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Introduction
Techniques for sequencing RNA and DNA pioneered by 
Fred Sanger and others in the 1960s [1] and 1970s [2] 
began to reveal the biochemical recipes for storing bio-
logical information in organisms and laid the foun da tion 
for modern genomics. Yet, decades before the fi rst 
nucleic acid was sequenced, various chemical modi fi ca-
tions of DNA had already been described, such as 
5-methylcytosine [3] and 5-hydroxy-methylcytosine [4], 
now dubbed the 5th [5] and 6th [6] base of genetics; in 
total, several dozen DNA modifi cations have been reported 
[7]. Th ese modifi cations, along with histone modi fi cations, 
are now recognized as important regula tory mechanisms 
for controlling gene expression and function [8].

Fortunately, it is now relatively easy to characterize 
these modifi ed DNA bases, which form part of the ‘epi’-
genome (epi, on top), for any organism with a fi nished 
genome, given the widespread availability of high-
through put techniques, especially those based on next-
generation sequencing (NGS). Various NGS approaches 
are being used in the National Institutes of Health (NIH)’s 
Epigenomics Roadmap [9] and in the BLUEPRINT 

Project [10]. Similarly, cell-specifi c, post-translational 
modi fi  cations of proteins, sometimes referred to collect-
ively as the ‘epiproteome’ [11], are essential mechanisms 
necessary for the regulation of protein activity, folding, 
stability and binding partners. Elucidating the roles of 
protein and DNA modifi cations has had a major impact 
on our understanding of cellular signaling, gene regu-
lation and cancer biology [12].

However, our understanding of an additional regulatory 
layer of biology that rests between DNA and proteins is 
still in its infancy; namely, the multitude of RNA modi-
fi cations that together constitute the ‘Epitranscriptome’. 
Th ere are currently 107 known RNA base modifi cations, 
with the majority of these having been reported in tRNAs 
or rRNAs [13]. Outside the 5’ cap, the role of modifi  ca-
tions in mRNA is unclear [14,15]. One RNA modifi cation, 
N6-methyladenosine, or methyl-6-adenosine (m6A), has 
been observed in a wide variety of organisms, including 
viruses [16], yeast [17], plants [18], humans [19,20] and 
mice [19,20], and exhibits dynamic changes in response 
to a variety of stimuli in yeast [21]. Older studies using 
purifi ed polyadenylated RNA from mammalian cells 
showed that m6A was the most abundant post-trans-
criptional modifi cation in polyadenylated RNA [14], 
which contemporary doctrine considered to be synony-
mous with mRNA. However, it is now known that poly-
adenylation occurs not only on mRNAs, but also in other 
RNAs, such as rRNAs and long intergenic noncoding 
RNAs (lincRNAs). Th us, it was historically unclear 
exactly how m6A existed in mRNAs and, if so, whether it 
was restricted to a select few transcripts or prevalent 
throughout the transcriptome.

Previous methods for investigating the prevalence of 
m6A were laborious and involved incubating cells with 
14C-radiolabeled methionine (the precursor for the 
endogenous methyl donor, S-adenosylmethionine), follow-
ing which the incorporation of methyl groups into RNAs 
could be quantifi ed. Th ese early studies detected methy-
lated bases in ribosomal RNA (rRNA) [22], small RNA 
fractions [23-27] and in mRNAs [28]. However, these 
methods were limited by their inability to identify the 
specifi c mRNAs that contained m6A. Indeed, m6A had 
previously been detected in vivo for only a single 
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mammalian mRNA (bovine prolactin [29]), and the 
specific sites of m6A incorporation had been established 
for only two RNAs: prolactin [29] and Rous sarcoma 
virus RNA [30,31]. The methods used to map these m6A 
sites were technically challenging and, more importantly, 
required a pre-ordained focus on a particular transcript, 
rather than a global approach that could detect sites of 
adenosine methylation in all mRNAs. Moreover, adeno-
sine methylation is invisible, insofar as both methylated 
and non-methylated adenosines readily base pair with T 
or U, and both are reverse transcribed to T, further 
hindering the study of m6A and its role in biology.

However, a renewed interest in m6A has recently 
emerged, partially due to the finding that the fat mass- 
and obesity-associated (FTO) gene encodes a brain- and 
hypothalamus-enriched m6A demethylase that is 
responsible for converting m6A to adenosine [32]. Defects 
in this enzyme result in significant alterations in energy 
use and metabolism, and mutations in FTO have recently 
been linked to a higher risk for Alzheimer’s disease and 
decreased brain mass [33,34]. These studies suggest that 
m6A may have a physiological role in cellular signaling 
and neurodegeneration. Recent advances in NGS tech-
nology, in addition to the availability of antibodies that 
recognize m6A, have enabled the development of global 
approaches for studying m6A. Recently, two groups have 
independently developed high-throughput methods for 
rapid characterization of m6A sites across the transcrip-
tome. Methods such as methyl-RNA-immunoprecipi-
tation-sequencing (MeRIP-seq) [19] or m6A-seq [20], 
which combine immunoprecipitation (IP) of methylated 
RNAs using an m6A-specific antibody, with NGS, have 
finally opened the door to global methods for studying 
the epitranscriptome and its dynamics.

Mapping the epitranscriptome
Although MeRIP-seq and m6A-seq were developed 
independently [19,20], both are very similar in the initial 
RNA preparation and IP steps. The larger differences 
between the two protocols lie in their downstream 
compu tational methods rather than in sample prepara-
tion, which in both cases followed methods similar to 
existing chromatin IP-seq (ChIP-seq), insofar as they 
performed IP with an m6A-specific antibody. Table 1 
shows the similarities and differences between the 
MeRIP-seq and m6A-seq protocols.

Both datasets produced qualitatively similar results, 
with m6A peaks in introns, 5’ UTRs, exons, splice junc-
tions, ncRNAs and intergenic regions, indicating that 
m6A is a widespread and wide-ranging RNA modification. 
The MeRIP-seq study also identified peaks in lincRNAs. 
The genomic features for which m6A was particularly 
enriched are listed in Table  1; the main discrepancy 
between the two studies in this regard concerned the 

enrichment of m6A at transcription start sites (TSSs), 
which was observed by m6A-seq, primarily in a single cell 
line (Figure 1a). An explanation for this discrepancy may 
be the different window used to define the TSS. A 
comparison between mouse and human data in both 
studies showed a high conservation of specific m6A sites 
across the two species. Finally, digesting samples with 
various RNases prior to MeRIP-seq demonstrated that 
m6A sites were mostly present at internal sites within 
mRNAs and were absent from polyA tails.

In addition to sequencing, the MeRIP-seq study also 
used immunoblotting to investigate m6A, demonstrating 
that m6A is present in mouse heart, lung, brain, liver and 
kidney tissues, with a particular enrichment in brain, 
liver and kidney. High levels of m6A were found in HepG2 
and MCF7 cells, in contrast to lower levels detected in 
other human cancer cell lines (PC3 and PC9). The 
dynamic nature of m6A was confirmed by comparing 
embryonic with adult tissue, which showed that m6A 
levels increase over the course of development. The m6A-
seq study also found m6A to be a dynamic modification, 
finding that its distribution changed in response to a 
variety of external stimuli (ultraviolet, interferon gamma, 
hepatocyte growth factor and heat shock), although as 
many as 70 to 95% of the peaks were static.

Experiments leveraging the depletion of the METTL3 
subunit responsible for methylating adenosines were 
used in the m6A-seq study to explore the modification’s 
function. A statistically significant increase in the abun-
dance of alternatively spliced transcripts was observed as 
a result of this depletion, with the alternatively spliced 
exons and introns showing an enrichment for m6A peaks. 
However, a permutation analysis of splice junction-
localized m6A sites in the MeRIP-seq study data did not 
find a statistically significant enrichment of m6A peaks in 
the proximity of splice junctions [19]. Moreover, an 
analysis of the total mapped bases from the MeRIP-seq 
samples versus the control, non-IP RNA samples showed 
that fewer bases mapped to splice junctions in the IP 
samples (Additional file 1). Elucidating whether m6A 
functions in splicing and, if so, whether this is direct or 
indirect through the regulation of splicing factor-
encoding transcripts, will require further investigation. 
In light of the MeRIP-seq data, we suggest that m6A is 
not likely to cause an overall increase in the global 
amount of transcript splicing, but it may modify splicing 
for certain classes of genes, and particularly for genes 
with alternative, internal exons [20].

Challenges of epitranscriptomic site detection
There are many factors to consider when computing the 
m6A enrichment for a site. For example, the definition of 
gene regions, the gene isoform used, the presence of 
secondary structure, the alignment method and the read 
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depth can all impact the degree of enrichment dis-
covered. Given that epitranscriptomics is a nascent field, 
computational analysis methods are only now emerging. 
Here, we explore the impact of these factors on detecting 
and quantifying m6A.

A comparison of the raw peaks found in the MeRIP-seq 
and m6A -seq studies showed surprisingly little overlap, 
even with a single base threshold (Table 2). However, the 
different cell types used, as well as slightly different RNA 
handling methods, likely account for some of these peak 
differences [19,20]. Another technical contributor to the 
low overlap may be erroneous methylation calls, given 
that the false discovery rate (FDR) for both methods was 
5 to 7%. The overlap notably improved when bases in 
transcripts with low expression levels were excluded 
(Table 3). These complications notwithstanding, the total 
number of m6A sites identified encompassed the majority 
of human genes and almost one-third of mouse genes 
(Table 2).

We re-analyzed the datasets from both studies in order 
to determine the effect of the peak-calling method on the 
apparent m6A distribution in the transcriptome and 
found two discrepancies. By comparing peak-calling 
methods, we observed that the presence of the 5’ UTR 
peak in the m6A-seq dataset was attenuated when that 
study’s peak-caller was replaced by MeRIPPeR [35] from 
the MeRIP-seq study. This reduction indicates that each 
of the two peak-calling algorithms may have different 
sensitivities and specificities.

We also note that the 5’ UTR m6A signal in the original 
peak sets used a definition of a TSS that was 150 bp, and 
that the signal was primarily derived from larger genes, 
as measured by exon number (Figure 2); a potential m6A 
enrichment within these genes can be seen at the end of 
the first intron and at the beginning of the following exon 
(Figure 2). Since the distribution of the m6A sites is non-
uniform (in the sense that enrichment is dependent on 
the number of exons in a gene and that on the context of 
an exon within a gene), a useful method to examine m6A 
localization, or any epitranscriptomic change, may be to 
separate the genes into their sub-geographies (Figure 3).

m6A mapping is heavily impacted by the read depth 
and by the choice of peak detection and alignment 
methods
To further investigate the analytic dependency of m6A 
peak detection, we examined the m6A site detection as a 
function of alignment method, antibody and read depth. 
Part of the challenge of MeRIP-seq analysis is a reliance 
on other IP-seq analysis methods, developed for 
chromatin IP-seq (ChIP-seq). ChIP-seq experiments are 
designed to characterize DNA-histone and DNA-
transcription factor interactions. Existing ChIP-seq peak-
finders take advantage of inherent properties of the data 
to assist in finding peaks, many of which do not apply in 
the case of finding m6A sites in RNA. For example, each 
fragmented RNA molecule pulled-down by an m6A 
antibody has the potential to harbor far more methylation 

Table 1. Comparison of MeRIP-seq and m6A-seq

 MeRIP-seq [19]  m6A-seq [20]

Tissue/cell line C57BL/6 brain HEK293T HepG2 C57BL/6 liver

Organism Mouse Human Human Mouse

Replicates (n) 3 1

RNA preparation RiboMinus GenElute mRNA

IP antibody Synaptic Systems, NEB Synaptic Systems

IP rounds (n) 2 1

RNA fragment size 100 bp

RNA sequencing platform Illumina GAII and HiSeq2000 Illumina HiSeq2000 Illumina GAII

Sequenced control Yes

Aligners BWA [38], TopHat [39] Novoalign [70], BowTie [71]

Peak-finder MeRIPPeR [19,35] Proprietary [20]

Peak-finding algorithm Fisher’s exact test of IP read enrichment Computed Winscore >2 (4× enrichment) + filtering [20]

Peaks reported (n) 13,471 18,756 12,769 4,513

Genes/transcripts reported 4,654 genes 5,768 genes 7,240 transcripts 3,442 transcripts

Peak enrichment Stop codon, internal exons Stop codon, TSS, internal exons, AS exons
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sites than the maximum number of protein binding sites 
expected for the equivalent ChIP-seq fragment, and so 
the m6A sites are more challenging to resolve. ChIP-seq 
peak fi nders use diff erent methods and heuristics to fi nd 
peaks, attempting to balance fi nding weak peaks with 
maintaining a low FDR and resulting in a diverse group of 
peak sets [36,37]. Th e same is true for m6A peaks, as the 
MeRIP-seq study used Fisher’s exact test and the m6A-
seq study derived a window score based on peak 
enrichment.

Each of the multiple methods for aligning reads to a 
transcriptome has its own set of advantages and chal-
lenges. A genome-based aligner, such as BWA [38], can 
be used when a genome sequence is available, but 
introduces added complexity when reads map to multiple 
transcript variants, and suff ers from being unable to align 
reads to genomic regions that are absent from a pre-
defi ned reference. Alternatively, a gap-based aligner, such 
as TopHat [39] or GSNAP [40], can be used, with the 
advantage that these algorithms are designed for trans-
criptomes and so can map reads across both known and 
novel splice junctions. However, these methods tend to 

be slower and can introduce many false splice sites, 
leading to poorly aligned reads. Th e ability of an aligner 
to handle errors typical of RNA-seq, which diff er to those 
seen in DNA sequencing, is another factor to consider. A 
common source of error in RNA-seq is the random 
hexamer priming used in cDNA synthesis, which intro-
duces a bias in the nucleotide distribution at the begin-
ning of reads [41]. One possible solution to this particular 
error is to trim the reads, an approach that was employed 
in the m6A-seq study.

To examine the eff ect of aligner on the detection of 
m6A peaks, we analyzed processed HEK293T MeRIP-seq 
data using three aligners (BWA [38], TopHat 2 [39] and 
GSNAP [40]), and then called peaks with MeRIPPeR [35]. 
We observed a slight increase in the number of 5’ UTR 
peaks when using the transcriptome aligners GSNAP and 
TopHat 2 relative to the number called when using BWA 
(Additional fi le 2). More importantly, there was a signifi -
cant increase in the number of individual peaks: 
MeRIPPeR found 19,617 peaks using BWA, 45,738 with 
GSNAP and 135,706 using TopHat 2, all at the same FDR 
(0.05). Th ese results indicate that the alignment method 
selected has a signifi cant impact on the number of peaks 
identifi ed in a MeRIP-seq dataset.

To eff ectively gauge the infl uence of read depth on m6A 
site detection, we used a sub-sampling titration analysis 
of the aligned reads. We found that peak detection is 
heavily dependent on read depth (Additional fi le 3a), 
with some aligners showing a nearly linear increase in 
peaks as a function of depth. Th e number of genes in 
which these peaks were found also increased with read 
depth, albeit less dramatically (Additional fi le 3b), with 

Figure 1 . Peak distribution. (a) We plotted the distribution of the 
peaks reported across gene bodies by the MeRIP-seq and m6A-
seq studies. Note the very well defi ned enrichment for peaks near 
the stop codon and in the 3’ UTR. The m6A-seq HepG2 peaks also 
show a peak in the 5’ UTR. (b) The distribution of peaks across the 
transcriptome using the BWA-based MeRIPPeR pipeline [35] on 
the data from both groups. Data from [19] and [20]. CDS, coding 
sequence.
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Table 2. O  verlap of genes with m6A peaks

 Total genes Common MeRIP-seq m6A-seq
Organism with m6A genes only only

Human 15,160 4,808 3,249 7,103

Mouse 7,627 2,031 3,870 1,726

The total number of genes that overlap with m6A sites in at least one of the 
two datasets (‘total genes with m6A’) is shown for both human and mouse. The 
overlap between the two datasets (‘common genes’) is small. The number of 
genes reported in one dataset only for each of the datasets is also shown.

Table 3. O verlap of commonly expressed genes with m6A 
sites

 Genes Expressed   
 expressed genes with Common MeRIP- m6A-seq
Organism  (RPKM ≥0.2) m6A genes seq only only

Human 19,621 7,228 3,568 1,212 2,448

Mouse 22,698 5,955 1,927 2,616 1,412

The total number of genes, excluding those with low expression (RPKM <0.2), 
that overlap with m6A sites in at least one of the two datasets (‘expressed genes 
with m6A’) is shown for both human and mouse. The overlap between the two 
datasets (‘common genes’), as a proportion of the total number of expressed 
genes with m6A, is much higher than the proportion shown in Table 2.
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the number of genes continually increasing as a function 
of depth. While a specifi c point in a transcript might be 
correctly called as an m6A site, it is not known if the site 
is methylated in all copies of that transcript [19]. Th e 
percentage of transcripts at which a site is methylated 
may be quantifi ed as the stoichiometry of m6A. It is likely 
that the new peaks detected with increasing read depth 
are low in m6A stoichiometry and hence more challeng-
ing to detect at lower read depths. From these data, we 
extrapolate that, given enough tissues, cell types and 
conditions, it is possible that almost all genes may be 
marked, at some point, by m6A.

We next sought to establish whether m6A peak calls 
vary with the antibody used, by separately plotting peaks 
obtained with the two diff erent antibodies in the MeRIP-
seq study. Both antibodies had the same peak distribution 
across gene bodies (Additional fi le 4), indicating that the 
choice of antibody, at least for the two tested, should not 
impact the global distribution of m6A sites.

m6A motif analysis
A primary motif [AG]ACU was discovered within m6A 
peaks by both studies, each of which used a diff erent 
motif-fi nding algorithm, and both analyses suggest that 
the A in the canonical motif is the methylated site - 
agreeing with prior work in m6A sequence specifi city 
[42,43]. Both groups found the motif to be highly 
enriched in peak regions compared with negative control 
regions. If the A in the motif is indeed the m6A, then 
application of this information to m6A-seq or MeRIP-seq 
datasets could enable the mapping of m6A sites at single 
base pair resolution. We used a motif pattern-matching 
algorithm from FIRE [44] to fi nd the [AG]ACU motif in 
the MeRIP-seq mouse dataset (Methods), and subse-
quently applied the assumption that the A in each motif 
is equivalent to an m6A site, to identify m6A sites in all 
the datasets. We identifi ed 21,004 m6A sites from 10,488 
m6A-seq HepG2 peaks, 46,293 from 17,071 MeRip-seq 
HEK293T peaks, 9,124 from 4,054 m6A-seq mouse liver 

Figure 2  . Peak distribution across the transcriptome. The peak distribution depicted is the average across the entire transcriptome. Peaks are 
mapped to transcripts and assigned to the following transcriptomic features: 1 kB upstream from the TSS and downstream from the transcription 
end site, 5’ and 3’ UTRs, coding segments (CDS), and exon and intron segments. In the bottom row, peaks mapping to transcripts with four or more 
exons are shown, with the fi rst, penultimate and last exons separated into individual boxes, as are their neighboring introns. The remaining exons 
and introns are shown in the middle boxes as a contiguous segment. Genes with only two or three exons are shown in the middle row and single 
exon genes are shown in the top row. Data from [19] and [20].
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peaks, and 37,459 from 12,664 MeRIP-seq mouse brain 
peaks. Only about 5 to 15% of the peaks lacked the motif 
sequence and the distribution of these putative single 
base-resolution m6A sites across gene bodies is very 
similar to the peak distribution (Figure 1a).

However, we did not observe an enrichment of m6A 
sites in the 5’ UTR, and the coding sequence profi le is 
fairly fl at until the peak reaches the proximity of the stop 
codon. Th is could indicate that the identifi ed [AG]ACU 
motif is specifi c to those peaks near the stop codon, or 
that the peak enrichment near the 5’ UTR does not 
refl ect a true increase in the number of actual m6A sites. 
To test whether the motif was specifi c to stop codon-
proximal regions, we performed a FIRE [44] motif fi nder 
analysis of the 5’ UTR peaks that were present in the 
MeRIP-seq mouse liver dataset, since this dataset was 
not enriched for this motif in this genomic region. 
Nonetheless, FIRE found a [CG]ACU motif, though not 
the strongest motif, indicating that it is not specifi c to the 
stop codon peaks, and thus likely a global motif for m6A, 
but perhaps weakly represented in the 5’ UTR.

Single-molecule approaches to RNA modifi cations
Single-molecule sequencing has the potential to provide 
base-level resolution of m6A sites, without the need for 
motif-based inference. Th e most commonly found 
platform for this method of sequencing currently on the 
market is the single-molecule, real-time (SMRT) tech-
nology (Pacifi c Biosciences). SMRT sequencing uses 
thousands of zero-mode waveguides (ZMWs) to capture 
an enzyme in real time, traditionally a DNA polymerase, 
as it incorporates fl uorescent nucleotides into a polymer 
[45]. Th is method of molecular monitoring has the 

advantage of detecting both genetic and epigenetic 
information simultaneously, since the patterns of base 
incorporation by the polymerase are contingent upon the 
steric and sequence contexts of the bases present in the 
template [46]. Specifi cally, if a modifi ed base is present 
on the template, the biophysical dynamics of DNA poly-
merase movement and base incorporation are aff ected, 
creating a unique kinetic signature before, during and 
after base incorporation, and thus enabling identifi cation 
of specifi c DNA modifi cations [47].

Here, we report a novel application of this technology, 
which can be used to detect modifi ed bases within RNA, 
including m6A sites. To characterize m6A sites in RNA at 
single-nucleotide resolution, we used a reverse transcrip-
tase as the enzyme within a ZMW, instead of a DNA 
polymerase, and this substitution allowed the direct obser-
vation of cDNA synthesis in real time. While base incor-
porations during reverse transcription typically occur at 
standard speeds, the incorporation of synthetically 
designed m6A sites showed that there is a signifi cant 
increase in the inter-pulse duration (IPD) when a methy-
lated adenosine is present in the RNA template, relative 
to the IPD for a standard adenosine (Figure 4). To our 
knowledge, this represents the fi rst demonstration of a 
reverse transcriptase-based kinetic signature that can 
directly detect modifi ed RNA. However, current single-
molecule technology is not without its own challenges. 
First and foremost, reverse transcriptases stutter when 
incorporating bases, complicating the accurate reading of 
homonucleotide stretches and the base resolution of m6A 
therein. Second, the current throughput is too low for 
transcriptome-wide approaches. Notwithstanding these 
caveats, the SMRT technology has the clear potential to 
detect an underlying epitranscriptomic change in a native 
RNA template.

Similarly, Oxford Nanopore Technologies (ONT) and 
other companies are developing nanopore-based sequen-
cing technologies, which use nanopore-forming proteins 
to sequence DNA by attaching an application-specifi c 
integrated circuit to the membrane upon which the 
nanopore rests. In principle, observations of any modi-
fi ed DNA or RNA base could be made during transit of 
the molecule through the nanopore, and some observa-
tions have already been made with nanopores that allow 
detection of 5hmC [48]. While all of these technologies 
are still under development, we note that all direct-
observation methods, in principle, have the potential to 
detect m6A and other epitranscriptomic modifi cations.

Beyond m6A: mapping the full epitranscriptome
As mentioned previously, m6A is only one of many 
known epitranscriptomic modifi cations, the majority of 
which are located in tRNA and rRNA transcripts. We 
used data from the RNA Modifi cation Database to 

Figure 3 . Distribution of [AG]ACU motif sites. The [AG]ACU 
motif was used to fi nd potential m6A sites within peaks, and the 
distribution of these potential sites across gene bodies plotted. Data 
from [19] and [20].
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Figure 4 . Single-molecule sequencing of RNA to detect epitranscriptomic changes. SMRT sequencing with the Pacifi c Biosciences RS 
shows longer times (inter-pulse distances) to incorporate m6A versus standard adenosines. (a) Experimental design for using a DNA primer in 
a reverse transcription reaction. Sequencing of the unmodifi ed template shows, in a single-molecule sequencing trace, base incorporation via 
a reverse transcriptase-mediated cDNA synthesis reaction. (b) Shows sequencing as with (a), but using an RNA template with m6A instead of 
normal adenosines. Incorporation of thymines (T) show signifi cant delay (longer inter-pulse distances). A.U. stands for normalized arbitrary units 
in fl uorescence measurement. (c) Exponential fi t of experimentally observed inter-pulse distances (IPDs). (d) Shows the diff erence between the 
average IPDs for native As and m6As. The average IPD in each case is the revers e of the exponential decay rate. The error bars indicate the range 
around each average IPD that includes 83% of the observed IPDs (that is, ±½ of standard deviation of the exponential fi t). We used an Ansari-
Bradley test in Matlab to confi rm that the distribution functions were diff erent (P = 0.0043).
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summarize the catalog of known RNA modifications by 
species, RNA type and base (Figure 5) [13].

Interestingly, the enzyme commonly known as DNA 
methyltransferase-2 (DNMT2) [Swiss-Prot: O14717] was 
shown to methylate cytosine 38 of tRNAAsp [49], and with 
such high specificity that it was renamed tRNA aspartic 
acid methyltransferase 1 (TRDMT1). More recently, two 
more tRNAs were found to be methylated by TRDMT1, 
and it was also observed that the methylation protects 
the tRNA from stress-induced cleavage and improves its 
stability [50,51]. Several tRNA nucleoside modifications 
have been shown to control frame shifting and codon 
binding during translation. These types of modifications 
often occur in the crucial 7 bp anticodon stem and loop 
(ASL) region that binds to mRNA codons in ribosomes, 
and are hypothesized to affect the stability and codon 
binding affinity during translation by controlling the 
overall shape of the loop and its dynamics [52-54]. Taken 
together, a pattern emerges in which RNA modifications 
in multiple RNA species act as a critical regulatory layer 
of RNA biology.

Many RNA modifications would benefit from a more 
global and cross-species characterization than is present 
in the existing literature. For example, studies in 

Escherichia coli and yeast have shown that nucleotide 
modifications in rRNA lie in functionally significant 
regions, with a possible role in the regulation of trans-
lation [55]. Another example is methylation in plant 
rRNAs, where the modification is thought to help main-
tain rRNA stability, possibly in order to sustain ribosomal 
function during dramatic changes in temperature [56]. 
Interestingly, rRNA modifications in trypanosomes were 
shown to be mediated by small nucleolar RNAs 
(snoRNAs) [57], and changes in pseudouridylation of 
rRNA in mice, induced by mutations in DKC1 [Swiss-
Prot: Q9ESX5], led to the onset of dyskeratosis con-
genital, resulting in an increase in tumor susceptibility 
[58].

Taken together, these studies demonstrate the possible 
significance and functional importance of (r/t/m/mi/sno/
linc)RNA modifications and begin to sketch out what 
might be called a transcriptomic regulome, where various 
species of coding and noncoding [59] RNAs, as well as 
their modified epitranscriptomic variants, compete with, 
coordinate and control each other during normal cellular 
processes, from the birth of a transcript until the 
production of its subsequent protein product or localiza-
tion of its cellular target.

Figure 5. Known types of RNA modifications. Known modifications to RNA bases are grouped by RNA type, base and species: (a) archaea; 
(b) bacteria; (c) eukarya; (d) all species. Data are compiled from the RNA Modification Database [13].
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Conclusions
Characterizations of m6A across the transcriptome show 
that m6A is present in the majority of mammalian genes, 
and is highly enriched at the beginning of the 3’ UTR and 
near the stop codon. Yet, many peaks exist in intergenic 
regions or in introns, and there is some evidence that 
m6A functions in the regulation of splicing or other 
modifications that take place in the processing of RNA 
into a mature transcript. Since m6A distribution has 
already been shown to undergo developmental changes 
and differences in cancer cell lines, it is also possible that 
epitranscriptomic signatures may be used to stratify 
various states of disease, just as in epigenetics [60]. 
Despite these advances, the complete purpose and 
molecular function of m6A is still unknown.

Nonetheless, some reasonable hypotheses can be pro-
posed from the existing data. The enrichment of m6A 
sites near the stop codon suggests that the modification 
could play some role in regulating translation termi-
nation, potentially by altering translation efficiency or 
ribosome occupancy. In addition, m6A may mark trans-
cripts for shuttling to RNA granules or for other mecha-
nisms that will preserve the RNA for later use. Just as the 
number of known modifications of RNA has rapidly 
expanded (currently 107), the number of known RNA-
binding proteins similarly keeps growing, and it is possi-
ble that some of these may be responsible for altering the 
function of m6A within RNAs, either directly or through 
the regulation of FTO or METTL3. Such interactions 
could occur at any point of transcription, post-trans-
criptional modification or translation, with different 
consequences at each stage in the life of an mRNA. 
Finally, it is also possible that some RNA binding proteins 
may be m6A site scanners that bind selectively to either 
methylated or unmethylated RNA, and as such would be 
regulated by the epitranscriptomic state of an RNA.

Two additional avenues warrant consideration when 
discussing possible regulatory functions of m6A. First, 
even though an inverse spatial relationship was observed 
between m6A peaks and microRNA (miRNA) binding 
sites in 3’ UTRs [19], it is notable that brain tissue is 
enriched for both highly expressed miRNAs and m6A-
containing genes, which suggests that miRNAs might 
influence the methylation of a targeted mRNA. In 
addition, recent work has shown an interplay of mRNA 
methylation and the reduction of Dicer activity, thus 
decreasing miRNA maturation rates [61]. Second, m6A 
has already been shown to inhibit RNA editing in certain 
cases [62], implying that m6A may serve as the long-
sought balancing mechanism for the prevention of RNA 
editing [63]. If it is the case that m6A prevents RNA 
editing from occurring, then evidence for this should be 
apparent in a diminished overlap between m6A and the 
target RNA editing sites. So far, this appears to be true 

[19], but the number of sites examined is too low to be 
definitive yet. If upheld with additional experiments, 
these feedback and regulatory loops may help explain the 
genesis and changes in RNA editing sites and miRNA 
levels, and provide additional mechanisms for controlling 
gene expression and RNA function.

In summary, the high-throughput and single-molecule 
methods described here represent the dawn of new 
research into a novel, RNA-based regulatory layer in 
cells, which adds yet another component of regulatory 
complexity to the central dogma of molecular biology 
(Additional file 5). The high conservation of specific m6A 
sites across mouse and humans, as well as the general 
increase in PhyloP conservation scores of the m6A sites 
themselves [19], both indicate that m6A is under strong 
evolutionary selection pressure, and thus may represent a 
critical modification for many organisms. Even though 
previous evidence indicates that m6A is an RNA 
modification present in all species, it has so far only been 
examined on a transcriptome-wide basis in two species 
(human and mouse), and observed in mRNAs only in 
eukaryotes, leaving open a wide area of research for many 
eukaryotic and prokaryotic systems. Just as the protein 
translation code and epigenetic code have slowly accreted 
into a cogent framework for information transfer and 
regulation within the cell, and between generations, these 
data indicate that an important epitranscriptome code is 
emerging. Notably, this dynamic code already appears to 
greatly expand the function and regulatory potential of 
all information contained within the many species of 
RNA present in a cell.

Methods
Sequence data were realigned to the genome using BWA 
[38], TopHat 2 [39] or GSNAP [40]. BWA was run using 
default parameters, and GSNAP and TopHat 2 were 
inputted with known RefSeq transcript definitions and 
run with novel splice junction finding turned on. The 
aligned files were converted to bam files using SamTools 
[64], filtering out reads with Phred quality scores under 
20. BEDTools [65] was used to compute genome proper-
ties, such as coverageBed to compute genome coverage 
and RPKM (using a Perl script) and intersectBed to 
determine peak overlaps. Subsampling was accomplished 
using Picard’s DownSampleSam [66].

Peak-finding was accomplished using MeRIPPeR [35] 
and transcriptome profile plots were generated using 
Jenotator: Java Genome Annotator [67]. A custom R 
script was used for plotting the transcriptome profile plot 
and Excel 2013 was used to plot the other bar charts. r-
make was used to generate genome annotation plots [68]. 
Motif regions were extracted using ChIPseeqer’s 
ChIPseeqerMotifMatch [69] and individual m6A sites 
were extrapolated with a Perl script.
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