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Abstract: Traditional seismic design has a limitation in that its performance is reduced by significant
permanent deformation after plastic behavior under an external load. The recentering characteristics
of smart materials are considered to be a means to supplement the limitations of conventional
seismic design. In general, the recentering characteristics of smart materials are determined by their
physical properties, whereas polyurethane springs can regulate the recentering characteristics by
controlling the precompression strain. Therefore, in this study, 160 polyurethane spring specimens
were fabricated with compressive stiffness, specimen size, and precompression strain as design
variables. The compression behavior and precompression behavior were studied by performing
cyclic loading tests on a polyurethane spring. The maximum stress and maximum strain of the
polyurethane spring showed a linear relationship. Precompression and recentering forces have
an almost perfect linear relationship, and the optimal level of precompression at which residual
strain does not occur was derived through regression analysis. Additionally, a prediction model for
predicting recentering force based on the linear relationship between precompression and recentering
force was presented.

Keywords: polyurethane spring; recentering force; smart materials; cyclic loading test; precompression

1. Introduction

Existing seismic designs, such as isolators and dampers have a limitation in that
recovery is infeasible or difficult in the event of damage or permanent deformation. This
results in substantial repair/reinforcement costs [1–4]. For example, seismic isolation
bearings and damper systems mainly utilize the principle of dissipating energy and the
nonlinear behavior of steel [5,6]. Therefore, once the steel is subjected to nonlinear behavior,
it loses its original properties, and its energy dissipation capacity is reduced significantly.
As a result, it becomes nonreusable and thereby, needs to be replaced. This problem can
be solved by providing additional restoring force and energy dissipation capacity using
a member in which smart materials are applied to the part where plastic deformation is
concentrated in the structure [7–9].

Smart materials can be defined as materials that can regain their original shape through
physical and chemical stimuli, and this behavior is defined as smart behavior [10,11].
Representative smart materials include piezoelectric materials, shape memory alloys, and
electro-rheostat materials [12–16]. In particular, research using superelastic shape memory
alloys is being conducted actively in the seismic field.

Superelastic shape memory alloys are materials that are marginally different in
strength from general steel. They have remarkable energy dissipation capabilities and can
be restored to their original shape only by heat treatment or stress removal at room tem-
perature [17,18]. However, superelastic shape memory alloys have disadvantages in that
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these are uneconomical to be commercialized owing to their high price, and the material
specifications are limited because these are difficult to process. In addition, because the
restoration performance is determined by the physical properties of the material, it can be
applied only in a limited environment, and precise control is difficult.

Recently, polyurethane elastomers have attracted attention as materials that can replace
superelastic shape memory alloys. Polyurethane elastomers are characterized in that
they can be operated at temperatures below 0 ◦C and above 80 ◦C [19,20]. Polyurethane
elastomers have remarkable anti-abrasion, corrosion resistance, and restoring forces. In
addition, polyurethane elastomers possess excellent mechanical characteristics including
high vertical strength and suitable fatigue life [21]. Therefore, it is being used in a wide
variety of industries, such as automobiles, footwear, and electricity industries in addition to
the construction industry [22–24]. A notable feature of polyurethane elastomers in the field
of civil engineering is the recentering force that occurs under precompression conditions.
Polyurethane elastomers display a certain level of recentering force by generating an
internal force corresponding to the compressed strain when it is maintained in a compressed
state by applying a compressive force initially. This behavior is similar to flag-shaped
behavior owing to the shape memory effect of superelastic shape memory alloy [25].

In this study, the compression behavior and recentering force of polyurethane elas-
tomer springs made under precompression conditions were analyzed through cyclic load-
ing tests. The originality of this study is that it analyzed the relationship between the
recentering force and precompression strain of a polyurethane spring and proposed a
prediction model for the recentering force. The prediction model proposed in this study
is expected to be able to predict the recentering force in an intuitive way according to the
experimental results. Therefore, it has a significant difference from the existing complex
hyperelastic behavior prediction equations. A total of 160 polyurethane spring specimens
and a compression jig to generate precompression were manufactured. The overall pre-
compression behavior characteristics of the polyurethane spring were verified through
a cyclic loading test. Based on the experimental results, this study attempted to verify
the applicability of the polyurethane spring as a compression member by analyzing the
maximum stress, recentering force, prediction model of the recentering force, and energy
dissipation capacity.

2. Design of Polyurethane Springs

Polyurethane springs are used mainly as compression members owing to their strong
restoring force against compression loads. Therefore, the specimen was designed as a
cylinder considering its applicability as a compression member (see Figure 1). Polyurethane
has a hardness of 20–80 Shore D. That is, it has a fairly large hardness and can resist a
relatively large load considering that general natural rubber has a hardness between 50
and 70 Shore A [26]. To prevent the specimen from being separated from the jig during
the experiment, it was manufactured in the form of a cylinder with a hole having an inner
diameter (Din, mm) of 20 mm in the center. In addition, the outer diameter (D, mm) ranged
from 100 mm to 72 mm, and the length (L, mm) was designed to range from 100 mm to
60 mm.

A total of 160 experimental specimens were produced in this study. Each of these
were named according to its length (L, mm), outer diameter (D, mm), precompression
strain (εP, %), and maximum strain (εmax, %) in that order (see Figure 2). For example,
the specimen with a length, outer diameter, precompression strain, and maximum strain
of 100 mm, 100 mm, 14%, and 30%, respectively, was designated as 100 L-100D-14P-30%.
Therefore, model identification (ID) was assigned to individual cases using the procedure
mentioned above, and cyclic loading tests were performed on the specimens according to
the experimental condition from ID information.
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based on the compressive stiffness (k�). The compressive stiffness can be calculated using 
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Here, k� is the compressive stiffness, E� is the apparent elastic modulus of the pol-
yurethane spring, A means the sectional area, and L means the length of the specimen. E� 
is calculated using Equation (2). It is composed of the shape modulus (S) and modulus of 
elasticity (E�). In this study, a polyurethane spring with a modulus of elasticity of 68.95 
MPa was used [27]. 
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Figure 2. Explanation of specimen identification.

The outer diameter and length of the polyurethane spring specimens were designed
based on the compressive stiffness (kc). The compressive stiffness can be calculated using
Equation (1):

kc =
EaA

L
(1)

Here, kc is the compressive stiffness, Ea is the apparent elastic modulus of the
polyurethane spring, A means the sectional area, and L means the length of the speci-
men. Ea is calculated using Equation (2). It is composed of the shape modulus (S) and
modulus of elasticity (Eo). In this study, a polyurethane spring with a modulus of elasticity
of 68.95 MPa was used [27].

Ea = Eo(1.2 + 2S2) (2)

The shape factor (S) can be calculated using Equation (3). It is expressed as the ratio of
the area directly subjected to load to the area not receiving load [28]:

S =
loaded area

force free area
(3)

The specimen size of the polyurethane spring can be calculated based on the
compressive-stiffness design in Equations (1)–(3) by varying the length and cross-sectional
area while maintaining the compressive stiffness constant. In this study, for the convenience
of specimen production, the size of the specimen with an identical compressive stiffness
was adjusted by calculating the cross-sectional area corresponding to the length of each
specimen by fixing the length to 100, 90, 80, 70, and 60 mm in Equation (1). Finally, pre-
compression is a preprocessing step to generate the recentering force of the polyurethane



Materials 2022, 15, 3514 4 of 19

spring. The precompression strain (εP) is defined as the ratio of the total specimen length
to the precompression displacement:

εP =
Displacement of precompression

Length of specimen
(4)

The precompression strain can be controlled by a fixed compressive load rather than by
variations in the environment (such as material properties or temperature). It is maintained
by the fixing device of a jig manufactured for research. The group of specimens having equal
compressive stiffness and different specimen sizes is called Type 1 and that of specimens
having different compressive stiffness is called Type 2. The fabricated specimens are shown
in Figure 3, and the detailed design values and properties of all the specimens are listed
in Tables 1 and 2. In the case of the Type 1 specimen, the compressive stiffness (kc) was
marginally different from 5.52 kN/mm at the minimum to 5.96 kN/mm at the maximum.
This is because, based on Equation (1), an approximate value was used to create a similar
stiffness by adjusting the outer diameter and length of the specimen. In addition, Type 2
specimens with different compressive stiffnesses were manufactured to have a compressive
stiffness increase rate of approximately 14.57%.
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Table 1. Properties of both the types of polyurethane springs.

Type D (mm) Din (mm) L (mm) S Ea (MPa) kc
(kN/mm)

1

92 20 100 0.18 87.21 5.52
88 20 90 0.20 88.03 5.85
82 20 80 0.20 88.37 5.72
77 20 70 0.21 89.03 5.80
72 20 60 0.23 89.97 5.96

2

100 20 100 0.21 88.57 6.87
100 20 90 0.23 89.94 7.75
100 20 80 0.26 91.86 8.90
100 20 70 0.29 94.65 10.48
100 20 60 0.34 98.95 12.79

Table 2. Material properties of polyurethane springs (TDI/PTMG based prepolymer).

Typical Prepolymer Properties
% NCO 6.1–6.5

Brookfield Viscosity @ 100 ◦C 1.5–4.5
Specific Gravity

@ 25 ◦C 1.07
@ 100 ◦C 1.01
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Table 2. Cont.

Typical Physical Properties
Shore Hardness 95A

100% Modulus, psi (MPa) 1900 (13.0)
300% Modulus, psi (MPa) 4000 (27.5)

Tensile, psi (MPa) 5500 (37.9)
Elongation, % 400

Tear Strength, Die C, pli (kN/m) 550 (96.0)
Tear Strength, (D470), pli (kN/m) 140 (24.5)

Bashore Rebound, % 40
Compression Set, Method B,

22 h @ 70 ◦C, % 38

Specific Gravity 1.13

3. Experimental Set-Up

The cyclic loading test of polyurethane spring specimens was performed for three
cycles using a universal testing machine (UTM). The displacement was measured using a
linear variable displacement transducer (LVDT), and the compressive force was measured
from a UTM load cell. The maximum strain was set in the range of 25–40%, and the loading
speed (vL) was set to 0.5 mm/s. The precompression strain was set to 7%, 14%, and 21%
(see Table 3). In this study, the minimum precompression strain that can clearly verify the
relationship between the precompression strain and recentering force through a sufficient
number of preliminary experiments was calculated to be 7%.

Table 3. Experimental conditions.

Condition

Precompression Strain (εP) 0% 7% 14% 21%
Maximum Strain (εmax) 25% 30% 35% 40%

Loading Speed (vL) 0.5 mm/s
Loading Cycle 3 cycle

Precompression can be generated by compressing a polyurethane spring specimen
in advance with a precompression strain suitable for the experimental conditions and
then, tightening it with a fixing nut to maintain the precompression state. As shown in
Figure 4, the initial condition can be set by compressing the specimen to an extent equivalent
to the strain corresponding to the precompression strain condition using the UTM and
maintaining the corresponding compression displacement with a fixing nut. Cyclic loading
tests were performed for the remaining displacements except for the precompression strain
at the maximum strain. For example, in the case of a 100 L-92D-21P-30% specimen, a cyclic
loading test was performed on 9% of the total length of the specimen (9 mm), except for the
precompression strain of 21% (21 mm) at a maximum strain of 30% (30 mm), by imparting
an initial precompression strain of 21%.

The loading condition was three cycles at a loading speed (vL) of 0.5 mm/s through
displacement control. The general loading protocol applied to the experiment is shown in
Figure 5. A cycle is defined as the process of loading to the maximum strain and removing
the load to attain the initial state. Accordingly, the time period (T) can be generalized to two
times the loading speed and maximum displacement corresponding to the experimental
conditions. The test time for a specimen is three times the total time period. However, the
specimen under precompression behaves as much as the remaining strain except for the
precompression strain at the maximum strain. The initial strain is assumed to be zero, and
the maximum strain is calculated as the residual strain.
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4. Experimental Results and Discussion
4.1. Behavior of Polyurethane Springs without Precompression

The force–displacement curve of the polyurethane spring under the conditions of five
specimen sizes, a maximum strain of 30%, and precompression of 0% (representing the
compression behavior of the specimen) is shown in Figure 6. The compression force (F) of
the specimen shows significant strength degradation during the second loading after the
first cycle. It can be observed that the unloading path shows almost similar behavior in all
the cycles. In addition, it is verified that the second cycle after the first cycle was stabilized
without significant stress reduction. Residual displacement occurs at the point where the
unloading curve attains zero compressive force in each cycle and is restored to a certain
level before the start of loading in the next cycle. This is a result of the fact that the delayed
speed until the polyurethane spring is restored after compression is less than the loading
speed of 0.5 mm/s. Figure 6a shows that the strength degradation after the first cycle is
remarkably different from that of the remaining cases. Once the polyurethane spring is
initially subjected to a certain level of external force, it is not restored fully, and internal
variations occur. This implies that an identical result cannot be obtained.
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Figure 6. Compression behavior of polyurethane springs without precompression. (a) 60L-72D-0P-
30%; (b) 70L-77D-0P-30%; (c) 80L-82D-0P-30%; (d) 90L-88D-0P-30%; (e) 100L-92D-0P-30%.

The size of the Type 1 polyurethane spring specimen can be expressed based on the
length of the specimen because it calculated the diameter with the same stiffness based
on the length. That is, the larger the length of the specimen, the larger the size. Figure 7
summarizes the trends of maximum stress corresponding to maximum strain values of
25%, 30%, 35%, and 40%. The maximum stress tended to be inversely proportional to the
length of the specimen. Linear regression analysis revealed a linear relationship with R2

of 0.9179, 0.9103, 0.9148, and 0.8898, respectively. This implies that the variation in the
cross-sectional area of the polyurethane spring was adjusted to maintain the compressive
stiffness. It increases by an amount larger than the increase in the force corresponding to
the maximum strain. Therefore, a polyurethane spring with identical compressive stiffness
can resist larger stress as its size decreases. While designing a damper or seismic isolator
with a polyurethane spring, it is necessary to adjust the compressive stiffness and specimen
size to satisfy the design conditions. This aspect should be considered while designing a
damper or seismic isolator with a polyurethane spring, and the compressive stiffness and
specimen size suitable for the design conditions must be attained.
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Figure 7. Relationship between specimen size and maximum stress (Type 1). (a) Type 1–25%; (b) Type
1–30%; (c) Type 1–35%; (d) Type 1–40%.

The compressive stiffness of the polyurethane spring is inversely proportional to the
length of the specimen. For Type 2, the compressive stiffness was adjusted by fixing the
outer diameter to 100 mm and then, decreasing the length of the specimen from 100 mm to
60 mm in increments of 10 mm. Therefore, the variation in the length of the Type 2 specimen
can be represented by the variation in the compressive stiffness. Figure 8 shows the trend
of the maximum stress corresponding to maximum strain values of 25%, 30%, 35%, and
40%. Under all the experimental conditions, the maximum stress tends to be proportional
to the compressive stiffness. The linear regression analysis verified the existence of a linear
relationship with R2 values of 0.9233, 0.9224, 0.9127, and 0.8949, respectively. This implies
that the relationship between the compressive stiffness of the polyurethane spring and the
maximum stress can be linearly idealized. It can also be observed that the slope of the
regression equations of compressive stiffness and maximum stress increases gradually as
the maximum strain increases. Therefore, when a larger deformation occurs, the higher the
compressive stiffness, the larger the increase in the stress required for deformation.
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Figure 8. Relationship between compressive stiffness and maximum stress (Type 2). (a) Type 2–25%;
(b) Type 2–30%; (c) Type 2–35%; (d) Type 2–40%.

4.2. Behavior of Precompressed Polyurethane Springs

Polyurethane springs show a flag-shaped hysteresis behavior similar to shape memory
alloys with additional restoring force under precompression conditions. Figure 9 schemat-
ically explains the precompression behavior of a polyurethane spring. In this study, the
initial restoring force generated by precompression is defined as the recentering force (Fr).
It refers to the internal force remaining in the specimen when the displacement in the
unloading path becomes zero.
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Figure 10 shows the case of the 100 L-92D-30% specimen representing the cyclic
loading test results of polyurethane springs according to the precompression strain. Each
specimen was pre-applied with a compressive force corresponding to 7%, 14%, and 21%
of the precompression strain. The results under an identical maximum strain condition
are shown. As can be observed in Figure 10b–d, the polyurethane spring under precom-
pression conditions shows the recentering force. This force tends to be proportional to the
precompression strain.
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Figure 10. Cyclic behavior of precompressed polyurethane spring. (a) 100L-92D-0P-30%; (b) 100L-
92D-7P-30%; (c) 100L-92D-14P-30%; (d) 100L-92D-21P-30%.

Similar to the polyurethane spring without precompression, the precompressed
polyurethane spring also shows a considerable decrease in strength after the first cycle (see
Figure 11). In addition, the unloading curve shows a similar path regardless of each cycle. It
can be observed that the loading curve stabilizes with a significant decrease from the second
loading. The area of the force–displacement curve of the precompressed polyurethane
spring shows a behavior similar to that of the specimen without precompression. After the
first cycle, the area of the closed curve shows a significant decrease in the second cycle. It
is verified that the areas of the second and third cycles do not differ significantly and are
stable. The recentering force decreases marginally as the loading cycle is repeated. The
fact that the recentering force is the internal force generated by the initial precompression,
implies that the restoring force can be maintained without being reduced substantially by
using the external force.
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Figure 11. Behavior of precompressed polyurethane springs in separated cycle. (a) 100L-100D-7P-40%
at 1st cycle; (b) 100L-100D-7P-40% after 1st cycle; (c) 100L-100D-14P-40% at 1st cycle; (d) 100L-100D-
14P-40% after 1st cycle; (e) 100L-100D-21P-40% at 1st cycle; (f) 100L-100D-21P-40% after 1st cycle.

The results of the regression analysis of the recentering force of the polyurethane
spring according to the variation in precompression strain are summarized in Figure 12
and Table 4. Figure 12 shows the results of the regression analysis of the Type 1 specimen.
Table 3 shows the results of the regression analysis of Type 2. This is because the recentering
force shows similar results regardless of the variation in the compressive stiffness and size
of the specimen. The relationship between the precompression strain and recentering
force tends to increase proportionally in the range of 7% to 21%. From these results, it is
feasible to determine the precompression strain at which the recentering force becomes zero
by using the linear regression equation of the precompression strain and the recentering
force. This value of precompression strain corresponds to the x-intercept of the regression
equation. It represents the minimum precompression strain that does not cause residual
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displacement of the polyurethane spring. Therefore, the restoring force required when the
polyurethane spring is applied in the system as a compression member can be calculated
by estimating the precompression strain that can remove the residual displacement.
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Figure 12. Regression analysis of recentering force with precompression strain [Type 1]. (a) 60L-72D;
(b) 70L-77D; (c) 80L-82D; (d) 90L-88D; (e) 100L-92D.



Materials 2022, 15, 3514 13 of 19

Table 4. Regression results between recentering force and precompression strain.

Type Specimen Slop Y-Intercept R2 X-Intercept

1

100L-92D-25% 1.752 −7.793 0.8125 4.45
90L-88D-25% 1.775 −8.345 0.9248 4.70
80L-82D-25% 1.817 −10.063 0.9872 5.54
70L-77D-25% 1.059 −4.533 1 4.28
60L-72D-25% 1.326 −6.251 0.9407 4.71

100L-92D-30% 1.273 −7.107 0.9822 5.58
90L-88D-30% 1.526 −10.077 0.9999 6.60
80L-82D-30% 0.929 −3.691 0.9735 3.97
70L-77D-30% 0.983 −3.578 0.9985 3.64
60L-72D-30% 0.794 −2.673 0.9997 3.37

100L-92D-35% 1.441 −7.758 0.9197 5.38
90L-88D-35% 1.871 −14.734 0.9102 7.87
80L-82D-35% 1.289 −5.113 0.9928 3.97
70L-77D-35% 1.073 −3.766 0.9997 3.51
60L-72D-35% 0.761 −1.114 0.9767 1.46

100L-92D-40% 1.056 −6.223 0.9746 5.89
90L-88D-40% 1.393 −9.759 0.9453 7.01
80L-82D-40% 1.111 −6.082 0.9992 5.47
70L-77D-40% 0.843 −4.406 0.9574 5.23
60L-72D-40% 0.724 −2.737 0.8855 3.78

2

100L-100D-25% 2.6504 −12.616 1 4.76
90L-100D-25% 2.5716 −13.26 0.91478 5.16
80L-100D-25% 2.5716 −14.978 0.7571 5.82
70L-100D-25% 3.1399 −23.634 0.8276 7.53
60L-100D-25% 3.4823 −21.159 0.9833 6.08
100L-100D-30% 1.6934 −7.6481 0.9865 4.52
90L-100D-30% 2.3231 −16.463 0.9995 7.09
80L-100D-30% 2.3163 −12.485 0.9721 5.39
70L-100D-30% 1.8094 −7.5633 0.9948 4.18
60L-100D-30% 2.189 −9.3453 0.9957 4.27
100L-100D-35% 1.8245 −9.4762 0.9965 5.19
90L-100D-35% 1.9882 −13.026 0.9705 6.55
80L-100D-35% 1.7806 −8.4791 0.9954 4.76
70L-100D-35% 1.9003 10.197 0.9504 -5.37
60L-100D-35% 2.0473 11.598 0.9868 -5.67
100L-100D-40% 1.5851 −10.304 0.9438 6.50
90L-100D-40% 1.6669 −10.388 0.9966 6.23
80L-100D-40% 1.4669 −8.9317 0.9789 6.09
70L-100D-40% 1.2487 −7.4749 0.9796 5.99
60L-100D-40% 1.7124 −11.131 0.9587 6.50

Figure 13 shows the force–displacement graph from 0% to 21% of the precompression
strain of the Type 2 specimen with a maximum strain of 40% in the graph. It can be
observed that the recentering force corresponding to each precompression strain is located
on the unloading path of the polyurethane spring without precompression. This tendency
indicates that the recentering force of the polyurethane spring under precompression
conditions can be predicted relatively straightforwardly based on the compression behavior
of the polyurethane spring without precompression. Thus, the recentering force can be
estimated based on the compression behavior of a general polyurethane spring and utilized
in the design of the restoring force of the system.
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Figure 13. Integrated force-displacement curves of all experimental conditions. (a) 60L-100D-40%;
(b) 70L-100D-40%; (c) 80L-100D-40%; (d) 90L-100D-40%; (e) 100L-100D-40%.

It can be observed that similar to the tendency of the precompression behavior of
the polyurethane spring, the recentering force generated by precompression is distributed
over the unloading path of the general compression behavior without precompression
conditions. Therefore, a predictive model was established based on this tendency. It can
predict the recentering force corresponding to any precompression strain (see Figure 14).
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Figure 14. Descriptions of recentering force prediction model.

The predictive model was verified by comparing the recentering force measured
through the experiment and the recentering force corresponding to the following values of
the strain of the polyurethane spring without precompression conditions: 7%, 14%, and
21%. As shown in Figure 15 and Table 5, the linear regression analysis of the measured and
predicted recentering forces verifies that the measured value is smaller than the predicted
value. There is a significant difference between the predicted and measured values at
the precompression strain of 7%. The measured value of the recentering force at the
precompression strain of 14% is smaller than the predicted value by 24% on an average.
Furthermore, the result is 11% lower on average at the precompression strain of 21%.
Thus, the recentering force obtained using the predictive model reviewed in this study is
significantly different from the actual measured recentering force. However, additional
research is required on the reduction rate that can supplement this through the tendency of
the recentering force to be distributed near the unloading curve and the tendency of the
measured value to be generally lower. The reduction rate thus obtained can be applied to
estimate the recentering force of the polyurethane spring as an accurate predictive model.
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Figure 15. Cont.



Materials 2022, 15, 3514 16 of 19Materials 2022, 15, x FOR PEER REVIEW 16 of 19 
 

  
(c) (d) 

 
(e) 

Figure 15. Comparison of measured recentering force and predicted recentering force. (a) 60L-
100D-40%; (b) 70L-100D-40%; (c) 80L-100D-40%; (d) 90L-100D-40%; (e) 100L-100D-40%. 

Table 5. Regression relationship between predicted recentering force and precompression strain. 

Type Specimen Slop Y-Intercept R2 X-Intercept 

1 

100L-92D-25% 1.843 −6.6404 0.9927 3.60 
90L-88D-25% 2.01 −9.4479 0.989 4.70 
80L-82D-25% 1.7624 −5.7635 0.9897 3.27 
70L-77D-25% 1.3851 −5.7989 0.987 4.19 
60L-72D-25% 1.332 −5.1695 0.9861 3.88 

100L-92D-30% 1.858 −9.1579 0.9916 4.93 
90L-88D-30% 1.622 −6.9445 0.9969 4.28 
80L-82D-30% 1.4911 −6.8808 0.9975 4.61 
70L-77D-30% 1.1229 −3.9531 0.9952 3.52 
60L-72D-30% 1.088 −4.5613 0.9933 4.19 

100L-92D-35% 1.605 8.3588 0.9967 −5.21 
90L-88D-35% 1.379 −6.3929 0.9985 4.64 
80L-82D-35% 1.129 −5.6716 0.9993 5.02 
70L-77D-35% 1.0047 −4.9644 0.9994 4.94 
60L-72D-35% 0.9517 −4.4906 0.999 4.72 

100L-92D-40% 1.4101 −8.9104 0.9962 6.32 
90L-88D-40% 1.2472 −6.4777 0.9999 5.19 
80L-82D-40% 1.0941 −5.6928 0.9999 5.20 
70L-77D-40% 0.8759 −3.9461 0.9987 4.51 
60L-72D-40% 0.835 −3.1894 0.9993 3.82 

6 8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35
 y=1.656x-9.724, R

2
 : 0.9972

 y=1.467x-8.932, R
2
 : 0.9579

 Measured

 Predict

R
ec

en
te

ri
n

g
 F

o
rc

e:
 F

r 
(k

N
)

Strain of Pre-compression: ε
P
 (%)

6 8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35
 y=1.665x-9.632, R

2
 : 0.9969

 y=1.667x-10.388, R
2
 : 0.9931

 Measured

 Predict

R
ec

en
te

ri
n

g
 F

o
rc

e:
 F

r 
(k

N
)

Strain of Pre-compression: ε
P
 (%)

6 8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35
 y=1.623x-9.179, R

2
 : 0.9978

 y=1.585x-10.304, R
2
 : 0.8877

 Measured

 Predict

R
ec

en
te

ri
n

g
 F

o
rc

e:
 F

r 
(k

N
)

Strain of Pre-compression: ε
P
 (%)

Figure 15. Comparison of measured recentering force and predicted recentering force. (a) 60L-100D-
40%; (b) 70L-100D-40%; (c) 80L-100D-40%; (d) 90L-100D-40%; (e) 100L-100D-40%.

Table 5. Regression relationship between predicted recentering force and precompression strain.

Type Specimen Slop Y-Intercept R2 X-Intercept

1

100L-92D-25% 1.843 −6.6404 0.9927 3.60
90L-88D-25% 2.01 −9.4479 0.989 4.70
80L-82D-25% 1.7624 −5.7635 0.9897 3.27
70L-77D-25% 1.3851 −5.7989 0.987 4.19
60L-72D-25% 1.332 −5.1695 0.9861 3.88

100L-92D-30% 1.858 −9.1579 0.9916 4.93
90L-88D-30% 1.622 −6.9445 0.9969 4.28
80L-82D-30% 1.4911 −6.8808 0.9975 4.61
70L-77D-30% 1.1229 −3.9531 0.9952 3.52
60L-72D-30% 1.088 −4.5613 0.9933 4.19

100L-92D-35% 1.605 8.3588 0.9967 −5.21
90L-88D-35% 1.379 −6.3929 0.9985 4.64
80L-82D-35% 1.129 −5.6716 0.9993 5.02
70L-77D-35% 1.0047 −4.9644 0.9994 4.94
60L-72D-35% 0.9517 −4.4906 0.999 4.72

100L-92D-40% 1.4101 −8.9104 0.9962 6.32
90L-88D-40% 1.2472 −6.4777 0.9999 5.19
80L-82D-40% 1.0941 −5.6928 0.9999 5.20
70L-77D-40% 0.8759 −3.9461 0.9987 4.51
60L-72D-40% 0.835 −3.1894 0.9993 3.82



Materials 2022, 15, 3514 17 of 19

Table 5. Cont.

Type Specimen Slop Y-Intercept R2 X-Intercept

2

100L-100D-25% 1.8427 −6.6121 0.9934 3.59
90L-100D-25% 2.7337 −11.654 0.9904 4.26
80L-100D-25% 2.5519 −9.7873 0.9898 3.84
70L-100D-25% 2.9217 −11.279 0.9911 3.86
60L-100D-25% 2.8141 −12.22 0.9882 4.34
100L-100D-30% 2.3003 −11.958 0.9957 5.20
90L-100D-30% 2.2822 −11.463 0.9955 5.02
80L-100D-30% 2.4034 −9.2994 0.9923 3.87
70L-100D-30% 2.2867 −11.527 0.9904 5.04
60L-100D-30% 2.4958 −12.298 0.9903 4.93
100L-100D-35% 1.8791 −9.7873 0.9965 5.21
90L-100D-35% 1.9185 −10.431 0.9965 5.44
80L-100D-35% 1.9912 −9.9005 0.9973 4.97
70L-100D-35% 1.8336 −7.885 0.9958 4.30
60L-100D-35% 2.0442 −8.8044 0.9954 4.31
100L-100D-40% 1.623 −9.1792 0.9989 5.66
90L-100D-40% 1.6654 −9.6318 0.9985 5.78
80L-100D-40% 1.6563 −9.7237 0.9986 5.87
70L-100D-40% 1.7306 −10.084 0.9969 5.83
60L-100D-40% 1.823 −10.876 0.9963 5.97

5. Conclusions

In this study, cyclic loading tests were performed to understand the behavioral charac-
teristics of polyurethane springs. These exhibited behaviors were similar to those of shape
memory alloys under precompression conditions and displayed recentering characteristics.
A total of 160 polyurethane spring specimens were designed to evaluate the effect of the
design variables on the compression behavior of the polyurethane springs. In addition,
a predictive model based on the tendency of the recentering force was established and
evaluated. The following are the main conclusions:

The polyurethane spring showed a significant decrease in strength after the first of
the cyclic loads and the tendency to behave stably from the second cycle was verified. The
maximum compressive force of the polyurethane spring was decreased by cycle repetition,
although the difference was highly marginal. For polyurethane springs of different sizes
with identical compressive stiffness, the maximum stress tended to decrease as the size of
the specimen increased. In addition, it was verified that the slope of the linear regression
equation increased gradually as the maximum strain increased. It is observed that when a
deformation of at least 25% of the total is likely, the higher the compressive stiffness, the
higher the efficiency of resistance against the external force.

It was verified that the recentering force caused by the precompression of the
polyurethane spring had a linear relationship with the precompression strain. There-
fore, the recentering force can be calculated by estimating the precompression strain that
can minimize the residual displacement. The distribution trend of the recentering force
indicates the predictability of the recentering force based on the compression behavior
of general polyurethane springs. However, the measured value tends to be less than the
predicted value. Therefore, additional research is required to reduce the error.
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