciences. 2019; 9: 9080201. https://doi.org/10.3390/brainsci9080201

PMID: 31416258

41. Cai KW, Wang ZQ, Li GF, He DG, Song JY. Harmonic separation from grid voltage using ensemble

empirical-mode decomposition and independent component analysis. John Wiley & Sons, Ltd. 2017;

27: 1–12.

42. Zhou HX, Li H, Liu T, Chen Q. A weak fault feature extraction of rolling element bearing based on atten-

uated cosine dictionaries and sparse feature sign search [J]. ISA transactions. 2020; 97: 143–154.

https://doi.org/10.1016/j.isatra.2019.08.013 PMID: 31431288

PLOS ONE Rotating machinery weak fault signal extraction

PLOS ONE | https://doi.org/10.1371/journal.pone.0254747 July 19, 2021 24 / 24

https://doi.org/10.3390/s20082433
http://www.ncbi.nlm.nih.gov/pubmed/32344737
https://doi.org/10.3390/brainsci9080201
http://www.ncbi.nlm.nih.gov/pubmed/31416258
https://doi.org/10.1016/j.isatra.2019.08.013
http://www.ncbi.nlm.nih.gov/pubmed/31431288
https://doi.org/10.1371/journal.pone.0254747

