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Computationally Informed 
Design of a Multi-Axial Actuated 
Microfluidic Chip Device
Alessio Gizzi1, Sara Maria Giannitelli1, Marcella Trombetta   1, Christian Cherubini1,2, 
Simonetta Filippi1,2, Adele De Ninno3, Luca Businaro3, Annamaria Gerardino3 & Alberto 
Rainer   1,3

This paper describes the computationally informed design and experimental validation of a microfluidic 
chip device with multi-axial stretching capabilities. The device, based on PDMS soft-lithography, 
consisted of a thin porous membrane, mounted between two fluidic compartments, and tensioned 
via a set of vacuum-driven actuators. A finite element analysis solver implementing a set of different 
nonlinear elastic and hyperelastic material models was used to drive the design and optimization 
of chip geometry and to investigate the resulting deformation patterns under multi-axial loading. 
Computational results were cross-validated by experimental testing of prototypal devices featuring the 
in silico optimized geometry. The proposed methodology represents a suite of computationally handy 
simulation tools that might find application in the design and in silico mechanical characterization of a 
wide range of stretchable microfluidic devices.

Notable technological improvements of microfluidic devices have been conducted over the last decade1–6 bringing 
lab-on-a-chip7–13 and organ-on-a-chip applications14–17 to the mainstream. High throughput screening represents 
the major outcome of such a vast technological improvement that necessitates a fine control over microfluidic, 
mechanical, and multiphysical interactions18. Mechanotransduction and mechanosensitivity are universally 
recognized as fundamental pathways for the correct physiological development of in vitro tissues19, 20, and this 
aspect has been long investigated in tissue-engineered models by applying mechanical stimulation to substrates 
or scaffolds seeded with cells21, 22. However, with the advances in micro- and nano-scale technologies, a new 
class of microfabricated devices for the study of biological processes under mechanical stimulation18, 23 has been 
developed. In this framework, the notable work from groups as the one led by D.E. Ingber has posed the basis 
for obtaining microfluidic platforms integrating mechanical stretching and fluid flow conditions24–26 to success-
fully recapitulate human disease models on a chip. However, most examples in the literature focused on uniaxial 
stretching, and the few examples of multi-axial devices23, 27 did not unveil the potential of fully programmable 
actuation along different directions. In all cases, comprehensive theoretical modeling and engineering optimiza-
tion of the mechanically actuated devices are limited to specific applications28. The complex interaction between 
cells and substrates has been recently investigated through advanced theoretical and computational modeling 
approaches29–33, further highlighting the tight interplay of different multiphysical effects during mechanotrans-
duction processes, i.e. fluid-electro-mechanics. These studies, based on in vitro evidences, indicated a clear route 
for future microfluidic technologies: optimization of the environmental constraints on on-chip cell cultures mim-
icking in vivo conditions in a more reliable way.

In the present contribution, we propose a novel vacuum-actuated multi-axial microfluidic chip device (MCD) 
obtained as the result of mathematical modeling, computationally informed design, and optimization strategies 
in closed loop with microfabrication processes and experimental analyses. We based our numerical model and in 
silico analyses on a solid theoretical description of the materials undergoing mechanical deformation in the large 
strain regime. Numerical analyses were conducted via parametric optimization of the MCD structural features 
with the aim to tailor the induced multi-axial deformation field. The computational model of the MCD was finally 
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validated against experimental evidences on a prototypal device. The joint theoretical, numerical, and experimen-
tal work results in a new reliable toolbox for optimized lab-on-a-chip applications.

Results
Structural elements of a multi-axial stretchable MCD.  The MCD is based on elastomeric poly-
dimethylsiloxane (PDMS), and its main components consist of a porous membrane (PM), actuated by four vac-
uum chambers (VC) at its sides, and perfused through a set of perfusion channels (PC). A careful in silico design 
optimisation process was performed with particular reference to the shape of the PM and of the VCs. Details 
about the different configurations analysed are provided in supplementary information (see Figs S1 and S2). 
In brief, three optimum criteria were adopted: i) maximisation of the strain field induced on the PM for the 
maximum applicable load; ii) control and distribution of the strain field maximising the PM surface usage; and 
iii) minimisation of the bending stiffness of the VC walls at the interface with the PM. Although the selected 
optimum requirements may be easily derived for single structural elements, i.e. the PM and the VC walls, their 
coupling within a three-dimensional device with features at different length scales requires the support of compu-
tational tools described in detail in the next section. Figure 1(a) shows a representative example of three different 
VC geometries that were analysed. Each configuration was characterised in terms of the three mentioned opti-
mum criteria. In particular, from left to right, the maximum strain level induced on the PM increases due to the 
minimisation of the stiffness at the membrane-wall interface. Moreover, the strain gradient decreases, producing 
a more uniform strain field on the PM.

The resulting optimised geometry of the MCD is shown in Fig. 1(b,c), with its key structural elements evi-
denced in blue colour. The optimised MCD features a 3 × 3 mm2 culture chamber bordered with a flexible wall 
with a cross-sectional size of 100 μm (width) × 500 μm (height). The PM is a planar squared thin structural ele-
ment clamped along its edges at the VC walls. The PM does not provide any bending stiffness and is modelled as 
a plane stress element in 3D with the possibility to deform both in the in-plane and out-of-plane directions. The 
PM provides the structural support for cells under controllable strain fields and it further allows fluids to diffuse 
between the upper and lower culture chambers. The VCs are designed as elongated chess pawns arranged in a 
cross fashion along the edges of the PM (Fig. 1(a)). The chosen shape provides two salient features to the device: 
i) it allows to minimise the stiffness of the VC walls at the interface with the PM, thus maximising the entity of 
PM stretching; ii) it avoids potential collapse of the VCs undergoing negative pressure. In addition, VCs are not 
communicating and hence can be controlled independently, allowing true multi-axial actuation to be performed 
on the PM. Two pairs of inlet-outlet PCs selectively control the fluidics of the upper and lower culture chambers. 
Insertion of the PCs occurs at the chamber corners, and their width is designed to trade off between perfusion 
efficiency and constraint to PM actuation.

A representative example of the spatial discretisation quality adopted for numerical analysis is shown in Fig. 2 
(a view of the whole device and two zoomed views of the PM are reported (a-c)). The bulk region of the MCD was 
discretised by using tetrahedral elements with maximum size of 80 μm and an advancing front meshing protocol 
was used to discretise the connected membrane with minimum element size of 40 μm (Fig. 2(d)). Such a discre-
tisation allowed us to provide a sufficient number of finite elements between the PM and the device external 
boundaries, avoiding non-realistic membrane deflections, and correctly solving both the nonlinear elastic and the 
hyperelastic problems. The final optimised simulation setup, reduced to the sole region surrounding the PM, 
consisted of ∼ ⋅6 104 elements, corresponding to ∼ . ⋅3 3 105 degrees of freedom. Such an optimised computa-
tional model required about 8 GB of RAM, achieving the purposed target of modest computational effort. High 
performance computing analysis was also performed on the whole MCD domain: numerical solution consisted 
of ∼ . ⋅1 5 106 d.o.f. and ∼ ⋅3 105 elements. Negligible discrepancies were observed between the reduced and the 
full MCD models. In both cases (i.e., reduced and full MCD geometry), computational time and cost were not 
substantially affected by the specific nonlinear elastic or hyperelastic material model chosen for the solution. The 
displacement field over the mid-planar section of the whole MCD is shown in Fig. 2(e) for an equibiaxial loading 
with p = −500 mbar. The normalized arrow plot highlights the expected symmetry of the solution. Figure 2(f) 
shows a zoom of the displacement arrow plot on the membrane surface. As expected, the applied negative pres-
sure induced notable displacements (up to µ∼ m100 ) on the sole PM element.

MCD physics is compatible with multiple stretching regimes.  In order to appreciate the accurate 
control over the displacement/strain fields of the membrane structure, we describe the results of the multiple 
numerical analyses conducted with particular attention to the PM response. Figure 3 shows the displacement field 
(Fig. 3(a)), the strain map (first invariant of the deformation, Fig. 3(b)), and the von Mises stress (Fig. 3(c)) 
obtained on the PM for three different loading patterns: i) uniaxial loading with p = −500 mbar (left); ii) equibi-
axial loading with p = −500 mbar (center); iii) biaxial loading with p1 = −300 mbar and p2 = −500 mbar (right). 
For each simulated loading pattern, the maximum value of the displacement ( µ∼ m100 ) was obtained on the 
boundaries of the membrane corresponding with the loaded surfaces. Results confirmed the strong differences 
between the three cases and emphasized some notable features of the MCD. As expected, uniaxial loading pro-
duced an almost mono-axial displacement field in the direction of the applied load covering a large portion of the 
PM surface, with minor deviations on edges connected to non-loaded walls. The equibiaxial case showed a highly 
symmetric solution with a large central portion of the PM exhibiting a radially oriented displacement field. We 
remark the close analogy with the analytical solution of the plane strain problem. The biaxial loading case—which 
can be interpreted to some extent as the superposition of uniaxial and equibiaxial loadings—showed an expected 
displacement field, with a complex associated strain pattern, characterized by two localized regions of minimum 
strain within the center portion of the PM. In all cases, we noticed singularities in the displacement field at the 
PM corners in proximity to the PC insertions, acting as fixed constraints to PM stretching.
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Adherence of in silico model to experimental evidence.  Following computational analysis, the opti-
mized MCD geometry was translated into a prototypal device fabricated by PDMS soft-lithography (see Fig. 4(a)). 
We conclude our analysis describing the model validation procedure and highlighting its statistical significance 
with respect to measurements performed on the real device (see Fig. 4(b,c)). A representative comparison is pro-
vided in the following and an extended set of tracking results is reported in Supplementary Fig. S4. Figure 5 
compares the equibiaxial displacement field components (u, v horizontal and vertical, respectively) measured on 
the MCD with those obtained by numerical simulations for the three material models (see Eqs (7)–(9) in the 
Methods section). Three different points placed at (0°, 45°, 90°) along a circular region with radius 500 μm from 
the center of the PM have been represented. Measurements performed on these points confirmed the expected 
displacement pattern and closely matched the in silico data up to the highest loading pressure (radial orientation 
of the displacement field with a modulus of µ∼ m30 ).

Figure 1.  Key structural elements of the MCD. (a) Planar view of three different shape configurations for the 
vacuum actuators (in blue). (b,c) Planar view (b) and three-dimensional sketch (c) of the MCD structure. From 
left to right, the porous membrane (PM), the vacuum chambers (VC), and the perfusion channels (PC) are 
highlighted in blue colour. Length scale in [μm].
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The inset table in Fig. 5 reports the r.m.s. error between the experimentally measured and the in silico data for 
the three different material models. It is worth noting that all the models provided a similar reliability, with a max-
imum error of 6% for the Ogden material model (9). Major deviations with respect to the measured data could 
be evidenced at small loadings and along the diagonal path. These were due to singularity displacement lines 
(see Fig. 3(a) (center)) ending on the PCs that constrained the PM stretching. In fact, as highlighted in Fig. 3(b) 
(center), the isolevels of the first invariant of strain deviated from the circular analytical solution and presented 
a higher strain gradient along with the diagonal paths ending on the PCs. Accordingly, also the stress isolevels 
presented similar features (see Fig. 3(c) (center)). Similar validation analyses were also performed under uniaxial 
loadings providing the same qualitative and quantitative results.

Discussion
The above reported results underline the modularity and adaptability of our MCD to provide truly multi-axial 
strain states toward multiple and diverse mechanobiology applications. This device would give the possibility not 
only to modulate the intensity of cell culture experienced stretching over time, but also to modify its spatial distri-
bution—according to a priori established patterns—mimicking, e.g., the insurgence of pathologic conditions on 
in vitro tissue models. We refer to Huh et al.34 for an extended review on organ-on-a-chip models recapitulating 
the physical microenvironment of healthy and injured organs.

When analysing the behavior of the PM, it is worth noting that, being PDMS a nonlinear material, local mem-
brane stiffness might depend upon punctual strain level. This might have important implications in a device destined 
for cell culture, given the key role of substrate stiffness in driving cellular responses35. Hence, the spatial distribution 
of the equivalent material stiffness on the PM domain was also included in the computational analysis. In our set-
tings, the center portion of the PM remained in the pseudo-linear regime, with an almost constant elastic modulus 
in the 5 · 105kPa range regardless the spatial distribution of the strain field (see Supplementary Fig. S3).

In the perspective of further optimizing the computational toolbox, two main factors shall be mentioned: 
(1) the computational model does not consider any pre-stretch on the PM (that cannot be estimated a priori 
in our experimental setup); (2) the CAD geometry implemented in the numerical code does not account for 
micro-scale geometric inaccuracies introduced during alignment and plasma-bonding of the MCD layers. These 
aspects would require a massive statistical analysis of multiple devices and their testing under different working 
conditions. In addition, the mechanical characterization of the MCD encompasses microstructural formulation 
and micromechanical interface simulations36–41 toward the study of the growth and remodeling of cultured cell 

Figure 2.  Computational model. (a–c) Mesh element quality distribution over the entire MCD (a) and two 
progressive zoomed views of the culture chamber (b,c). Colour code refers to tetrahedral mesh quality (1 
represents the highest quality). (d,e) Mesh distribution (d) and arrow plot of the displacement field (e) along the 
mid-planar section for the entire device. (f) Zoomed view on the displacement field on the PM (the equibiaxial 
loading case is highlighted by pressure arrows).

http://S3


www.nature.com/scientificreports/

5Scientific Reports | 7: 5489  | DOI:10.1038/s41598-017-05237-9

layers within a microfluidic actuated environment. These will be addressed by introducing multiphysics coupling 
at the cell and tissue level—e.g., viscosity42, electro-mechanics43 and fluid-structure interaction44—with the final 
aim to provide a comprehensive computational tool. A dedicated study will finally extend the theoretical descrip-
tion of the PM by adopting micropolar and second gradient homogenization techniques dedicated to media with 
periodic microstructures45–48. This extension, in particular, will allow us to characterize nonlocal effects49 and to 
incorporate multiscale feedbacks at the cellular level30. Accordingly, advanced theoretical description of nonlinear 
diffusion in soft porous media50 will allow the characterization of multiphysical emergent behaviors on the basis 
of a sound thermodynamic framework51, 52.

Methods
Constitutive Modeling of the Microfluidic Device.  PDMS is an isotropic, incompressible, and 
stress-asymmetric material, which shows a strong dependance of its nonlinear mechanical properties upon the 
pre-polymer to catalyst ratio. We chose two different compositions (i.e., 15:1 and 10:1 v/v) in order to provide 

Figure 3.  Results of numerical analysis. (a) Displacement field induced on the PM under uniaxial (left), 
equibiaxial (center) and biaxial 3:5 (right) loading patterns for a maximum pressure p = −500 mbar. White 
arrows indicate the local horizontal and vertical components of the displacement field. (b) Color map and 
isolevel contours of the first invariant of deformation for the corresponding loading patterns. A limited range of 
strain values is displayed for the three cases, i.e. [0.04 ÷ 0.1]. (c) Color map of the von Mises stress distribution 
for the three loading patterns. A limited range of stress levels ([0.5 ÷ 1] · 105Pa) is displayed.
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different compliance levels for the PM and the MCD main body, respectively. Mechanical behavior of PDMS at 
the selected compositions was evaluated via uniaxial tensile and compressive tests on dedicated specimens (see 
supplementary information for details). The experimentally derived PDMS properties were implemented into the 
computational model using both nonlinear elastic and hyperelastic material models.

In the following, according to the notation used in Holzapfel et al.53, we assume index notation for vectors and 
tensors and use the notation [A] to indicate the matrix representation of the tensor A in a given basis. Under finite 
kinematics assumptions, we define the model equations by using a general curvilinear coordinate system relating 
a reference (material) domain with a current (spatial) one. The coordinates in the reference domain Ω0 with 
boundary ∂Ω0 are denoted by X = XI (I = 1, 2, 3), while the current domain Ω with boundary ∂Ω holds x = xi 
(i = 1, 2, 3) and the corresponding displacement field, expressed in terms of the material coordinates, is defined 
as u = x(X) − X. Uppercase and lowercase subscriptions refer to the material and spatial configurations, respec-
tively. We indicate with F = ∇Xx = FiJ the two-point deformation gradient tensor and with C = FTF = CIJ the right 
Cauchy-Green deformation tensor. We comply with the usual assumption of nearly incompressible hyperelastic 
materials with the strain energy density that decomposes into two terms, Ψ = Ψvol + Ψiso. The first term, 
Ψvol = Ψvol(J), accounts for volume changes, and is dependent on the volumetric deformation expressed by the 
Jacobian of the deformation gradient, J = detF. The second term, Ψ Ψ= I I( , )iso iso 1 2 , accounts for the isochoric 
behavior of the isotropic constituents of the material. The isotropic term is assumed to be dependent on the first 
and second invariants, I1 and I2, of the modified right Cauchy-Green deformation tensor =C F FT , where 

= −JF F1/3 . The variational procedure allows us to derive the general explicit expression of the second 
Piola-Kirchhoff stress tensor as
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where I is the identity tensor and p is the volumetric stress representing an arbitrary hydrostatic pressure 
(Lagrange multiplier) controlling the incompressibility of the material and recovered from the volumetric part 
of the strain energy density as p = ∂Ψvol/∂J. Accordingly, the first two-point Piola-Kirchhoff (P) and the Cauchy 
stress (σ) tensors derive as P = FS, and σ = J−1FSFT. In particular, P is necessary to fit experimental data that 
make use of the concept of nominal stress, i.e., the force in the current configuration acting on the original area. 
Therefore, we can write the static equilibrium conditions in terms of P as
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Figure 4.  MCD actuation. (a,b) Optical macrographs of the MCD prototype (a) and of the actuation setup 
(b). (c) 1:1 comparison between simulated (left half) and experimental (right half) displacement fields for the 
porous membrane (PM) under actuation at a vacuum level of – 500 mbar (scale bar: 200 μm). Arrows in color 
highlight displacement vectors for a set of markers at different distances (250, 500, 750 μm) from the center of 
the membrane.
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where ρ0 represents the mass body density in the reference configuration, and ρ0bi stands for the body force 
vector per unit volume, which in our case is assumed to be negligible. The equation of motion (2) will be solved 
by imposing suitable boundary conditions reproducing the actual loading and deformation constraints applied 
to the device in our experimental setup (see next section). For what follows, it is useful to introduce the spectral 
decomposition54, 55 of the second Piola-Kirchhoff stress tensor by defining the stretch ratios (λ), associated with 
the principal directions of deformation, and related to strain (ε) via the relation λ = 1 + ε. In general, three dis-
tinct stretch ratios, λi, will be defined with associated principal referential directions, Ni, such that, by expressing 
the strain energy density in terms of the principal stretches, Eq. (1) assumes the form

∑ ∑ ∑
Ψ λ

λ
λ

λ=
∂

∂
∂
∂

= ⊗ = ⊗
= = =

SS
C

N N C N N2 ( ) , with ,
(3)i

i

i

i

i
i i i

i
i i i

1

3

1

3

1

3
2

where the tensor product ⊗ has been used. Here, Si represent the eigenvalues of S that assume the explicit 
expression

Ψ Ψ Ψ
λ

Ψ Ψ
λ λ

=




∂
∂

+
∂
∂






−
∂
∂

−





∂
∂

+
∂
∂






− .− −S J
I

I
I

J
I

I
I

I
I

pJ2 2 2
3

2 1
(4)

i i
i i

2/3 vol

1
1

iso

2

4/3 iso

2

2
1

iso

1
2

iso

2
2 2

Considering an isotropic material under incompressibility condition (J = 1), the expression of a generic uni-
axial loading condition, e.g., in direction i = 1, in terms of deformation gradient and associated Cauchy-Green 
deformation tensor is as follows

λ
λ

λ

λ
λ

λ
=



















=
















F C[ ]
0 0

0 1/ 0
0 0 1/

, [ ]
0 0

0 1/ 0
0 0 1/

,
(5)

2

with principal stretches λ λ λ λ= =, 1/1 2,3 . In this case, the sole not null component of the stress is S1 and, by 
using S2 = S3 = 0, we can eliminate the pressure term from Eq. 4, thus obtaining the closed-form expression
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Figure 5.  Model validation under equibiaxial loading (negative pressure). (a–c) Displacement field 
components (horizontal and vertical, u, v, respectively) taken at r = 500 μm from the center of the PM for 
three representative points. ‘Exp’ refers to measured data as the mean of three independent experiments on 
different devices; NLE, MR and OGD refer to nonlinear elastic (7), Moonery-Rivlin (8) and Ogden (9) material 
models, respectively. The insets indicate the position of the points with coordinates (origin is set in the center 
of the membrane): (a) (0, 500), (b) (353, 353), (c) (500, 0). The table reports the average percentage error of the 
displacement for the three selected points for the peak pressure (500 mbar) vs. the three material models.
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Material Models.  On the basis of the experimental dataset deriving from uniaxial tensile/compressive test-
ing of PDMS specimens, in the following we comply with three alternative material models characterized by a 
minimal set of parameters (this choice is in line with our aim of providing a computationally handy tool):

= −λ λ− − −P a e e[ ] Nonlinear Elastic, (7)NLE b c
1

( 1) ( 1)

λ λ= − +− -P c c2(1 )( ) Mooney Rivlin, (8)MR
1

3
1 2

µ λ λ= − .α α− − −P ( ) Ogden (9)OGD
1

1 2 1

Measured stress versus stretch ratio data were fit against the analytical expression provided in Eq. (7) via 
Matlab (The MathWorks, Inc., Natick, MA) routines by ensuring 95% of confidence, while Eqs (8) and (9) were 
fit via a global least-squares objective optimization algorithm making use of the Levenberg-Marquardt mini-
mization method56. The optimal set of parameters is provided in Table 1 and the tensile-compressive uniaxial 
responses are shown in Fig. 6 for the three analytical laws and for the two PDMS compositions adopted for bulk 
MCD and PM structures, respectively. The resulting fit clearly shows the perfect match of the nonlinear elastic 
and of the hyperelastic Ogden models over the whole tensile/compressive range, with a minor deviation of the 
Mooney-Rivling one. PDMS shows a marked nonlinear response in the case of the 10:1 composition (bulk MCD), 
while the 15:1 composition (PM) has a definite linear behavior with reduced stiffness.

The obtained material characterization and model fitting is in perfect agreement with similar studies in the 
literature57–60 that analogously recognized the 2-parameter hyperelastic Ogden model as the most appropriate and 
computationally handy model for generalized theories of rubber-like materials.

Numerical Analysis.  For each of the three proposed material models (7–9), a computational analysis of 
the MCD was performed by solving the system of nonlinear partial differential eq. (2) within the finite element 
simulation environment COMSOL Multiphysics (COMSOL Inc., Burlington, MA) running on a multiprocessor 
Intel Xeon II workstation with 192 GB of RAM. Mixed cubic/quadratic Lagrange elements and different solver 
methods were tested to reproduce material incompressibility. Several mesh sizes, shapes and parameter tests 
have been implemented in order to find the optimal configuration for the numerical solution, i.e., stable numer-
ical convergence, realistic deformation fields and negligible stress differences among comparative simulations. 
Boundary conditions imposed on the simulated domain correspond to the experimental set up and consisted in:

σ
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=

=

⋅ =

-

- -

p

u 0

0

n

: MCD glass interface (no displacement at the interface with the glass

support)

: MCD air interface (stress free condition at the outmost external

surfaces)
: VC surfaces (distributed loading on the surface of the VCs)

where n is the outward normal to the boundary. Number and range of static negative pressure problems was 
consistent with the loading sequence applied to the real device: p = [0 ÷ −500] mbar by fixed decremental steps 
of 50 mbar.

Figure 6.  Tuning of material models. Fitting of experimental stress vs. stretch ratio curves for 10:1 v/v (empty 
circles) and 15:1 v/v (filled circles) PDMS using different material models: (a) nonlinear elastic (Eq.(7)); (b) 
hyperelastic Mooney-Rivlin (Eq. (8)); (c) hyperelastic Ogden (Eq. (9)). Tensile and compressive tracts are shown 
up to 100% and 25% strain, respectively.
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Device Fabrication.  Master molds of the two halves of the chip (representing the upper and lower micro-
channel layers) were fabricated in SU8-2075 negative photoresist (Microchem, Newton, MA) on 4″ silicon wafers 
following a standard photolithographic process according to the manufacturer’s protocols. Masters were silanized 
overnight in a chamber saturated with trimethylchlorosilane (Sigma-Aldrich, St.Louis, MO) vapors to facilitate 
demolding. The two halves of the chip were individually prepared by casting PDMS (Sylgard 184, Dow Corning, 
Midland, MI) at 10:1 v/v pre-polymer to catalyst ratio on the microfabricated mold, followed by thermal curing 
(1.5 h at 110 °C). Once cured, replicas were carefully peeled off from the mold, and vacuum/fluidic inlets and 
outlets were created using a suite of biopsy punches.

The PM was prepared by spinning a thin layer of PDMS (15:1 v/v) onto a photolithographically obtained 
SU8-on-silicon master (SU8-2050 negative photoresist, Microchem) containing an array of circular pillars (8 μm 
diameter × 45 μm height, with 55 μm spacing), followed by thermal curing for 3.5 h at 60 °C (Fig. 7(a) and (b)). 
Spin coating parameters were carefully optimized in order to obtain a 10-μm - thick membrane with circlewise 
through-holes. The surfaces of the PM (still on the master) and the upper microchannel layer were plasma-treated 
for 35 s at 20 W, immediately placed in conformal contact and further cured at 65 °C for 2 h (Fig. 7(c)). The 
assembly was then peeled off from the underlying master (Fig. 7(d)) and the portions of the membrane located 
over the VCs were torn off using forceps. Finally, the top microchannel layer (featuring the PM) and the bottom 
one were plasma-treated, carefully aligned (Fig. 7(e)) using a mask aligner (model MG1410, SET Corporation SA, 
St. Jeoire, France, purposely modified to accommodate the thickness of the substrates) and cured at 65 °C for 2 h. 
A schematic representation of the obtained assembly is presented in Fig. 7(f).

Device Actuation.  Actuation of the device was performed by applying controlled vacuum levels (in the 0 ÷ −500 
mbar range at 50 mbar steps) at each actuator inlet using a multichannel programmable pressure controller (Elveflow 
OB-1 MK3, Elvesys, Paris, France). Membrane stretching was observed under a fully motorized inverted optical 
microscope (Eclipse Ti-E, Nikon Instruments, Tokyo, Japan) equipped with a high-sensitivity camera (Neo 5.5, Andor 
Technology, Belfast, UK) and a dedicated control software (NIS Elements AR, Nikon). In order to validate the in silico 
model, uniaxial and equibiaxial loading patterns were considered. Displacement field was calculated by tracking the 
displacement of PM pores using an image analysis algorithm (2D Object Tracking, NIS Elements) on the micrograph 
sequences at different pressure actuation levels. Device actuation is provided as Supplementary video S1.

Figure 7.  MCD microfabrication. Schematic representation of the membrane fabrication steps (a,b) and of 
the multi-step bonding process: upper half with the PM (c,d) and final alignment of the two halves (e). 3D 
schematic view of the assembled MCD (f): upper (green) and lower (red) culture chambers with the interposed 
PM (gray).

Parameter PDMS 10:1 PDMS 15:1 Unit

NLE

a 1.661 · 105 1.494 · 105 [Pa]

b 2.366 0.726 [−]

c 4.608 3.252 [−]

MR
c1 3.893 · 105 8.083 · 104 [Pa]

c2 −9.976 · 104 1.109 · 104 [Pa]

OGD
μ 2.289 · 105 2.752 · 105 [Pa]

α 3.717 1.417 [−]

Table 1.  Fitting parameters of the three constitutive laws (7), (8), (9) adopted to model PDMS at 10:1 and 
15:1 v/v pre-polymer to catalyst ratio. Nonlinear elastic material parameters (a, b, c) were obtained via Matlab 
routines with 95% confidence. Hyperelastic Mooney-Rivlin (c1, c2) and Ogden (μ, α) material parameters were 
obtained via least-square algorithms.
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