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Abstract: The development of the most effective, suitable and economic ion-exchange membranes
is crucial for reverse electrodialysis (RED)—the most widely studied process to harvest salinity
gradient energy from mixing seawater and river water. RED utilizes two types of membranes as
core elements, namely cation exchange membranes (CEM) and anion exchange membranes (AEM).
Since the preparation of AEMs is more complex compared to CEMs, the design and development
of anion exchange membranes have been the focus in this study. Homogeneous AEMs based on
two types of polyepichlorohydrin (PECH) with different chlorine amounts (PECH-H, 37 wt% and
PECH-C, 25 wt%) were synthesized, and first-time benchmarking of the membrane properties was
conducted. In addition to physicochemical membrane properties, some instrumental analyses such
as SEM, FTIR and DSC were investigated to characterize these anion-exchange membranes. Based on
the results, although the PECH-H-type membrane had enhanced ion-exchange properties, PECH-C-
based anion-exchange membranes exhibited a higher power density of 0.316 W/m2 in a lab-scale
RED system. Evidently, there is room for the development of new types of PECH-C-based AEMs
with great potential for energy generation in the RED process.

Keywords: anion-exchange membrane; polyepichlorohydrin; reverse electrodialysis; salinity gradient
power; blue energy

1. Introduction

Energy, water and food have represented three global issues faced by humankind
for a long time. In particular, energy consumption and the search for alternative energy
sources have become inevitable due to the depletion of fossil fuels and undesired climate
change. One of the most interesting and probably the least-known renewable energy source
is osmotic energy (or salinity gradient energy (SGE)). This type of energy, also called blue
energy, has great potential worldwide since it is the sustainable energy extracted from the
mixing of two water bodies with different salinities, such as river water and sea water [1–5].

There are now many techniques being developed to extract salinity-gradient energy
and convert it into electrical energy, such as pressure-retarded osmosis (PRO), reverse
electrodialysis (RED), and capacitive mixing (CAPMIX), which are commonly known [6–8].
However, other SGE technologies also exist, such as microbial RED, accumulator medi-
ated mixing, hydrocratic generator, reverse vapor compression, and some other adsorp-
tion/desorption processes [9]. Among all those techniques, RED and CAPMIX utilize
ion-exchange materials, and ion transport happens in an electrochemical manner. On the
contrary, PRO uses a semipermeable osmotic membrane where the dissolved salts are
retained and a solvent is allowed to pass, creating hydraulic pressure. RED is the most
widely studied technique and has experienced sharp growth in recent years because of
its unique advantages [2,7,10,11]. It is, for instance, the most efficient process when sea
water and river water are considered as the feed, although there are applications wherein
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very-high-salinity solutions can also be used [12–14]. In addition, the use of treated wastew-
ater effluents and other diverse applications of RED has contributed significantly to its
versatility [10,15–18]. In contrast, CapMix utilizes the capacitive electrodes where the ion
exchange membranes are not solely used [8,19]. This process is a relatively new technique
based on the charging/discharging principle of electrodes and is still under development.

RED is an electrochemical process in which the ion-exchange membranes are used as
core elements. It is basically the inverse of conventional electrodialysis (ED) [20,21], such
that, in ED, energy is used to create a salinity difference, whereas energy is harvested in
RED by the utilization of the two solutions with different salinities. In RED, membranes
have a significant role such that the CEMs permit the transport of cations and AEMs permit
the transport of anions from the high-saline compartment to the low-saline compartment,
alternatingly mounted, forming a membrane stack [5,22,23]. Therefore, understanding
the physicochemical properties of membranes and the development of those parameters
determines the performance of not only the RED process but also other conventional ED-
based processes [24–26]. Although the design of high-performance membranes is not the
only parameter determining the RED performance, its role is huge among other factors such
as the development of spacers, electrodes [27,28], stack-operation methods [10,29], and
hybrid systems [30,31]. The design and development of AEMs are particularly challenging
since multistage fabrication routes including toxic stages such as chloromethylation are
conventionally employed. Thus, simpler routes for synthesis with reduced or eliminated
toxic methods are becoming more attractive in terms of AEM preparation, specifically for
RED applications.

Polyepichlorohydrin (PECH)-based AEMs have recently gained much attention be-
cause of single-step fabrication without the use of toxic chloromethylation reaction. In
addition, simultaneous quaternization and crosslinking is possible when tertiary diamines
are used to prepare these AEMs. Since the tailor-made AEMs for RED were first intro-
duced in 2012 by Güler et al. [5], there have been several other works reported later on.
Villafaña-López et al. [32] performed similar work on PECH-based AEM for RED, and the
membranes were modified by glutaraldehyde and polyethyleneimine to improve mem-
brane properties such as anionic selectivity and surface homogeneity. In another work,
ultrathin PECH-based membranes were prepared specifically for RED by Jung et al. [33] by
the use of spincoating on nanoporous alumina. Very recently, Reyes-Aguilera et al. used
the electrospinning technique to prepare PECH membranes where the membrane mor-
phology was varied with different electrospinning parameters [34]. These studies already
presented some promising AEMs for RED applications; however, there is always room for
development. The research should proceed towards the search for alternative polymers
because correlations between different polymer materials and membrane characteristics
have not been fully understood yet.

In this work, two types of PECH (polyepichlorohydrin (PECH-H) and polyepichlorohy
drin-co-ethylene oxide (PECH-C))-based AEMs were particularly prepared for RED appli-
cations. For the first time, PECH-C-based AEMs were fabricated as promising alternatives
as RED membranes. Simultaneous crosslinking and functionalization were performed
without the use of toxic chloromethylation step. In particular, the chemical composition
of AEMs synthesized and the correlations with the physicochemical properties were in-
vestigated. First-time benchmarking of these properties with the commercially available
membrane has been also performed using the lab-scale RED system.

2. Materials and Methods
2.1. Materials

To fabricate the homogeneous AEMs, polyepichlorohydrin ((CH(CH2Cl)CH2O)m
(CH2CH2O)n, EPICHLOMER C, 25 wt% chlorine and ((CH(CH2Cl)CH2O)n H, 37 wt%
Cl, Osaka Soda, Co., Ltd., Osaka, Japan), polyacrylonitrile, Mitsubishi Chemical Co. Ltd.,
Tokyo, Japan), 1,4-diazabicyclo [2.2.2] octane (Sigma Aldrich, Munich, Germany) were
adopted. Dimethyl sulfoxide (Isolab) was used as the solvent for all the experiments.
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Sodium sulfate, silver nitrate, and sodium chloride used for membrane characteriza-
tion were obtained from Isolab (Wertheim, Germany) Potassium ferricyanide (K3[Fe(CN)6])
and potassium ferrocyanide (K4[Fe(CN)6]·3H2O) were provided from Proanalyst, Merck,
Darmstadt, Germany. All chemicals were used as they were purchased from the suppliers.

2.2. Preparation of Homogeneous AEMs

Anion-exchange membranes (AEMs) with homogeneous bulk structures were fabri-
cated by solution-casting. This was later followed by solvent evaporation as reported in
our previous work [5]. The amination and crosslinking reactions were performed simulta-
neously according to the schemes in Figure 1. For this purpose, membrane cast solution
was prepared by mixing three constituents, polyepichlorohydrin (PECH), polyacrylonitrile
(PAN) and 1,4-diazabicyclo [2.2.2] octane (DABCO). Then, solutions of PECH-H or PECH-C
(15 wt%), PAN (12 wt%), and DABCO (12.25 wt%) were prepared. These solutions were
then mixed in a flask for half an hour at 80 ◦C to obtain a clear casting solution. Membrane
solution was cast onto a glass plate which was sealed with a glass cover. This membrane
cast solution was positioned in a convection oven at 110 ◦C for 2 h. After that, the sealing
was opened, and the remaining solvent was further evaporated at 130 ◦C for 30 min. Mem-
brane samples were later immersed in 0.1 M NaCl solution after cooling down to room
temperature (20 ◦C) and stored in the same solution continuously until further use.
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Figure 1. Reaction mechanisms of simultaneous amination and crosslinking of (a) PECH-H and (b)
PECH-C type polymers.

In order to prepare different sets of membranes with different compositions, two terms,
namely the blend ratio (BR) and excess diamine ratio (EDR), were defined to investigate
the effects of concentration of active polymer PECH with respect to inert polymer PAN,
and the concentration of diamine DABCO with respect to chloromethyl functional groups
in active-polymer PECH, respectively [5].

2.3. Membrane Characterization
2.3.1. Thickness of the PECH Membranes

After the removal of surface water of the PECH membrane using blotting paper, the film
thickness was immediately measured using a precise micrometer (Mitutoyo Co., Kawasaki,
Japan) at various regions of the membrane, and the average thickness was determined.
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2.3.2. Scanning Electron Microscopy

To investigate the morphology of membrane films, QUANTA 400F Field Emission
SEM (Eindhoven, The Netherlands) was used. Membrane samples were placed on the
holders and coated with gold to provide conductivity. The surface and cross-section of the
membrane samples were investigated.

2.3.3. Fourier Transform Infrared Spectroscopy

The surface characterization of the prepared dry PECH membrane samples were
performed by Fourier transform infrared (FTIR) spectroscopy (Thermo Scientific-Nicolet
510, Madison, WI, USA). Attenuated total reflectance (ATR) mode was used during the
analyses. The average of 32 scans was taken for the spectrum with a resolution of 4 cm−1

at wavelengths between 4000 and 400 cm−1.

2.3.4. Ion Exchange Capacity

The ion exchange capacity (IEC) is defined as the amount of fixed-charge groups per
unit weight of dry polymer. Initially, membranes were immersed in 3 M NaCl solution
for 15 h at room temperature (20 ◦C). Then, Milli-Q water was used to rinse membranes.
After that, the membranes were exposed to 1.5 M Na2SO4 for 3 h. To calculate the IEC,
Na2SO4 solution was back-titrated with a 0.1 M AgNO3 solution [35]. Lastly, membranes
were dried at 30 ◦C in a vacuum oven until constant weight was reached. The IEC was
determined via Equation (1).

IEC =
VAgNO3

mdry
× CAgNO3 (1)

where VAgNO3 and CAgNO3 are the volume and concentration of the AgNO3 solution,
respectively, while mdry represents the weight of dry membrane samples.

2.3.5. Swelling Degree

The swelling degree (SD) is a physicochemical parameter that directly determines
the mechanical properties of a membrane. To determine the SD, prepared anion-exchange
membranes were soaked into demineralized water for 24 h. After weighing the wet
membranes, they were dried until a constant weight was reached at approximately 30 ◦C.
After measuring the dry membranes, the swelling degree was calculated using Equation (2):

SD =
mwet−mdry

mdry
× 100% (2)

where mwet and mdry represent the weight of membrane samples in wet and dry states,
respectively.

2.3.6. Fixed Charge Density

The fixed charge density (Cfix), which can be defined as the amount of ion exchanging
functional groups per water content in the membrane, has an impact on the ion transport
properties of the membranes. Cfix can be calculated using the ratio of IEC and SD values of
the prepared membranes as defined in Equation (3) [35].

Cfix =
IEC
SD

(3)

2.3.7. Differential Scanning Calorimetry

To observe the morphology of different PECH-type polymers and their crystallinity
behavior, differential scanning calorimetry (DSC) analyses were performed. The melting
temperature (Tm) and heat of fusion ((∆Hfusion) of the quaternized and pristine membranes
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were measured using Perkin Elmer (Diamond DSC) differential scanning calorimetry in the
temperature range of −70 to 200 ◦C at a scanning rate of 20◦/min under a N2 atmosphere.

2.4. RED Tests
2.4.1. The RED System

Custom-made AEMs (PECH-C and PECH-H) were fabricated to be used in the lab-
scale RED system with a 10 cm × 10 cm electrode area (STT Products B.V., BA Schiedam,
The Netherlands). The RED stack was formed by installing three PECH-based AEMs
and four Neosepta CMX cation-exchange membranes alternatingly mounted between a
reversible anode and cathode (Ru-Ir oxide-coated Ti mesh with 10 cm × 10 cm active
area, Magneto Special Anodes BV, BA Schiedam, The Netherlands). The intermembrane
thickness was kept fixed at 400 µm using Nitex polyamide woven spacers. An electrode
rinse solution was circulated containing the mixture of three solutions (0.25 M NaCl, 0.05 M
K4Fe(CN)6 and 0.05 M K3Fe(CN)6) at 300 mL/min. Feed waters (0.507 M NaCl as artificial
seawater and 0.017 M NaCl as artificial river water) were fed to the stack with peristaltic
pumps at several flow rates between 30 and 120 mL/min at room temperature (20 ◦C). A
schematic flow diagram of the lab-scale RED system is given in Figure 2.
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2.4.2. Electrochemical Measurements

The RED performance of the produced AEMs was investigated using a potentiostat
(Gamry Instruments Reference 3000, Warminster, PA, USA) in chronopotentiometry mode.
Up to 40 A/m2 of current steps were continued for 30 s. The maximum power density
was calculated for each feed flowrate by the multiplication of voltage and current. The
maximum power density was then corrected by subtracting the power output of a separate
run, so-called a blank test, using only one CEM in the stack. Power density (W/m2) is
evaluated by dividing this power output by the total membrane area.

3. Results and Discussion
3.1. Membrane Thickness and Morphology

In order to attain sufficient film-forming properties and to make benchmarking with
commercial AEMs, PECH-based membranes with about 150 µm were fabricated in this
work. Many commercial ion-exchange membranes for RED, ED, EDI, or other electromem-
brane processes have about a 100–150 µm film thickness (e.g., Neosepta, Selemion), al-
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though a few have thicker (e.g., Ralex) and some have thinner film thicknesses (e.g.,
FumaTech) [36].

To examine the anion-exchange membranes’ morphology on both the surface and
cross-section, SEM analysis was performed at a magnification of 2000×. Figures 3 and 4
show the morphology of surface and cross-section of the prepared membranes.
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In the RED system, membranes with a dense bulk structure are preferred to prevent or
reduce the water transport through the membranes. According to the SEM images, both the
surface and cross-section morphology of PECH-H- and –C-type membranes are very similar
(Figures 3 and 4). Even at high magnification (×10,000), this similarity is observed at the
cross-section of the membranes (Figure 4). In all prepared AEMs, a non-porous polymeric
structure was obtained as it is predictable due to the solvent evaporation technique used to
fabricate these membranes. These membranes also have the flexibility to be prepared by
filling the pores of a porous substrate forming a pore-filling membrane with a very thin
film thickness. However, this is out of the scope of this work.

3.2. FTIR Analysis

To verify quaternization (i.e., amination) of the active PECH polymer with DABCO,
FTIR analysis was performed. Figure 5 shows the FTIR spectra of pristine PECH polymers,
PAN, PECH and PAN blend before quaternization and aminated PECH (QPECH)/PAN, re-
spectively.
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In Figure 5, characteristic peaks of PECH and PAN are observed. Stretching vibra-
tion bands of –C-H groups were detected in the region at 2687 cm−1 and 2872 cm−1. At
wavenumbers of 1425 cm−1 and 1440 cm−1, scissoring bands of –CH2 groups were ob-
served. The wavenumber 743 represents C-Cl bondings of the functional groups of PECH
polymers. On the other hand, a -C≡N bond of pristine PAN was visible at peak 2240 cm−1.
The same peak was still visible at the blend of PECH and PAN polymers. The peak at
3400 cm−1 represented O-H stretches, indicating free water. When the active polymer is
aminated with DABCO, C-N bonds appeared at 1640 cm−1, showing successful quaterniza-
tion of all membranes. Nevertheless, the quaternized PECH-C-type membrane had more
intense peaks, which can be estimated to have a relatively higher amount of functional
groups [32,35]. In addition, O-H stretching is enhanced in PECH-C, which also supports
this interpretation.

3.3. Effect of Blend Ratio on Membrane Characteristics

Differently from our previous work, the effects of PAN-PECH blending on membrane
properties were investigated at various blend ratios between 0.6 and 2. In addition, to
determine the optimized PECH-based AEM for RED application, two types of PECH were
employed: one has a homopolymer of epichlorohydrin, (PECH-H) and the other has the
copolymers of epichlorohydrin and ethylene oxide, (PECH-C). The effect of blending PECH
and PAN on IEC and SD for the prepared membranes was shown in Figures 6 and 7.

For both types of PECH membranes, IEC and SD increased with an increasing blend
ratio. High values of IEC and SD were observed up to 4.0 mmol/g and 140%, respectively.
These results are in the same direction with the data reported by Güler et al. [5], where
similar behavior of these properties was realized such that up to IEC of 3.0 mmol/g and
SD of 120% were observed for PECH-H membranes. An increase in the concentration of
active polymer leads to an increase in the active sites of the AEMs. In other words, charged
groups in a polymer chain increases with an increase in the concentration of active polymer,
resulting in increasing IEC [10,37]. On the other hand, the enhancement of IEC promotes
an increase in swelling, which is undesirable up to a certain level. Overall, PECH-H-type
AEMs are more advantageous than PECH-C in terms of having a high level of IEC.
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Figure 7. Impact of blend ratio on swelling degree for the PECH membranes at EDR of 2.

According to Figure 7, PECH-C-based AEMs exhibited higher SD. That means more
water uptake of PECH-C-type membranes were noticed than that of PECH-H at all blend
ratios, although it is not significant at values higher than 1.2.

3.4. Effect of Excess Diamine Ratio on Membrane Characteristics

The effect of excess diamine ratio (EDR) on SD and IEC is investigated between 1.2 and
4.0 (Figures 8 and 9). In our previous work, EDR values higher than 4 had an insignificant
impact on IEC and SD [5]. This time, 0.6 was chosen as the fixed-blend ratio (BR) for this
parametric work, resulting in the lowest SD values, although the effect of EDR may show
different trends at various BR.
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In Figure 8, the ion exchange capacity exhibits an increase up to an EDR of 2, and
afterwards, a slight leveling off is observed for both types of PECH membranes. It may give
the impression that bi-quaternization (i.e., attachment of DABCO at both ends to the PECH
polymer chains) is effective up to an EDR of 2. After that value of EDR, the SD continuously
increases, indicating that crosslinking is not effective at controlling the excessive water
uptake of the membranes. That is why it was chosen to investigate the effect of BR at this
EDR value as reported in the previous section. Again, in this parametric study on EDR,
PECH-C-type membranes exhibited higher IEC and SD properties.

3.5. DSC Analyses and Impact of Crystallinity

As the polymer structures of PECH-H- and -C-type membranes are different, this can
be confirmed by investigating the morphology by differential scanning calorimetry (DSC)
analyses. The impact of differences in the alignment of molecular chains (i.e., crystallization)
on the ion-exchange capability of the membranes can also be investigated by these analyses.
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There are some vital parameters affecting the crystal structure of the homogenous
membranes such as enthalpy of fusion (∆Hfusion), melting temperature (Tm), chain flex-
ibility and interactions. These factors also have a significant impact on the mechanical
properties [38]. Nevertheless, the mechanical properties but also the ionic selectivity of
membranes are influenced by crystallinity because crystal regions are able to function as
polymer crosslinks. As ion transport appears easily in amorphous regions, crystal regions
have supremacy on the ion selectivity of the polymer. In other words, permeability de-
creases with the increase in crystalline structure and molecular orientation because of the
decrease in diffusion [39]. Consequently, crystal regions inhibit the effectiveness of the
transporting materials.

DSC analysis was implemented to determine the Tm of the prepared membranes.
These values regarding PECH-H- and –C-type membranes were shown in Figures 10 and 11,
respectively.
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Therefore, an interpretation of the direct correlation between the melting point and crystal-
lization can be made [38]. Owing to the higher Tm (158.27 ◦C) and ∆Hfusion (3.9104 J/g) of
PECH-C than Tm (154.48 ◦C) and ∆Hfusion (2.9835 J/g) of PECH-H, PECH-C-type mem-
branes have more a crystalline character (Figures 10 and 11). Crystalline regions restrict
the diffusion of ions, whereas ions can pass through amorphous regions. For instance, this
phenomena resembles the one such that the permeability of crystalline poly(vinyl alcohol)
and polyamide (Nylon 6) is very low, while amorphous polydimethylsiloxane has higher
permeance of species [40]. According to Figure 11, PECH-C-type AEM has elevated Tm,
explaining its more regular structure (i.e., crystalline). Thus, anion (e.g., chlorine ions)
transport through the membrane is reduced, and it yields a low ion-exchange capacity.

3.6. Benchmarking of Membrane Properties

To summarize the properties of the prepared membranes and make benchmarking
with commercial counterparts, the data are shown in Table 1. These membranes are also
chosen to be tested to determine their performances in the RED system. We found that
the membrane thicknesses are comparable as they are in the range of 120–160 µm. When
PECH-type membranes are compared, it is observed that the PECH-C-type membrane
has a lower IEC but slightly higher SD than that of the PECH-H-type membrane. This
may be attributed to the effectiveness of crosslinking in PECH-H-type membranes as
DABCO has the capability of quaternization and crosslinking at the same time. Since the
water uptake is better controlled in PECH-H type-membranes, the fixed charge density
becomes higher. The fixed charge density is a parameter that affects other membrane
properties such as permselectivity and electrical resistance, which were not determined in
this work. In our previous work, these parameters were extensively investigated such that
the permselectivity and area resistance increase in PECH-based membranes when there
is an increase in fixed charge density [5]. In general, the physicochemical properties of
custom-made PECH-based membranes are comparable with the commercially available
ones.

Table 1. Properties of custom-made and commercial membranes (custom-made PECH membranes:
BR = 0.6 and EDR = 2.0).

Membrane Thickness (µm) IEC (mmol/g) SD
(%)

Cfix
(mmol/g H2O)

PECH-H AEM 154 2.02 20.88 9.70
PECH-C AEM 160 1.47 25.56 5.70
Neosepta AMX 134 1.40 26.00 5.40
Neosepta CMX 158 1.62 18.00 9.00

3.7. RED Performance

Here, for the first time, we report the performance of ethylene-oxide containing
PECH anion-exchange membranes (PECH-C) in the RED system. Their performance is
compared to commercial counterparts. All the membranes were prepared with a similar
film thickness, having a BR of 0.6 and EDR of 2.0 (Table 1). The RED stack was built
with either commercial Neosepta CMX and AMX membranes, or custom-made PECH
membranes as AEMs coupled with Neosepta CMX as CEMs. Since a relatively large
intermembrane distance (400 µm) was used, the feed flow rate did not have a significant
impact on the power output (Figure 12). Even a slight decrease may be observed at higher
flow rates, resulting in lower residence time, which is not enough for sufficient ion transport
through the membranes. That is also the case when the internal resistance due to low saline
solution compartment is comparatively high. Nevertheless, the RED setup was operated
properly to allow us to make a fair performance evaluation. In Figure 12, it was shown
that the energy-generating performances of PECH-C and AMX membranes are similar,
whereas the one of PECH-H is lower. These findings are in the same direction that the
physicochemical properties of PECH-C and Neosepta AMX membranes are similar, as
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shown in Table 1. In addition, the fixed charge density of PECH-H is the highest by allowing
a high area resistance, as indicated in our previous work, implying that a high fixed charge
density may cause a reduction in power density [32,35]. In fact, it is not reliable to make a
direct performance comparison between this work and previous studies due to differences
in some parameters used, such as the film thickness of membranes and intermembrane
distance. Nevertheless, for instance, PECH-H-type membranes exhibited a 12% reduction
in power density when the fixed charge density increased by 20% [5]. In this work, PECH-H
membranes had 70% higher fixed charge density and exhibited 14% lower power density
than PECH-C-type membranes. Therefore, it can be reported that the best-performing
membrane, PECH-C, with a BR of 0.6 and EDR of 2.0, can produce a power density of up
to 0.32 W/m2. It is worth mentioning that it is possible to make these membranes as thin
as 100 µm and even thinner according to our past experience. By ensuring this, we expect a
superior RED performance compared to other commercially available alternatives.
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4. Conclusions

For the first time, we have shown a comparison between PECH-based membranes
containing ethylene oxide copolymer (PECH-C) and the other membranes based on RED
performance. These membranes were made via a single-step quaternization-crosslinking
method, which represents a highly promising alternative for custom-made RED mem-
branes. The highest power density produced by PECH-C-type membranes coupled with
Neosepta CMX was 0.32 W/m2, whereas it was 0.39 W/m2 for Neosepta AMX coupled
with Neosepta CMX at the same operating conditions. However, there is always some
room for development of PECH-based membranes, which will be always an attractive
option for RED processes because of its single-step fabrication without toxic reactions such
as chloromethylation.
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