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Neurons of the ventral tegmental area (VTA) play a key role in the rewarding and
reinforcing effects of drugs of abuse, including alcohol. Ethanol directly increases the
firing rate of dopaminergic (DAergic) VTA neurons, but modulation of the firing rate of
DAergic VTA neurons can be controlled by a number of factors, including some that
are under the control of protein kinase C (PKC). Application of phorbol esters activates
PKC and the present study assessed the effect of a phorbol ester, phorbol 12-myristate
13-acetate (PMA), on ethanol-induced excitation of DA VTA neurons. Ethanol-induced
excitation of DAergic VTA neurons was reduced significantly in the presence of PMA. This
action of PMA was antagonized by chelerythrine chloride, a non-selective antagonist of
PKC, but not by moderate concentrations of antagonists of conventional PKC isoforms
(Gö6976 and Gö6983). A PKC δ/θ inhibitor antagonized PMA-induced reduction of ethanol
excitation. Since PKCδ antagonist Gö6983 did not antagonize the effect of PMA on ethanol
excitation, the PMA reduction of ethanol excitation is most likely to be mediated by
PKCθ. Antagonists of intracellular calcium pathways were ineffective in antagonizing PMA
action on ethanol excitation, consistent with the lack of calcium dependence of PKCθ.
In summary, ethanol-induced excitation of VTA neurons is attenuated in the presence of
PMA, and this attenuation appears to be mediated by PKCθ. This novel mechanism for
interfering with ethanol activation of reward-related neurons could provide a new target for
pharmacotherapy to ameliorate alcoholism.
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INTRODUCTION
Dopaminergic (DAergic) neurons of the ventral tegmental area
(VTA) are involved in the mediation of rewarding and reinforcing
properties of numerous stimuli, including abused drugs such as
ethanol and cocaine (Wise, 1996; Di Chiara and Imperato, 1988).
DAergic VTA neurons produce action potentials spontaneously
both in vivo (Bunney et al., 1973) and in vitro (Brodie and Dun-
widdie, 1987), and are regulated by dopamine D2 autoreceptors
that inhibit the firing of these neurons (Grace, 1987). In addition,
the firing rates of DAergic neurons of the VTA can be modulated
by a number of neurotransmitters such as glutamate, GABA, and
neurotensin (Kalivas, 1993; Adell and Artigas, 2004).

Ethanol produces numerous specific actions on DAergic neu-
rons in the VTA. For example, acute ethanol increases h-
current (Brodie and Appel, 1998), reduces M-current (Koyama

Abbreviations: aCSF, artificial cerebrospinal fluid; DA, dopamine; DAergic,
dopaminergic; Gö6976, 5,6,7,13-tetrahydro-13-methyl-5-oxo-12H-indolo[2,3-a]
pyrrolo[3,4c]carbazole-12-propanenitrile; Gö6983, 3-[1-[3-(Di methylamino)
propyl]-5-methoxy-1H-indol-3-yl]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione; PKC,
protein kinase C; PKCδ/θ inhibitor, (5-(3,4-Dimethoxyphenyl)-4-(1H-indol-5-
ylamino)-3-pyridinecarbonitrile); PMA, phorbol 12-myristate 13-acetate; VTA,
ventral tegmental area.

et al., 2007), and increases barium-sensitive potassium current
(McDaid et al., 2008). In addition, ethanol enhances glutamater-
gic (Deng et al., 2009) and GABAergic post-synaptic potentials
(Theile et al., 2008). Some actions of ethanol may directly
cause the phenotypic response to ethanol (e.g., increased fir-
ing Gessa et al., 1985; Brodie et al., 1990) and other effects
may not directly play a role (McDaid et al., 2008), but may be
involved in modulating those direct effects. We have reported
the phenomenon of dopamine inhibition reversal (DIR): long-
duration administration of moderate concentrations of dopamine
results in a time-dependent decrease in dopamine-induced inhi-
bition. DIR requires concurrent stimulation of D2 and D1/D5
dopamine receptors (Nimitvilai and Brodie, 2010). In addi-
tion, we found that low concentrations of ethanol (10–80 mM)
block the reversal of quinpirole inhibition produced by PMA
(Nimitvilai et al., 2012b), indicating that ethanol interferes with
DIR at a step at or subsequent to the activation of PKC. There-
fore, within the VTA, there are effects of ethanol on physiological
processes.

The action of ethanol on PKC has been reported to regulate the
functions of numerous receptors and cell activities (Stubbs and
Slater, 1999; for review see Newton and Messing, 2006). Responses
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to both GABA and glutamate are altered when PKC is activated;
GABAA responses are enhanced through activation of PKC (Waf-
ford and Whiting, 1992; Weiner et al., 1994; Harris et al., 1995), and
AMPA/kainate receptors are inhibited by PKC (Dildy-Mayfield
and Harris, 1995). Despite these and other findings, the role of
PKC in ethanol action in the VTA is not clear.

The primary effect of ethanol on DAergic VTA neurons is to
increase the firing rate (Brodie et al., 1990) but a careful assessment
of the effects of PKC activation on firing of DAergic VTA neurons
has not been performed. Our previous study showed that DIR
(during which there is activation of conventional PKCs) does not
result in a reduction of ethanol excitation, but direct activation
of protein kinase C by PMA does cause a reduction of sensitiv-
ity to ethanol excitation (Nimitvilai et al., 2012b). In the present
study, therefore, we extended these observations to determine
the mechanism underlying the effect of PMA on ethanol-induced
excitation.

MATERIALS AND METHODS
ANIMALS
Male Fischer 344 (F344; 90–150 gm) rats used in these studies
were obtained from Harlan Laboratories, Inc. (Indianapolis, IN,
USA). All rats were treated in strict accordance with the NIH Guide
for the Care and Use of Laboratory Animals and all experimental
methods were approved by the Animal Care Committee of the
University of Illinois at Chicago.

PREPARATION OF BRAIN SLICES
Brain slices containing the VTA were prepared from the subject
animals as previously described (Brodie et al., 1999a). Briefly, fol-
lowing rapid removal of the brain, the tissue was blocked coronally
to contain the VTA and substantia nigra; the cerebral cortices and
a portion of the dorsal mesencephalon were removed. The tissue
block was mounted in the vibratome and submerged in chilled
cutting solution. The composition of the cutting solution was (in
mM): KCl 2.5, CaCl2 2.4, MgSO4 1.3, NaHCO3 26, glucose 11,
and sucrose 220. Both solutions were saturated with 95% O2/
5% CO2 (pH = 7.4). Coronal sections (400 μm thick) were cut
and the slice was placed onto a mesh platform in the recording
chamber. The slice was totally submerged in aCSF maintained at a
flow rate of 2 ml/min; the temperature in the recording cham-
ber was kept at 35◦C. The composition of the aCSF in these
experiments was (in mM): NaCl 126, KCl 2.5, NaH2PO4 1.24,
CaCl2 2.4, MgSO4 1.3, NaHCO3 26, glucose 11. Equilibration
time of at least one hour was allowed after placement of tissue
in the recording chamber before electrodes were placed in the
tissue.

CELL IDENTIFICATION
The VTA was clearly visible in the fresh tissue as a grey area
medial to the darker substantia nigra, and separated from the
nigra by white matter. Recording electrodes were placed in the
VTA under visual control. Putative DA dopaminergic neurons
(DAergic neurons) have been shown to have distinctive elec-
trophysiological characteristics (Grace and Bunney, 1984; Lacey
et al., 1989). Only those neurons which were anatomically located
within the VTA and which conformed to the criteria for DAergic

neurons established in the literature and in this laboratory (Lacey
et al., 1989; Mueller and Brodie, 1989) were studied. These crite-
ria include broad action potentials (2.5 ms or greater, measured
as the width of the bi- or tri-phasic waveform at the baseline),
slow spontaneous firing rate (0.5–5 Hz), and a regular interspike
interval. Cells were not tested with opiate agonists as has been
done by other groups to further characterize and categorize VTA
neurons (Margolis et al., 2006). Some neurons with the character-
istics we used to identify DA VTA neurons may not, in fact, be
DA-containing (Margolis et al., 2006).

DRUG ADMINISTRATION
Drugs were added to the aCSF by means of a calibrated infu-
sion pump from stock solutions 100–1000 times the desired final
concentrations. The addition of drug solutions to the aCSF was
performed in such a way as to permit the drug solution to mix
completely with aCSF before this mixture reached the recording
chamber. Final concentrations were calculated from aCSF flow
rate, pump infusion rate and concentration of drug stock solu-
tion. The small volume chamber (about 300 μl) used in these
studies permitted the rapid application and washout of drug solu-
tions. Typically drugs reach equilibrium in the tissue after 2–3 min
of application.

In some experiments, drugs were added to the extracellular
microelectrode filling solution (0.9% NaCl) at a concentration 10
times greater than that which would have been used in the extra-
cellular medium. To allow time for the drug to diffuse from the
pipette to the cell, the effects of pipette-applied drugs were tested
no less than 20 min after initiating the recording. This allowed
time for the drug to diffuse from the pipette and reach the cell of
interest. Although we have no way of measuring the concentration
of the drug after dilution during the diffusion, we have obtained
similar results when we have compared the effects of a given drug
with a pipette concentration 10-fold higher than a bath concentra-
tion (data not shown). Pipette delivery has the advantage of more
localized drug application and reduced expense. Such local deliv-
ery of drugs through recording pipettes has been used in the past by
our lab and others (Pesavento et al., 2000; Nimitvilai et al., 2012a;
Nimitvilai et al., 2013).

Ethanol, dopamine, and most of the salts used to prepare
the extracellular media were purchased from Sigma (St. Louis,
MO, USA). Phorbol 12-myristate 13-acetate (PMA), chelerythrine
chloride, Gö6976 (5,6,7,13-tetrahydro-13-methyl-5-oxo-12H-
indolo[2,3-a]pyrrolo[3,4c]carbazole-12-propanenitrile), Gö6983
(3-[1-[3-(Dimethylamino)propyl]-5-methoxy-1 H-indol-3-yl]-
4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione), ryanodine, 2-aminoe-
thoxydiphenyl borate (2-APB), and dantrolene were purchased
from Tocris (Minneapolis, MN). PKCδ/θ inhibitor (5-(3,4-
Dimeth-oxyphenyl)-4-(1H-indol-5-ylamino)-3-pyridinecarboni
trile) was purchased from Calbiochem® (Billercia, MA, USA).

EXTRACELLULAR RECORDING
All recordings used an extracellular recording technique, which
was chosen for these studies as this method permits the record-
ings to be stable and of long duration (routinely >1 h) and allows
us to assess the effects of extended exposure (>30 min) to drugs.
The limitation of only measuring spontaneous action potential
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frequency (rather than membrane potential or other electro-
physiological parameters) is counterbalanced by the advantage
of being able to determine the time course of drug actions and
interactions. Extracellular recording electrodes were made from
1.5 mm diameter glass tubing with filament and were filled with
0.9% NaCl. Tip resistance of the microelectrodes ranged from
2 to 4 M�. An extracellular amplifier was used in conjunction
with an IBM-PC-based data acquisition system (ADInstruments,
Inc,). Offline analysis was used to calculate, display and store
the frequency of firing over 1-min intervals. Additional software
was used to calculate the firing rate over 5-s intervals. Firing
rate was determined before and during drug application. Firing
rate was calculated over 1 min intervals prior to administra-
tion of drugs and during the drug effect; peak drug-induced
changes in firing rate were expressed as the percentage change
from the control firing rate according to the formula (FRD –
FRC/FRC) × 100, where FRD is the firing rate during the peak
drug effect and FRC is the control firing rate. The change in
firing rate thus is expressed as a percentage of the initial firing
rate, which controls for small changes in firing rate which may
occur over time. This formula was used to calculate both exci-
tatory and inhibitory drug effects. Peak excitation was defined
as the peak increase in firing rate produced by the drug (e.g.,
ethanol) greater than the pre-drug baseline. Inhibition was defined
as the lowest firing rate below the pre-drug baseline. Inhibition
reversal was observed as a statistically significant reduction in the
inhibition.

DATA COLLECTION
For comparison of the time course of effects on firing rate, the data
were normalized and averaged. Firing rates over 1 min intervals

were calculated and normalized to the 1-min interval immediately
prior to the DA administration. These normalized data were aver-
aged by synchronizing the data to the drug administration period,
and graphs of the averaged data were made.

STATISTICAL ANALYSIS
Averaged numerical values were expressed as the mean ± the
standard error of the mean (SEM). The differences among firing
rates were assessed with one-way repeated measures ANOVA, fol-
lowed by Tukey post hoc comparisons (Kenakin, 1987). Statistical
analyses were performed with Origin 8.5 (Originlab Corporation,
Northampton, MA, USA).

RESULTS
VTA NEURON CHARACTERISTICS
A total of 172 VTA neurons were examined. All neurons in normal
extracellular medium had regular firing rates and ranged from
0.72 to 4.58 Hz, with a mean of 2.13 ± 0.07 Hz. In the course of
performing the experiments described below, we used a number
of pharmacological agents, delivered either via the extracellular
medium or via the recording pipette, and these agents were applied
for 20 min before the administration of ethanol. The effects of
these chemicals alone on changes in firing rate of DAergic VTA
neurons are shown in Table 1; the mean firing rates shown in the
table are the pre-drug baseline, the firing rate at 20 min time point
before ethanol administration, and the percentage change in firing
rate at 20 min time point compared to the pre-drug baseline. Note
that there was no significant change in firing rate induced by most
of the treatments (12 of 18) and in only two cases was there a
change greater than 10%. Cells which did not return to at least
65% of their pre-drug firing rate during this washout were not
used. One benefit of the extracellular recording method used in

Table 1 | Changes in firing rate in response to PMA and/or inhibitors.

Chemical name Chemical

conc. (μM)

Number of

cells

Mean firing rate at

baseline (Hz)

Mean firing rate at

20 min (Hz)

Change in

firing rate (%)

p-value

1%DMSO – 7 1.68 ± 0.23 1.66 ± 0.21 −0.5 ± 0.7 >0.05

PMA 1 17 1.9 ± 0.16 1.78 ± 0.17 −6.7 ± 2.4 <0.05

Gö6976 (+PMA) 10 8 1.52 ± 0.11 1.46 ± 0.12 −3.8 ± 1.9 >0.05

Gö6976 (+1%DMSO) 10 9 1.95 ± 0.19 1.89 ± 0.13 −0.53 ± 4.72 >0.05

Chelerythrine (+PMA) 10 15 2.42 ± 0.26 2.21 ± 0.22 −6.70 ± 3.0 <0.05

Chelerythrine (+1%DMSO) 10 7 1.78 ± 0.38 1.68 ± 0.31 −4.70 ± 3.9 >0.05

Gö6983 (+PMA) 10 12 2.54 ± 0.30 2.39 ± 0.27 −5.1 ± 2.19 <0.05

Gö6983 (+1%DMSO) 10 5 3.47 ± 0.42 3.35 ± 0.43 −4.09 ± 1.85 >0.05

PKCδ/θ (+PMA) 0.7 12 2.02 ± 0.21 1.90 ± 0.22 −6.72 ± 3.15 <0.05

PKCδ/θ (+1%DMSO) 0.7 11 2.81 ± 0.29 2.78 ± 0.28 −0.94 ± 2.41 >0.05

2-APB (+PMA) 10 8 2.12 ± 0.19 1.77 ± 0.18 −16.77 ± 2.1 <0.05

2-APB (+1%DMSO) 10 10 1.84 ± 0.19 1.67 ± 0.14 −6.9 ± 3.2 >0.05

Ryanodine (+PMA) 10 8 2.18 ± 0.21 1.93 ± 0.17 −10.3 ± 3.7 <0.05

Ryanodine (+1%DMSO) 10 7 2.25 ± 0.37 2.09 ± 0.28 −4.8 ± 4.1 >0.05

Dantrolene (+PMA) 20 10 1.85 ± 0.18 1.90 ± 0.11 9.27 ± 10.0 >0.05

Dantrolene (+1%DMSO) 20 5 1.47 ± 0.27 1.46 ± 0.28 −0.38 ± 4.09 >0.05
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these studies is that long duration recordings can be made reliably;
the average recording duration was 76.86 ± 1.26 min, with a range
of 74–170 min.

ETHANOL EXCITATION IS REDUCED IN THE PRESENCE OF PMA
We have previously reported a phenomenon of DIR during
extended periods of exposure to moderate concentrations of
dopamine, which requires the concurrent stimulation of D2 and
D1/D5 dopamine receptors through a conventional PKC path-
way (Nimitvilai and Brodie, 2010; Nimitvilai et al., 2012a), and
this phenomenon is suppressed by exogenous ethanol (Nimitvi-
lai et al., 2012b). As the primary effect of ethanol on DAergic
VTA neurons is to increase the firing rate (Brodie et al., 1990),
in the present study, we assessed whether the effect of ethanol
was altered by activation of PKC with PMA. Recordings were
made with normal saline containing either 1%DMSO (control)
or 1 μM PMA in the recording pipette. The firing rate was mea-
sured for at least 20 min to allow drug to act locally to the DAergic
neuron. Then ethanol was administered in a step-wise fashion
from 20 to 120 mM, in which each concentration was applied for
6 min. Figure 1A illustrates an experiment in which 1% DMSO
is included in the pipette, and the response of a typical DAer-
gic VTA neuron exposed to increasing ethanol concentrations
(20–120 mM). Ethanol produced an increase in firing rate in a
concentration-dependent manner in this neuron. Figure 1B illus-
trates the effect of PMA (1 μM) on ethanol excitation. In this case,
the excitatory effect of ethanol was suppressed at all concentra-
tions. The pooled data of experiments similar to these examples
are summarized in Figure 1C. Under control conditions with 1%
DMSO included in the recording pipette (�, n = 7), ethanol at
20, 40, 80, and 120 mM produced a significant increase in fir-
ing rate of 2.0 ± 1.74%, 13.29 ± 3.74%, 23.94 ± 3.95%, and
26.68 ± 8.18%, respectively; (one-way repeated measures ANOVA,
F(3,18) = 9.99, p < 0.05). With 1 μM PMA in the recording pipette
(�, n = 17), no significant excitation was produced by ethanol;
ethanol at 20, 40, 80, and 120 mM caused a change in firing rate
of 1.92 ± 1.07%, 0.97 ± 2.1%, 1.01 ± 7.07%, and 1.67 ± 8.26%,
respectively (one-way repeated measures ANOVA, F(3,48) = 3.75,
p > 0.05).

PMA INHIBITION OF ETHANOL-INDUCED EXCITATION IS PREVENTED
BY A BROAD-SPECTRUM, BUT NOT CONVENTIONAL, PKC INHIBITOR
Since PMA is a diacylglycerol analog and is an activator of conven-
tional and novel PKCs, we examined the effects of PKC inhibitors
on the PMA-induced suppression of ethanol excitation to deter-
mine which PKC isoform is required to reduce ethanol excitation.
A broad spectrum PKC inhibitor chelerythrine (10 μM) was
applied in the bath, with the inclusion of either PMA (1 μM)
or 1%DMSO in the recording pipette (Figure 2). After 20 min
exposure to PMA or DMSO via the pipette, concentrations of
ethanol (20–120 mM) were applied. In the presence of chelery-
thrine, PMA failed to inhibit ethanol excitation; ethanol produced
a significant increase in firing rate (�, n = 15; one-way repeated
measures ANOVA, F(3,42) = 5.64, p < 0.05). Chelerythrine
alone had no effect on ethanol-induced increase in firing rate
(∇, n = 7; one-way repeated measures ANOVA, F(3,18) = 7.69,
p < 0.05).

FIGURE 1 | PMA suppresses ethanol excitation. (A,B) Mean ratemeter
graphs of the effects of ethanol application under different conditions on
two different DAergic VTA neurons. Vertical bars indicate the firing rate over
5 s intervals. Horizontal bars indicate the duration of drug application
(concentrations indicated above bar). Four doses of ethanol (20–120 mM)

(Continued)
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FIGURE 1 | Continued

were applied in a stepwise fashion, in which each concentration was
applied for 6 min. (A) With 1%DMSO in the recording pipette (control),
ethanol produced an increase in firing rate in a concentration-dependent
manner. (B) With PMA (1 μM) in the recording pipette, there was a blunting
of ethanol-induced excitation. (C) Pooled results for pDA VTA neurons
tested with ethanol in the absence or presence of PMA. With 1% DMSO in
the pipette (Control, �), there was a significant concentration-dependent
increase in firing rate produced by ethanol (one-way repeated measures
ANOVA, F (3,18) = 9.99, p < 0.05). With PMA in the pipette (PMA, �), no
significant increase in firing rate produced by ethanol was observed
(one-way repeated measures ANOVA, F (3,48) = 3.75, p > 0.05).

FIGURE 2 | Chelerythrine inhibits PMA suppression of ethanol-

induced excitation. Percentage change in firing rate (mean ± SEM) in
response to ethanol application under different conditions is plotted as a
function of time. The effect of ethanol alone (�), and ethanol in the
presence of PMA (�) from Figure 1C are shown for comparison. With
chelerythrine (10 μM) in the bath and PMA (1 μM) in the recording pipette,
there was a significant increase in firing rate produced by increased
concentrations of ethanol (�, n = 15; one-way repeated measures ANOVA,
F (3,42) = 5.64, p < 0.05). With chelerythrine (10 μM) in the bath and 1%
DMSO in the pipette, ethanol produced a significant concentration-
dependent increase in firing rate (∇, n = 7; one-way repeated measures
ANOVA, F (3,18) = 7.69, p < 0.05).

Then we examined whether a selective inhibitor of conventional
PKC, Gö6976, suppressed PMA inhibition of ethanol-induced
excitation of DAergic VTA neurons. Gö6976 (10 μM) was
co-applied with PMA (1 μM) in the recording pipette (Figure 3).
We have shown that DIR is blocked by 1 μM Gö6976 in bath
(Nimitvilai et al., 2012a) and by 10 μM Gö6976 in the pipette
(Nimitvilai et al., 2012c). Therefore, the effect of 10 μM Gö6976
in the pipette is approximately equivalent to the effect of 1 μM
Gö6976 applied in the bath solution (see Materials and Methods),
and at that concentration, it blocks the activity of conventional
PKCs, but not novel or atypical PKCs (Martiny-Baron et al.,
1993). In the presence of Gö6976 and PMA, ethanol did not
cause a significant increase in firing rate at any concentrations
(�, n = 5; one-way repeated measures ANOVA, F(3,21) = 0.92,
p > 0.05), suggesting a lack of involvement effect of conventional

FIGURE 3 | Gö6976 does not inhibit PMA suppression of

ethanol-induced excitation. Percentage change in firing rate
(mean ± SEM) in response to ethanol application in different conditions is
plotted as a function of time. The effect of ethanol alone (�), and ethanol in
the presence of PMA (�) from Figure 1C are shown for comparison. In the
presence of Gö6976 (10 μM) and PMA (1 μM) in the recording pipette,
ethanol did not cause a significant increase in firing rate at all concentrations
(�, n = 5; one-way repeated measures ANOVA, F (3,21) = 0.92, p > 0.05).
With Gö6976 (10 μM) in the recording pipette, a significant increase in firing
rate produced by increased concentrations of ethanol was observed (∇,
n = 11; one-way repeated measures ANOVA, F (3,12) = 8.03, p < 0.05).

PKCs. Ethanol did produce a dose-dependent increase in fir-
ing rate when Gö6976 alone was included in the pipette (∇,
n = 11; one-way repeated measures ANOVA, F(3,12) = 8.03,
p < 0.05).

PMA INHIBITION OF ETHANOL-INDUCED EXCITATION IS SUPPRESSED
BY A SPECIFIC INHIBITOR OF PKCδ/θ
Gö6983 is a broad spectrum PKC inhibitor that has affinity for
conventional PKCs (IC50 = 7 nM) and PKCδ (IC50 = 10 nM) 300–
2,000 times greater than its affinity for other PKCs (Gschwendt
et al., 1996). In this experiment, we examined whether Gö6983
blocks the effect of PMA on ethanol excitation. Gö6983 (10 μM)
was co-applied with either PMA (1 μM) or 1%DMSO in the
recording pipette, and the firing rate was measured 20 min before
the addition of ethanol (20–120 mM; Figure 4A). In the presence
of Gö6983 and PMA, ethanol produced no significant increase
in firing rate (•, n = 12; one-way repeated measures ANOVA,
F(3,33) = 2.26, p > 0.05). Similarly, Gö6983 alone did not inter-
fere with the excitatory effect of ethanol; ethanol produced a
concentration-dependent increase in firing rate (o, n = 5; one-
way repeated measures ANOVA, F(3,12) = 10.97, p < 0.05). These
results suggest that conventional PKCs and PKCδ do not partic-
ipate in the mechanism of PMA inhibition of ethanol-induced
excitation.

Then we tested whether a PKCδ/θ inhibitor would block
the PMA-induced reduction of ethanol excitation (Figure 4B).
PKCδ/θ inhibitor is a potent inhibitor of PKCθ (IC50 = 70 nM)
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FIGURE 4 | PKCδ/θ inhibitor, but not Gö6983, inhibits PMA suppression

of ethanol excitation. Percentage change in firing rate (mean ± SEM) in
response to ethanol application in different conditions is plotted as a
function of time. The effect of ethanol alone (�), and ethanol in the
presence of PMA (�) from Figure 1C are shown for comparison. (A) With
Gö6983 (10 μM) and PMA (1 μM) in the recording pipette, ethanol did not
cause a significant increase in firing rate at any concentration (•, n = 12;
one-way repeated measures ANOVA, F (3,33) = 2.26, p > 0.05). With
Gö6983 (10 μM) alone in the recording pipette, a significant increase in
firing rate produced by increased concentrations of ethanol was observed
(o, n = 5; one-way repeated measures ANOVA, F (3,12) = 10.97, p < 0.05).
(B) With PKCδ/θ inhibitor (700 nM) and PMA (1 μM) in the recording pipette,
increasing concentrations of ethanol caused significant excitation (�, n = 8;
one-way repeated measures ANOVA, F (3,21) = 3.78, p < 0.05). Similarly, a
significant, concentration-dependent increase in firing rate was produced
ethanol with PKCδ/θ inhibitor (700 nM) alone in the recording pipette (∇,
n = 11; one-way repeated measures ANOVA, F (3,30) = 19.36, p < 0.05).

over other novel PKCs (IC50 = 0.35, 2.33, and 16.35 μM against
δ, ε, and η isoforms, respectively), as well as conventional- and
atypical- PKCs (IC50 > 50 μM; Cole et al., 2008). In the presence
of PKCδ/θ inhibitor (700 nM) and PMA (1 μM) in the recording
pipette, PMA failed to suppress the excitatory effect of ethanol;

there was a significant increase in firing rate produced by ethanol
(�, n = 8; one-way repeated measures ANOVA, F(3,21) = 3.78,
p < 0.05). Likewise, when PKCδ/θ inhibitor (700 nM) was co-
applied with 1%DMSO in the pipette, ethanol produced an
increase in firing rate of DAergic VTA neurons (∇, n = 11; one-way
repeated measures ANOVA, F(3,30) = 19.36, p < 0.05). Although
it was a consistent effect, we have no explanation for the sudden
decrease in ethanol-induced excitation of firing rate in both con-
ditions when the highest dose (120 mM) of ethanol was applied.
Since the low concentration of PKCδ/θ inhibitor (700 nM in the
recording pipette, equivalent to 70 nM in the bath) is selective
for PKCθ, this result suggests the involvement of PKCθ on PMA
reversal of ethanol excitation.

PMA INHIBITION OF ETHANOL-INDUCED EXCITATION WAS NOT
ALTERED BY SUPPRESSION OF CALCIUM RELEASE
Unlike conventional PKC (Nimitvilai et al., 2012a), the activity
of PKCθ is not dependent on calcium, therefore interfering with
calcium should not affect the PMA inhibition of ethanol-induced
excitation. In this experiment, we used agents that inhibit calcium
release from the intracellular store and examine whether there was
a change in PMA effect on ethanol excitation. In Figure 5A, 2-APB
was used to block IP3 receptor. With 2-APB alone in the bath,
ethanol induced a significant increase in firing rate (∇, n = 10;
one-way repeated measures ANOVA, F(3,27) = 19.87, p < 0.05).
In the presence of 2-APB (10 μM) in the bath and PMA (1 μM)
in the recording pipette, no significant change of firing rate in
response to an increased concentrations of ethanol was observed
(�, n = 8; one-way repeated measures ANOVA, F(3,21) = 0.34,
p > 0.05). In Figure 5B, we tested whether blocking ryanodine
receptor by ryanodine produced a change in PMA suppression
of ethanol excitation. With ryanodine (10 μM) in the bath and
PMA (1 μM) in the recording pipette, 80 mM ethanol produced
a small but significant increase in firing rate (one-way repeated
measures ANOVA, F(3,21) = 2.92, p < 0.05), while other doses of
ethanol did not cause excitation (�, n = 8). A significant dose
response increase in ethanol excitation was observed when only
ryanodine was present (∇, n = 7; one-way repeated measures
ANOVA, F(3,18) = 14.56, p < 0.05). Because the PMA effect in
the presence of ryanodine was not as robust as with PMA alone,
we used another ryanodine receptor antagonist, dantrolene, to
examine its effect on PMA reversal of ethanol excitation. As shown
in Figure 5C, in the presence of dantrolene (10 μM) in the bath
and PMA (1 μM) in the recording pipette, ethanol did not produce
an increase in firing rate (�, n = 10; one-way repeated measures
ANOVA, F(3,27) = 0.34, p > 0.05). Without PMA, in the presence
of dantrolene, ethanol produced a significant increase in firing
rate in a concentration-dependent manner (∇, n = 5; one-way
repeated measures ANOVA, F(3,12) = 17.07, p < 0.05). In contrast
to ryanodine, dantrolene did not restore ethanol excitation in the
presence of PMA at any concentration of ethanol, possibly due to
the fact that ryanodine blocks the ryanodine receptor in a partially
open state (Sutko et al., 1997).

The results with dantrolene and 2-APB suggest that the effect
of PMA suppression of ethanol-induced excitation is not depen-
dent on intracellular calcium stores. These results also support an
involvement of novel, but not conventional, PKCs.
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FIGURE 5 | Inhibition of calcium release from the intracellular stores

does not alter PMA suppression of ethanol-induced excitation.

Percentage change in firing rate (mean ± SEM) in response to ethanol
application in different conditions is plotted as a function of time. The effect

(Continued)

FIGURE 5 | Continued

of ethanol alone (�), and ethanol in the presence of PMA (�) from
Figure 1C are shown for comparison. (A) In the presence of IP3 receptor
inhibitor 2-APB (10 μM) in the bath and PMA (1 μM) in the recording
pipette, ethanol did not produce a significant increase in firing rate (�,
n = 8; one-way repeated measures ANOVA, F (3,21) = 0.34, p > 0.05). The
presence of 2-APB alone in the bath did not alter the excitatory effect of
ethanol; there was a significant increase in firing rate produced by ethanol
at all concentrations (∇, n = 10; one-way repeated measures ANOVA,
F (3,27) = 19.87, p < 0.05). (B) With ryanodine (10 μM) in the bath and PMA
(1 μM) included in the recording pipette, 80 mM ethanol produced a
significant increase in firing rate (one-way repeated measures ANOVA,
F (3,21) = 2.92, p < 0.05), but other doses of ethanol did not significantly
change the cell firing (�, n = 8). In the presence of ryanodine alone, ethanol
caused a significant increase in firing rate in a concentration-dependent
manner (∇, n = 7; one-way repeated measures ANOVA, F (3,18) = 14.56,
p < 0.05). (C) When dantrolene (10 μM) was applied in the bath with PMA
(1 μM) in the recording pipette, ethanol did not produce significant
excitation (�, n = 10; one-way repeated measures ANOVA, F (3,27) = 0.34,
p > 0.05). When dantrolene alone was present, ethanol produced a
significant concentration-dependent increase in firing rate (∇, n = 5;
one-way repeated measures ANOVA, F (3,12) = 17.07, p < 0.05).

DOPAMINE INHIBITION REVERSAL DID NOT ALTER THE EXCITATORY
EFFECT OF ETHANOL
We have shown previously that DIR is dependent on calcium
(Nimitvilai et al., 2012a), and is suppressed by exogenous ethanol
(Nimitvilai et al., 2012b). As the effect of PMA inhibition of
ethanol excitation shown in this study did not require the acti-
vation of calcium-dependent PKCs (Figure 4), it is likely that
calcium-dependent reversal of dopamine inhibition has no effect
on ethanol-induced excitation. In the present experiment, we
compared the excitatory effect of increased concentrations of
ethanol before and after production of DIR. An experiment
examining the effect of DIR on ethanol excitation is shown in
Figure 6A. Concentrations of ethanol were applied in a stepwise
fashion (20–120 mM), in which each concentration was applied
for 6 min. After washing out ethanol for 30 min, dopamine
(2 μM) was administered for 40 min; dopamine produced an
initial inhibition in firing rate with maximum inhibition of
70.55% at 5 min, followed by the reversal of dopamine-induced
inhibition over time. The same concentrations of ethanol were
tested again 30 min following the end of the dopamine appli-
cation; our previous studies indicate that desensitization of D2
receptors persists for at least 90 min following DIR (Nimitvilai
et al., 2010). As shown in Figure 6A, there was no reduc-
tion in ethanol excitation, compared to the excitatory effect of
ethanol before DIR. Figure 6B shows the effect of dopamine
over time in a pool of experiments similar to the one shown
in Figure 6A. There was a significant decrease in the inhibitory
effect of dopamine at the last three time points compared to
the 5 min time point, indicating DIR ([DA] = 3.3 ± 0.54 μM
n = 5; one-way repeated measures ANOVA, F(7,28) = 12.11,
p < 0.05). Figure 6C shows the mean response of ethanol in
this paradigm. Before DIR, ethanol at 20, 40, 80, and 120 mM
produced an increase in firing rate of −0.12 ± 1.82, 7.72 ± 1.54,
19.91 ± 4.18, and 25.19 ± 7.7%, respectively. After DIR, ethanol
at 20, 40, 80, and 120 mM produced an increase in firing rate
of −0.16 ± 3.0, 8.96 ± 4.06, 23.44 ± 5.08, and 27.84 ± 3.83%,
respectively. In both cases, there was a significant excitatory effect
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FIGURE 6 | Dopamine inhibition reversal does not change the

excitatory effect of ethanol. (A) Mean ratemeter graph of the effects of
ethanol application before and after dopamine inhibition reversal. Vertical
bars indicate the firing rate over 5 s intervals. Horizontal bars indicate the
duration of drug application (concentrations indicated above bar). Four

(Continued)

FIGURE 6 | Continued

doses of ethanol (20–120 mM) were applied in a stepwise fashion, in which
each concentration was applied for 6 min. After washout of ethanol for
30 min, dopamine (2 μM) was applied for 40 min; dopamine produced an
initial inhibition in firing rate with maximum inhibition of 70.55% at 5 min,
followed by a partial decrease in dopamine-induced inhibition over the time
course. The same concentrations of ethanol were tested again 30 min
following the end of the dopamine application. Note that the excitatory
effects of increased ethanol concentrations before and after DIR were
similar. (B) The mean firing rate of DAergic VTA neurons during the 40 min
dopamine administration in experiments similar to the one depicted in (A).
Concentrations of DA were added in a stepwise fashion until inhibition of
50% or greater was achieved, and these concentrations were applied for
40 min ([DA] = 3.3 ± 0.54 μM, n = 5). There was a decrease in the
inhibitory effect of dopamine over time; the firing rate at the last three time
points were significantly different from the firing rate at the 5 min time point
(one-way repeated measures ANOVA, F (7,28) = 12.11, p < 0.05). (C)

Comparison of the increase in firing rate produced by ethanol before and
after DIR. No significant change in the excitatory effect of ethanol was
observed at any concentration (Two-way repeated measures ANOVA,
F (1,4) = 28.98, p > 0.05 for the effect of DIR).

of increasing concentrations of ethanol but no effect of DIR
(Two-way repeated measures ANOVA, F(1,4) = 28.98, p > 0.05
for the effect of DIR). This result suggests that activation of the
calcium-dependent PKC required for the induction of DIR did not
interfere with ethanol excitation, and so the PKC isoform involved
in DIR is different from that involved in reduction of ethanol
excitation.

DISCUSSION
In the results presented above, we report that PMA inhibits
the excitatory effect of increasing concentrations (20–120 mM)
of ethanol through a calcium-independent novel PKC mecha-
nism; the PKC isoform PKCθ is likely to mediate this reduction
of ethanol activation of DA VTA neurons. The present report
emerged from our observation that dopamine D2 receptor desen-
sitization, termed DIR, is blocked by low concentrations of ethanol
(Nimitvilai et al., 2012b). In that study, we preliminarily com-
mented that the excitatory effect of ethanol was suppressed by
the addition of PMA (Nimitvilai et al., 2012b). As there is a rich
literature on the effects of ethanol on PKC, and alteration of neu-
rotransmitter effects by either PKC or ethanol (Stubbs and Slater,
1999; Newton and Messing, 2006), we felt that it was important
to examine the effect of PKC activation on ethanol excitation of
DAergic VTA neurons.

The primary effect of ethanol on the VTA is to increase the
firing rate of the DAergic neurons both in vivo (Gessa et al.,
1985) and in vitro (Brodie et al., 1990). In brain slices, ethanol
can produce excitation of VTA neurons in low-calcium and high-
magnesium buffer, suggesting a direct excitatory action of ethanol
on DAergic cells (Brodie et al., 1990). The observed PMA inhi-
bition of ethanol-induced excitation in this study suggests that
activation of either conventional- or novel- PKCs may regulate
the ethanol excitation since both conventional- and novel- PKCs
are phorbol ester-sensitive, while atypical PKCs are resistant to
PMA. However, this inhibitory effect of PMA on EtOH excita-
tion still occurred when the release of calcium from intracellular
stores was suppressed or a specific inhibitor of conventional PKCs

Frontiers in Integrative Neuroscience www.frontiersin.org December 2013 | Volume 7 | Article 96 | 8

http://www.frontiersin.org/Integrative_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Integrative_Neuroscience/archive


“fnint-07-00096” — 2013/12/23 — 15:22 — page 9 — #9

Nimitvilai et al. PKCθ reduces VTA ethanol excitation

like Gö6976 (10 μM) was applied, so it is unlikely that con-
ventional PKCs participate in this phenomenon. Gö6976 has a
high affinity for conventional PKCs with IC50 less than 7 nM
(Martiny-Baron et al., 1993) so that the 10 μM in the recording
pipette (equivalent to 1 μM in bath) used in this study should
be sufficient to inhibit the function of conventional PKCs. Sim-
ilarly, Gö6983 has a high affinity for conventional PKCs with
IC50 about 7 nM, and it also shows a high specificity for PKCδ

with IC50 of 10 nM. The inability of Gö6983 to attenuate the
PMA effect on ethanol excitation indicates that PKCδ and con-
ventional PKCs do not participate in this phenomenon. As an
additional observation ruling out conventional PKCs, ethanol-
induced excitation was not attenuated after development of
DIR, which we have shown involves activation of conventional
PKCs.

The PKCδ/θ inhibitor (700 nM in the recording pipette) signif-
icantly blocked the inhibitory effect of PMA on ethanol excitation.
The PKCδ/θ inhibitor has IC50 of 70 nM, 0.35 μM, and 2.33 μM
against PKC-θ, -δ, and -ε, respectively. As Gö6983 has a high affin-
ity for PKCδ and did not significantly block the PMA suppression
of ethanol excitation, mediation of this effect of PMA by PKCδ can
be ruled out. Thus, these experiments support the role of PKCθ

as the isoform of PKC that mediates the PMA-induced reduction
of ethanol excitation of DA VTA neurons. While our conclusion is
based on the pharmacological specificity of the agents used, there
may be other non-specific actions of these agents that may con-
found our interpretation. Similarly, the precise concentration of
the PKC antagonists to which the cells are exposed is unknown, due
to diffusion barriers in the brain slice and from the micropipettes
to the cells. Additional studies using techniques such as gene
knock-out may be necessary to identify conclusively which PKC
isoform is required to inhibit the excitatory effect of ethanol in the
DA VTA neurons.

A schematic model for the interactions of PMA and ethanol
on DA VTA neurons is shown in Figure 7. In the presence of
PMA before the addition of ethanol, both a conventional PKC
(responsible for DIR) and PKCθ are activated. Activation of
that conventional PKC in the presence of dopamine increases
desensitization of D2 receptors, causing an overall increase in
activity or excitability. Activation of PKCθ does not have a sig-
nificant effect on DA VTA neuronal activity by itself. Ethanol
in the absence of PMA has two effects in this model: inhi-
bition of the conventional PKC to prevent D2 desensitization,
and action on a number of ion channels (as enumerated in the
Introduction, e.g., blockade of M-current) to increase firing rate.
When PMA and ethanol are present, ethanol reduces the effect
of PMA to promote DIR and, at the same time, the effects of
ethanol on ion channels to increase firing rate is blocked by PMA-
activated PKCθ. Actions of ethanol on other neurotransmitter
systems that may involve PKCθ are unknown at this time. The
observations that ethanol inhibits a conventional PKC and that
activation of PKCθ inhibits ethanol-induced excitation under-
score the importance of studying different subtypes of PKC to
better understand the complexity of PKC-ethanol interactions in
the VTA.

Recent studies indicate that ethanol activation of DAergic VTA
neurons is mediated by salsolinol via the synthesis of acetaldehyde

FIGURE 7 | Model of the interactions of PMA and ethanol in the VTA.

PMA activates two isoforms of PKC: PKCθ and a conventional PKC
responsible for D2 receptor desensitization. Ethanol inhibits the
conventional PKC, and affects a number of ion channels (ethanol-sensitive
channels) increasing the firing rate of DA VTA neurons. PKCθ interferes with
the action of ethanol on ion channels in the DA VTA neuronal membrane,
preventing the excitation. Unknown is whether other neurotransmitters
interact with those same ethanol-sensitive ion channels and whether PKCθ

alters those neurotransmitters as well.

from ethanol. Dopamine neuron excitation (Melis et al., 2007;
Diana et al., 2008)as well as effects on dopamine release in vivo
(Deehan et al., 2013), can be produced by acetaldehyde, and the
excitatory effects of ethanol are attenuated by the catalase inhibitor
3-AT (Melis et al., 2013). In addition, salsolinol, a tetrahy-
droisoquinoline that is a condensation produce of dopamine
and acetaldehyde, is a substrate for self-administration directly
into the VTA (Rodd et al., 2008), increases dopamine release
(Hipolito et al., 2009), and increases the firing rate of DAer-
gic VTA neurons (Xie et al., 2013). Salsolinol excites DAergic
VTA neurons after depletion of DA, whereas both ethanol and
acetaldehyde appear to require endogenous dopamine, further
supporting the role of salsolinol as the agent directly mediat-
ing ethanol excitation (Melis et al., 2013). Interestingly, salsolinol
appears to act both pre- and post-synaptically to increase DAergic
neuronal excitability and firing rate (Xie et al., 2013). Extensive
studies will have to be performed to determine whether PMA
suppresses salsolinol-induced excitation, and to identify the spe-
cific pre- or post-synaptic sites involved in any PMA-salsolinol
interaction.

It is possible that PKCθ reduces ethanol excitation by alter-
ing an ionic conductance or neurotransmitter effect that masks
the excitatory action of ethanol. There is precedent for concur-
rent processes that could interfere with ethanol-induced excitation
of DA VTA neurons: block of h-channels with ZD7288 uncovers
ethanol-induced activation of barium-sensitive potassium chan-
nels that undermines ethanol excitation of DA VTA neurons
(Okamoto et al., 2006; McDaid et al., 2008). It is possible that
PKCθ opens or closes channels that shunt the excitatory ethanol
current, or alter the membrane resistance to reveal an inhibitory
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effect of ethanol that masks the excitation. Investigations into the
cellular localization of PKCθ and the ion channels altered by PKCθ

will be needed to understand more regarding the interactions of
ethanol and PKCθ in the VTA.

The action of ethanol on PKC has been reported to reg-
ulate the functions of numerous receptors and cell activities
(Stubbs and Slater, 1999; for review see Newton and Messing,
2006). Ethanol activation of PKC potentiates GABAA responses
(Wafford and Whiting, 1992; Weiner et al., 1994; Harris et al.,
1995), inhibits AMPA/kainate receptors (Dildy-Mayfield and Har-
ris, 1995), induces tolerance of adenosine A2 receptors (Coe et al.,
1996), inhibits or stimulates glycine currents (Ye et al., 2001; Tao
and Ye, 2002; Jiang and Ye, 2003), as well as suppresses the func-
tions of 5HT1c and M1 muscarinic receptors (Sanna et al., 1994).
In addition, ethanol inhibition of PKC can prevent augmentation
of NMDA response (Reneau et al., 2011), and reduce D1 dopamine
receptor phosphorylation (Rex et al., 2008). In the present study,
we demonstrate an action of PKC activation on ethanol excitation.
While ethanol excites DA VTA neurons directly without mediation
by synaptic inputs (Brodie et al., 1999b), ethanol excitation may
be modulated by other neurotransmitters acting on DA VTA neu-
rons or by direct modulation of ethanol-sensitive ion channels
by PKC. Whether PMA suppression of ethanol-induced excitation
reported in this study is mediated by PKC phosphorylation of a
specific receptor or ion channel is a subject for future study.

The results here indicate that PKCθ is the primary candi-
date for mediating PMA-induced reduction of ethanol excitation.
PKCθ distribution within the central nervous system has not been
well described until recently. Initial studies suggested that signifi-
cant levels of PKCθ were not found in rodent brain (Tanaka and
Nishizuka, 1994; Naik et al., 2000), but other studies found sig-
nificant levels of PKCθ in habenula (Minami et al., 2000). A more
recent study examined PKCθ localization within the hypothala-
mus, but also did a comprehensive examination of localization of
PKCθ and PKC δ throughout the brain (Irani et al., 2010). While
finding no significant levels of PKCδ in the substantia nigra orVTA,
that study observed a high concentration of PKCθ-containing
fibers within the VTA. This observation suggests that the effects
of PKCθ activation on ethanol-induced excitation may be medi-
ated by synaptic inputs to DA VTA neurons. Additional studies
will be necessary to carefully examine the neurochemical iden-
tity of synapses that are modulated by PKCθ which could indicate
a mechanism by which PMA suppresses ethanol-induced excita-
tion. Elucidating this PKCθ mechanism might reveal a new and
important target for treatment of alcohol and drug addiction.
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