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Abstract: As the basic tools for neuroscience research, invasive neural recording devices can obtain
high-resolution neuronal activity signals through electrodes connected to the subject’s brain. Existing
wireless neural recording devices are large in size or need external large-scale equipment for wireless
power supply, which limits their application. Here, we developed an ultra-low-noise, low power and
miniaturized dual-channel wireless neural recording microsystem. With the full-differential front-end
structure of the dual operational amplifiers (op-amps), the noise level and power consumption are
notably reduced. The hierarchical microassembly technology, which integrates wafer-level packaged
op-amps and the miniaturized Bluetooth module, dramatically reduces the size of the wireless
neural recording microsystem. The microsystem shows a less than 100 nV/

√
Hz ultra-low noise

level, about 10 mW low power consumption, and 9 × 7 × 5 mm3 small size. The neural recording
ability was then demonstrated in saline and a chronic rat model. Because of its miniaturization, it
can be applied to freely behaving small animals, such as rats. Its features of ultra-low noise and
high bandwidth are conducive to low-amplitude neural signal recording, which may help advance
neuroscientific discovery.

Keywords: wireless neural recording; full-differential front-end structure; hierarchical microassembly
technology; ultra-low noise; low-power system; system miniaturization

1. Introduction

Invasive neural recording, due to its closer proximity to neurons, can collect neural
activity signals with high resolution, making it a powerful means of neuroscientific re-
search [1–4]. Recently advanced electrode fiber arrays have been proposed to map and
modulate deep brain activity by optical, electrical, and chemical means [5,6]. Although
two-photon imaging can monitor neural activity signals with higher spatial resolution, it is
difficult to miniaturize the device and faces significant barriers in clinical translation [7–9].
The electrical neural recording has an incomparable ultra-high resolution in temporal scale,
is well established for basic science and clinical research, and there are more approaches to
realize the miniaturization of equipment [10–12]. Miniaturizing electrical neural recording
devices will produce less interference with biological activities and will facilitate the study
of neural activity patterns in freely behaving small animals.

Significant progress has been made in invasive electrical neural recording devices.
The brain–computer interfaces constructed with application-specific integrated circuits
(ASIC) realize miniaturization, complete implantation, and multimodal integration [13–15].
However, all components are fabricated on a unified CMOS process, which cannot achieve
high Q-value inductors and large-capacity capacitors, limiting the efficiency of wireless
communication and energy harvesting in wireless neural recording devices. The coupling
of analog and digital circuits on the same substrate also creates additional interference.
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Therefore, neural recording systems designed around ASIC usually have inferior noise
performance and wireless communication efficiency, which restrict their application in
neural activity research [16–18]. Systems integrated with discrete components usually have
the advantages of low noise, high efficiency and high flexibility. They remain the primary
tools in neuroscience research [19–21].

Neural recording systems integrated with discrete components typically include
a neural recording front-end circuit to pre-amplify the neural signals, and a wireless com-
munication module to decrease the effects of animals’ free behavior. As the extracellular
neural signals have ultra-low amplitudes (typically 50–500 µV), the recording front-end
circuit requires a gain of more than 60 dB. The demand for low noise and high input
impedance further increases the challenge of designing the neural recording front end,
especially in power-constrained conditions [22,23]. The front-end circuit built with instru-
mentation amplifiers (Figure 1a) can support high gain and low noise requirements, and its
simple structure facilitates the assembly of neural recording devices [24,25]. However,
the large bandwidth beyond the requirements results in high power consumption and
limits further miniaturization. front ends built with discrete op-amps (Figure 1b) typically
require an input buffer stage to provide high input impedance, a separate gain stage to
provide high gain levels, and a low-noise negative power chip to capture alternating neural
signals [26–28]. The use of multi-stage circuits unfavorably amplifies the noise coupled
between the circuit connection stages, and the low-noise negative power chips also in-
crease the power consumption and area of the circuit. Therefore, the existing wireless
neural recording systems designed by discrete components are usually bulky and far from
reaching their size limit.

Figure 1. The comparison of front−end structures. (a) The front−end structure construction of
instrumentation amplifier. (b) The front−end structure construction of cascade op−amps. (c) The
dual op−amps full differential neural recording front−end structure we proposed.

Further miniaturized, high-performance, and easy assembly wireless neural recording
devices will meet the requirements of recording in freely behaving small animals. To reduce
the dimensions and power consumption, it is important to construct a novel amplifier
front-end circuit and select the appropriate communication schemes. In recent years, mi-
croassembly technology, including wafer-level packaged chips and miniaturized modules,
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has been widely used to improve system integration density and reduce the parasitic
effects [29,30]. Employing microassembly technology to further reduce the size and im-
prove the performance makes it possible to construct a miniaturized and high-performance
wireless neural recording system.

This paper developed an ultra-low-noise, low power and miniaturized dual-channel
wireless neural recording microsystem, as shown in Figure 2. With the dual op-amps, full
differential amplifier front-end structure and employing the hierarchical microassembly
technology, the miniaturized wireless neural recording microsystem was realized. We
confirmed the recording capability of the wireless neural recording microsystem in saline
and chronic rat model, and compared it with the wired neural recording system.

Figure 2. Ultra−low noise, miniaturized and lightweight dual−channel wireless neural recording
microsystem, and the freely moving rats within this system. (a) Photograph of a rat assembly with
the wireless neural recording microsystem through an implanted 16−channel rigid electrode array.
(b) Photograph of components of the wireless neural recording microsystem: (b1) op−amps of neural
signal amplification front end, (b2) miniaturized Bluetooth low−energy module, (b3) 30 mAh, 3.7 V
lithium battery, (b4) wireless neural recording microsystem connected to the battery. (c) Schematic of
the wireless neural recording system, (c1) schematic of the ultra−low−noise neural recording front
end and the wireless neural recording microsystem, and (c2) schematic of the receiver base station.
(d) The flexible substrate wireless neural recording microsystem. (e) Implantable 16−channel rigid
electrode array. (f) Photograph of the electrode array implantation process. (g) Freely moving rat
with the wireless neural recording microsystem.
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2. Materials and Methods
2.1. Ultra-Low-Noise and Low-Power Neural Recording Front End

For the reduction of components and power consumption, a full differential neural
recording front end of dual op-amps is proposed, as shown in Figures 1c and 2(c1). Two
independent op-amps are used to form the fully differential amplifier structure. The positive
input terminals of the two op-amps are used as differential signal inputs, providing an input
impedance of 109 Ω order. The negative input and output terminals of the two op-amps
constitute a feedback loop with resistors Ro and R f . The differential signal gain can be
flexibly changed by adjusting the values of Ro and R f . The buffering and amplifying
functions are achieved simultaneously by using two independent op-amps. The differential
input structure and high input impedance make it possible to introduce a reference voltage
through a high-pass filter at the input terminals. A low dropout regulator (LDO) is utilized
as a reference voltage to lift the DC level of the signal, and the need for a low-noise negative
power chip is eliminated.

Figure 3 shows the equivalent noise circuit diagram of the dual op-amps full differ-
ential neural recording front end, where e1, e2, eo, e f 1 and e f 2 represent the equivalent
thermal noise of the resistors. inn1, inn2, inp1 and inp1 represent op-amps’ internally gener-
ated current noise. e1 and e1 are the internally generated voltage noise of op-amps. Since
R1 = R2, R f 1 = R f 2, the output noises produced by the resistors’ equivalent thermal noise
are shown as:

E2 = E1 = e1

(
1 + 2

R f 1

Ro

)
=

√∫
4kTR1d f

(
1 + 2

R f 1

Ro

)
(1)

Eo = eo
2R f 1

Ro
=

√∫
4kTRod f

2R f 1

Ro
(2)

E f 1 = E f 2 = e f 1 =

√∫
4kTR f 1d f (3)

where k is Boltzmann’s constant (1.38 × 10−23 j/K), and T is the absolute temperature in
Kelvin (K). In general, inn1 = inn2, inp1 = inp2 and e1 = e2, the output noises produced by
the op-amps’ internal equivalent noise sources are shown as:

En1 = En2 =
∫

en1

(
1 + 2

R f 1

Ro

)
d f (4)

Enn1 = Enn2 =
∫

inn1

[
R f 1//

(
Ro + R f 2

)]
d f (5)

Enp1 = Enp2 =
∫

inp1R1

(
1 + 2

R f 1

Ro

)
d f (6)

The output noise is analyzed using the principles of superposition, and each of the

noise sources is isolated. The gain of the circuit can be expressed as
(

1 + 2
R f
Ro

)
= A, and the

total noise of the circuit is shown as:

Etotal =

√
E1

2 + E2
2 + E f 1

2 + E f 2
2 + Eo

2

+En1
2 + En2

2 + Enn1
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2

=

√√√√√∫ [ 4kT
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2
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))2
+ 2inp12R1

2 A2
]d f

(7)



Biosensors 2022, 12, 613 5 of 11

The noise of resistors is constant at related frequencies. The input-referred noise of
op-amps can be expressed as the combination of white and 1/ f noise. Therefore, the total
noise in Equation (7) can be simplified as:

Etotal =

√√√√√√√√√
ENB

(
4kT

(
2R1 A2 + 2R f + Ro(A− 1)2

))
+2iw2

[(
R f 1//

(
Ro + R f 2

))2
+ R2

1 A2
](

finc ln fH
fL

+ ENB
)

+2ew
2 A2

(
fenc ln fH

fL
+ ENB

) (8)

where iw is the white current noise specification (spectral density in A/
√

Hz), finc is
the current noise corner frequency, ew is the white voltage noise specification (spectral
density in V/

√
Hz), and fenc is the voltage noise corner frequency. ENB is the effective

noise bandwidth.

Figure 3. The equivalent noise circuit diagram of the dual op−amps full differential neural record-
ing front end.

According to Equation (8), the input resistors R1, R2 and feedback resistor Ro should
be reduced to decrease the circuit noise. Selecting op-amps with lower equivalent noise
and strictly limiting the bandwidth to the required range is key to reducing front-end
circuit noise. The differential structure reduces the RF interference introduced through
signal paths, which improves the noise performance of the circuit. This structure with two
independent op-amps makes it possible to realize better trade-offs among gain, bandwidth,
noise, power consumption, and package area.

2.2. Hierarchical Microassembly of Miniaturized Wireless Neural Recording Microsystem

Figure 2(c1) shows the schematic of the dual-channel full differential wireless neural
recording microsystem. The input resistors R1 and R2 are 1 MΩ, with 100 nF capacitors C1
and C2 forming the high-pass filters of 1.59 Hz, to eliminate voltage drift generated by the
electrode–tissue interface. For the reduction of front-end circuit noise, the dual-channel
op-amp chip (opa2376, Texas Instruments Inc., Dallas, TX, USA) with a noise floor of
7.5 nV/

√
Hz is selected. With Ro of 20 Ω and R f of 20 kΩ, a 66 dB gain is achieved, and the
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bandwidth is limited to 6.5 kHz. This bandwidth covers the frequency range of local field
potentials (LFP) and most spikes. The LDO (LP5907, Texas Instruments Inc., Dallas, TX,
USA) generates a reference voltage of 1.2 V, and the DC level of the collected signal is raised
to 1.2 V through the high-pass filters at the input terminal. Finally, the front-end circuit
with a 3 mm2 area and the 1.5 mW power consumption is realized.

For further miniaturization of the wireless neural recording system, a miniaturized
Bluetooth module (HJ-380, Tangshan Hongjia Electronic Technology, Tangshan, China) on
the Bluetooth chip (nRF52832, Nordic Semiconductor Inc., Trondheim, Norway) is adopted.
The dual-channel differential ADC of nRF52832 samples the amplified neural signals at
a sampling rate of 20 ksps. A 10 µH inductor is integrated into the module for the DC/DC
circuit, which decreases the module power to 3 mA. The modulated data of ADC are
then sent to the base station through the internal ceramic antenna. The microsystem is
constructed on a 0.8 mm-thick high-density FR-4 printed circuit board, and automatic
alignment is used for microdevices soldering with high precision. Figure 1b shows the
photograph of the realized miniaturized dual-channel microsystem. The overall size of
the microsystem is 7 × 9 × 2.6mm3, and the weight is 257 mg (955 mg with battery).
The microsystem is powered by a 3.7 V lithium battery (30 mAh, 9 × 9 mm2), and can work
continuously for 1.5 h.

2.3. Base Station and Software

The base station is constructed by a Bluetooth development board on nRF52832. The
system uses BLE5.0 protocol for wireless communication, and the connection interval is
7.5 ms. The recorded neural signal data are sent to the base station in real time. The
communication rate between the microsystem and the base station is 800 kbps, and the
neural signal data and channel tags are transmitted. For the prevention of data loss caused
by the interference of Bluetooth communication, a cache area of 5 KB is allocated inside the
Bluetooth chip to store the data stream. The serial peripheral interface (SPI) to universal
serial bus (USB) conversion module reads the base station data at a rate of 3 Mbps and
sends them to the computer. Software is developed based on Qt to receive and transcode
the data in real time. After transcoding, the neural signal waveform is drawn on the GUI
during experiments, and the data are saved in CSV format simultaneously. The data saved
are further analyzed by MATLAB software.

2.4. Chronic Rat Model Experiment and Comparison with the Commercial Wired Recording System

The wireless neural recording microsystem is validated in vivo. A rat of 520 g
is selected for the experiment. To implant the electrode array, the rat is anesthetized
with 1.3 mL of 2% sodium pentobarbital by intraperitoneal injection. A 16-channel rigid
electrode array (25 µm diameter tungsten) is implanted into the motor cortex (M1) of
the right hemisphere via fenestration of the skull and dura, and the reference electrode
(25 µm diameter tungsten) is implanted into the M1 of the left hemisphere, as shown in
Figures 2e,f and 4a. Cranial nails are implanted around the fenestration as a ground elec-
trode, and the ground electrode is connected through a silver wire. Dental cement is used
to fix the electrode array on the skull. The rat is used for the neural recording experiment
after recovering for more than one week. A commercial wired neural recording system
(Apollo II, China) is used for the comparison of the wireless neural recording microsystem.
After the wireless neural recording microsystem experiment, the same electrode array is
connected to the wired neural recording system and the same experiment is repeated. The
wireless and wired rat recording experiments are performed within one hour, to minimize
the effect of time variation on the quality of the recorded signal.
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Figure 4. The waveforms comparison of wireless recording microsystem and apollo II wired recording
system in vivo. (a) Schematic of the recording sites and the electrode connections. (b) The multi−taper
spectrograms of recorded spikes by the wireless recording microsystem. (c) The multi−taper spectro-
grams of recorded spikes by the Apollo II wired recording system. (d) The recorded spontaneous
LFPs and spikes by the wireless recording microsystem. (e) The LFPs and spikes by the Apollo II
wired recording system. (f) The specification of 10–500 Hz second−order Butterworth band-pass
filter and its step response. (g) The specification of 500–3000 Hz third−order Butterworth band-pass
filter and its step response.

3. Results
3.1. High-Performance and Miniaturized Neural Recording Microsystem

Figure 5a shows the test environment for the transfer function. The signal generator
generated a 500 mV signal and then obtained a 500 µV input signal through a resistive
subdivision. The input sine waves swept from 10 Hz to 10 kHz. The transfer function of
the ultra-low noise and miniaturized neural recording front end is shown in Figure 5b.
The measured gains ranged from 59–66.1 dB (simulated 54–66.1 dB), and the gain at 1 kHz
is about 66 dB. The 3 dB bandwidth of the front end spanned from 10 Hz to 6.5 kHz. This
bandwidth range can cover the LFP and most spikes.

A saline test platform is performed to evaluate the noise performance of the wireless
neural recording microsystem. The tungsten electrodes are directly connected to the mi-
crosystem’s input end, and the tips of the electrodes are immersed in saline. The impedance
of the electrodes is less than 2.5 Ω in the working frequency band of 10 Hz–100 kHz.
The noise waveform data collected by the receiver is processed by MATLAB and divided
by the gain of the front-end circuit. The input reference noise spectrum is obtained as
shown in Figure 5c. The system exhibits a less than 100 nV/

√
Hz ultra-low noise level at

10 Hz–10 kHz, which is consistent with the simulation results.
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Figure 5. The electrical properties of wireless neural recording microsystem. (a) The transfer function
test environment. (b) Transfer function measured and simulated of the dual op−amps full differential
neural recording front end. (c) Input referred noise measured of the wireless neural recording
microsystem in saline solution and compared with the simulation. (d) The waveform of recorded
500 Hz, 2 mV signal injected in the saline by the wireless neural recording microsystem using
35 µm diameter tungsten electrodes, and waveform after filtering out high−frequency interference.
(e) Power spectral density in saline with or without 500 Hz input signal. (f) Input referred noise
comparison of wireless recording microsystem and Apollo II wired recording system.

We verify its signal acquisition ability in saline. A synthetic sine wave of 2 mVp-p
and 500 Hz is injected into saline. The waveform data received by the base station are
shown in Figure 5d. Figure 5e compares the power spectral density with or without input
signals. The signal-to-noise ratio (SNR) reaches about 30 dB when the 2 mVp-p sine wave
is injected. In order to accurately compare the noise performance of wireless recording
microsystems and the wired recording system, we repeat the noise tests on the wired
recording system under the same scenario. Figure 5f shows the comparison of input
reference noise spectrums; the 1 m-long wire of the wired recording system introduces
a significant power frequency interference. At the same time, the noise level is also above
5 µV/

√
Hz, without considering the power frequency interference.

3.2. In Vivo Neural Recording Experiment

Figure 4a shows the electrode connections of the wireless recording microsystem.
For comparison with the wired neural recording device, the two electrodes of channel-1 are
connected to the bilateral M1 area of the rat, and the 1.2 V reference voltage is connected to
the electrode array ground (which is connected to the cranial nail implanted in the skull
by silver wire). The rat moves freely in a square field of 40 × 40 cm2. We successively
implement the wireless recording microsystem and the Apollo II wired recording system
to record neural signals generated during free movement in rats.

The recorded neural signals are shown in Figure 4d,e. The LFP signals are obtained
through a 10–500 Hz second-order Butterworth band-pass filter, and the spikes are obtained
through a 500–3000 Hz third-order Butterworth band-pass filter. The specifications of band-
pass filters and their corresponding step responses are shown in Figure 4f,g. The results
show that the wireless recording microsystem exhibits a similar performance to the wired
recording system in LFPs recording. Figure 4f,g show the multi-taper spectrograms of
spikes in Figure 4d,e, respectively. The wireless recording microsystem shows a lower
high-frequency interference and is conducive to extracting clear spikes.
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4. Discussion

Through the reconstruction of the front-end circuit structure and the application of
microassembly technology, an ultra-low-noise, low power consumption and miniaturized
dual-channel wireless neural recording microsystem is developed. The power consumption
of a single channel is 1.5 mW, and the system’s noise level is less than 100 nV/

√
Hz, which

are realized by the fully differential front end with dual op-amps. The microassembly
technology realizes the miniaturization of the wireless recording microsystem; the overall
size is 9 × 7 × 5 mm3. Its weight with the battery is then reduced to 955 mg. The neural
recording capacity has been verified in a chronic rat model. Its miniaturized size and
weight can be used in the neural recording of rats, and has little influence on their free
behavior. With the ultra-low-noise feature, it can clearly acquire neural signals.

Table 1 lists the features of the microsystem and other wireless recording systems
integrated with discrete components. Compared with the reported smallest wireless
recording system, the volume is reduced by 86%, and the weight is reduced by 66%.
The noise and power consumption are the smallest in the reported work. The ultra-
thin and lightweight characteristics of the polyimide substrate reduced the weight of the
microsystem to 810 mg (Figure 2d), but the solder balls are prone to fatigue fracture and
cause circuit failure in actual use. The additional reinforcing board is required to enhance
the reliability of the flexible substrate board, which will increase the system’s weight and
result in a limited improvement in overall weight.

Table 1. Comparison of the microsystem features and other wireless recording systems fully validated
in vivo.

TBSI [26] PennBMBI [27] WAND [16] BLE
Recording [28]

Wireless Bidi-
rectional [21] This Work

Year 2011 2015 2019 2021 2022 2022

Size (mm3) 22 × 22 × 22 56 × 36 × 13 36 × 33 × 15 15 × 15 × 12 19.9× 18.1× 6.6 9 × 7 × 5

Weight (g) 4.5 - 7.4 (board)
17.95 (total) 3.9 (total) 2.8 0.257 (board)

0.955 (total)

Power
consumption

(mW)
- 290 172 28.6 62 ∼10

Input referred
noise

(µV/
√

Hz)
10 4.7 26 3 2.4 1 <0.1

Number of
channels 15 4 128 1 8 2

Sampling rate
(ksps) - 21 1 10 20 20

ADC resolution
(bits) - 12 15 12 16 12

1 The noise of commercial brain–computer interface chip RHS2116.

The front-end circuit proposed for bioelectrical signal recording shows more flexibility
in the trade-off between area, power consumption, gain, and bandwidth. It is beneficial
to multiple bioelectrical signal acquisition applications. The power consumption can be
further reduced by reducing the noise limit and gain bandwidth. For example, in some
neural signal decoding tasks, only the 0.1–500 Hz LFP signal is required. The noise limit can
be increased to over 5 µV/

√
Hz, and the power consumption can be reduced by 1–2 orders

of magnitude [31–33], which will contribute to an increase in the number of channels, or a
reduction in power consumption, further realizing the system miniaturization.
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5. Conclusions

An ultra-low-noise, low power consumption and miniaturized dual-channel wireless
neural recording microsystem with fully differential neural recording front end and mi-
croassembly technology is developed. The overall size of the microsystem is 9 × 7 × 5 mm3,
and the total weight is 955 mg. Compared with the reported smallest wireless neural record-
ing system, the microsystem volume is reduced by 86%, and the weight is reduced by
66%. The input referred noise of the microsystem is less than 100 nV/

√
Hz, and the power

consumption is about 10 mW. Its neural recording ability is confirmed in saline and a
chronic rat model, and compared with a commercial wired neural recording system. The ex-
periments show that the microsystem has little effect on the natural behavior of rats. Its
miniaturization and light weight enable it to be used in small biological neural recording
scenes, which is conducive to promoting neuroscience research.
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