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Abstract: Pedigree information is necessary for the maintenance of diversity for wild and captive
populations. Accurate pedigree is determined by molecular marker-based parentage analysis, which
may be influenced by the polymorphism and number of markers, integrity of samples, relatedness
of parents, or different analysis programs. Here, we described the first development of 208 single
nucleotide polymorphisms (SNPs) and 11 microsatellites for giant grouper (Epinephelus lanceolatus)
taking advantage of Genotyping-by-sequencing (GBS), and compared the power of SNPs and mi-
crosatellites for parentage and relatedness analysis, based on a mixed family composed of 4 candidate
females, 4 candidate males and 289 offspring. CERVUS, PAPA and COLONY were used for mutually
verification. We found that SNPs had a better potential for relatedness estimation, exclusion of
non-parentage and individual identification than microsatellites, and > 98% accuracy of parentage
assignment could be achieved by 100 polymorphic SNPs (MAF cut-off < 0.4) or 10 polymorphic
microsatellites (mean Ho = 0.821, mean PIC = 0.651). This study provides a reference for the develop-
ment of molecular markers for parentage analysis taking advantage of next-generation sequencing,
and contributes to the molecular breeding, fishery management and population conservation.

Keywords: parentage assignment; relatedness analysis; single nucleotide polymorphisms; microsatel-
lites; genotyping-by-sequencing; aquaculture

1. Introduction

The development of molecular markers and sequencing technologies over the past
decades has brought great innovations for aquaculture. Since mixed breeding system is
often adopted in aquaculture breeding programs, accurate pedigree information is the
basis of sustainable genetic selection and hatchery management [1]. Although tagging of
individuals with physical tags is difficult in most fish species due to their mass spawning
and tiny larvae [2,3], the introduce of molecular tools makes it feasible for fish pedigree
traceability. Microsatellites, i.e., simple sequence repeats, have been classic molecular tools
in parentage analysis and pedigree reconstruction in a considerably range of aquaculture
fish species since its discovery in 1990s [4–7], due to their relatively small locus size,
inheritance in a Mendelian fashion, codominance and high polymorphism based on the
variable size of repeat units by alleles [6]. However, parentage analysis using microsatellites
has suffered from genotyping errors that may cause multiple peaks, allelic dropout, null
alleles or other issues, which is due in large part to the manual operation and subjective
scoring process [8–10], and could lead to the mistakenly assignment of candidate parents.
In addition, microsatellites are limited in the application in terms of genome wide trait
associations or breeding value estimation, due to their relatively low density over the
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genome [3]. Furthermore, although Next-generation sequencing (NGS) has facilitated the
mining process of molecular markers [11], genotyping of microsatellite loci can be still
costly, laborious and time-consuming [12], especially when handling with a large number
of individuals derived from mass spawning fish. Therefore, there is a growing tendency to
seek more time- and effort-saving molecular tools among parentage related research for
the few past years.

A recent rising molecular tool for parentage analysis is single nucleotide polymor-
phisms (SNPs), since the availability of genomic resources and multiplexed detecting
methods have been greatly enhanced by NGS and bioinformatic techniques [13]. Over the
last decade, SNPs have been used in parentage assignment [14], relatedness analysis [15],
sibship assessment [3], population structure [16] or mating system research [17] in about
20 fish species [13]. Compared to microsatellites, SNPs are superior in their abundance over
genomes [12], lower mutation rates [18], higher automation and easier standardization
across laboratories [19], which effectively reduce the cost of time and genotyping errors
caused by human factors. Nevertheless, the majority of SNPs are biallelic contrast to
multi-allelic microsatellites, which undermines the potential of per SNP locus applying to
parentage analysis because of relatively lower polymorphism and heterozygosity [20]. This
problem usually can be alleviated by increasing the number of SNPs involved in analysis,
and also, selecting the loci with higher minimum allele frequency (MAF) can enhance the
power of markers for parentage exclusion [21]. However, the increase of loci also results
in the increase of investment of time and money. Therefore, considering the trade-offs of
cost and benefits when choosing the molecular tools, it is necessary to figure out the most
efficient number of loci (i.e., the lowest loci number with the highest polymorphism) for con-
ducting parentage assignment. In addition, another ongoing question is: how many SNPs
are needed to match the power of one microsatellite [22]. Fernández et al. [23] suggested
that 2–3 SNPs are needed to obtain an equivalent exclusion power to one microsatellite,
yet Gill et al. [24] estimated that 4–5 SNPs with allele frequencies range from 0.2 to 0.8
give the same power of exclusion as for one microsatellite. Albeit the continuous attention
to this issue, most of the research focused on SNP-PCR, SNP-chip or other approaches
which conduct sequencing by NGS and genotyping SNPs via highly multiplexed laboratory
assays [22,25–29], while few related reports have genotyped and filtered SNPs directly via
bioinformatic pipeline based on NGS approaches such as genotyping-by-sequencing.

Genotyping-by-sequencing (GBS) is a low-coverage genotyping technique, which
involves restriction enzymes to fragment genomic DNA followed by high-throughput
sequencing, in order to generate high-quality polymorphism data at a relatively low per
sample cost [30,31]. GBS was similar to restriction site-associated DNA sequencing (RAD-
seq) but more cost-effective and less complicated [30], so that it is tailored for large-scale
genotyping applications such as marker-assisted selection (MAS) and QTL mapping, if
available reference genome information was provided [11]. Indeed, low-coverage GBS has
been successfully used for genetic parameter estimation [32], genomic selection [33], QTL
mapping [34] and genome-wide association studies (GWAS) [35] in aquaculture. It has
been proposed that GBS data is one of the best options for cost-effective SNP discovery
and parentage analysis [36]. Even so, the application of GBS for parentage analysis is still
insufficient: only several related researches have been made for shellfish (blue mussel
Mytilus galloprovincialis) [37], fish (Florida bass Micropterus floridanus [14], Australasian
snapper Chrysophrys auratus [38], arctic charr Salvelinus alpinus [39]) and plant (Scots pine
Pinus sylvestris [40], radiata pine Pinus radiata [41]). Despite the increase in reports of
parentage analysis using GBS recently, it should still be improved for related studies to
take more advantage of GBS-based techniques and bioinformatic pipelines.

Giant grouper (Epinephelus lanceolatus Bloch, 1790) is the largest bony fish living in
coral reefs, with the largest individual recorded reaching up to 2.7 m in length and 455 kg
in weight [42]. It is mainly found in tropical and subtropical waters from the Indo-Western
Pacific Ocean, and because of its potential value for commerce and excellent characteris-
tics for aquaculture, giant grouper has been a popular economic fish in the Asia Pacific
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region [43,44]. However, its natural populations have long been threatened by overharvest
and habitat destruction, leading to a ‘vulnerable’ classification on the International Union
for Conservation of Nature and Natural Resources (IUCN) Red List categories since the
mid-1990s (https://www.iucnredlist.org/, accessed on 1 June 2021). Whether in conser-
vation or aquaculture programs of this species, the application of appropriate molecular
tools to trace pedigree information will help to monitor the genetic diversity of wild or
cultured population and thus inform researchers of adjusting management plans. However,
although 72 microsatellite markers have been developed for giant grouper so far [43,45–47],
only a few of them have been applied in parentage related analysis [48,49]. For groupers,
moreover, the development of SNP markers has only been reported for identification of
growth traits in potato grouper (E. tukula) [50] and orange-spotted grouper (E. coioides) [51],
while the application of SNPs for parentage analysis in groupers has not yet been reported.

In this study, we described the first GBS-based bioinformatic pipeline for discovery
and screening of microsatellite and SNP loci applied to a mixed cultured family of giant
grouper, in order to compare and evaluate the power of two molecular markers for testing
questions about parentage and relatedness. The results testified the power of application
of SNPs and microsatellites for parentage analysis in a mixed family with a certain degree
of inbreeding in giant grouper. Our study contributes to providing a valuable reference for
grouper conservation, fishery management and molecular breeding process.

2. Materials and Methods
2.1. Sample Preparation, GBS Library Construction and Sequencing

The giant grouper samples in this study were described in our previous work [35].
Briefly, the broodstock were derived from the South China Sea area adjacent to Hainan
province, and were then transferred to the Oceans Farms Hatchery of Fisheries Research
Institute of Fujian in 2014. Later in July 2017, 8 sexually mature individuals (4 females and 4
males) were collected to proceed spawning, i.e., producing F1. The newly born fish fry were
cultured in 14 × 14 × 2 m3 (length × width × depth) concrete-walled ponds. After about
10 months of hatching, 289 individuals of F1 offspring were randomly sampled. Thumbnail-
sized fin clips of both parents and offspring were collected and stored in 95% alcohol until
they were placed at −80 ◦C, prior to DNA extraction. Genomic DNA was extracted from
fin samples using TIANamp Marine Animals DNA Kit (Tiangen Biotech, Beijing, China)
following the manufacturer’s protocol. The DNA extraction was qualified by 1% agarose
gel electrophoresis and quantified by the NanoDrop 2000 spectrophotometers (Thermo
Scientific, Waltham, MA, USA), so as to ensure the DNA concentration met the requirement
of library construction (≥20 ng/µL).

The library construction and sequencing followed the original description of the
authors [30,31]. In brief, 100 ng of each genome DNA extraction from all samplings (289
offspring, 8 parents) was digested with EcolI and HaeIII in 96-well plates. Barcode adaptors
corresponding to each individual were designed and ligated onto the sticky ends. The DNA
fragments with unique barcode adapter were pooled into libraries of 24 individuals each,
purified with a PCR purification kit (NEB, Ipswich, MA, USA), and then amplified for 12 ×
cycles using Phusion DNA polymerase (NEB, Ipswich, MA, USA) to produce sequencing
libraries. The PCR products were purified as above and quantified on a Bioanalyzer 2100
(Agilent, Santa Clara, CA, USA). The final pooled libraries were adjusted to 10 nmol,
and paired-end sequencing was performed on a lane the Illumina HiSeq 2000 platform
(Illumina, San Diego, CA, USA) with 150-bp reads.

2.2. Microsatellite Development and Genotyping

Raw sequencing data were filtered and low-quality reads were removed according
to the following stringent criteria: i. reads with barcode adapter contamination; ii. reads
containing ≥ 10% unidentified nucleotides (N); iii. reads with > 50% of bases with a Q
value ≤ 10. After filtering, the clean data of one paternal fish was chosen for microsatellite
loci identifying using MIcroSAtellite identification tool (MISA) [52], with misa.ini file
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configured as: definition (unit_size,min_repeats): 1–10 2–6 3–5 4–5 5–5 6–5; interruptions
(max_difference_for_2_SSRs): 100. Modified Primer3 scripts (p3_in.pl and p3_out.pl)
were applied to design batch primers, which were subsequently screened by laboratory
procedures which referred to our previously published work [53] with minor modifications.
In brief, 10µL volume of polymerase chain reactions (PCRs) with subject primers were
carried out, and afterwards inspected by agarose gel electrophoresis and polyacrylamide
gel electrophoresis (PAGE). After two rounds of screening, the selected 8 polymorphic loci
alongside with 3 other loci reported in Yang’s work [46] were employed to genotyping,
which was carried out in 20 µL volumes of PCR reactions (including 10 µL 2 × Taq PCR
StarMix with loading dye (GeneStar, Beijing, China), 0.2 µM fluorescent-modified forward
primer (FAM, HEX or ROX, synthesized by Tsingke, Guangzhou, China), 0.2 µM reverse
primer, about 20 ng genome DNA and 4 µL deionized water). Thermal cycling was 94 ◦C
for 2 min, 30 cycles of 94 ◦C for 30 s, 62 ◦C for 30 s and 72 ◦C for 60 s and a final extension at
72 ◦C for 5 min. The PCR products were analyzed on ABI3730XL genotyper with GeneScan
LIZ 500 as size standard and alleles were detected by GeneMapper v3.2 software (Applied
Biosystems, Thermo Scientific). All of the candidate parents and about half of the offspring
were rerun to ensure the accuracy of scoring. CERVUS 3.0 [10] was used to estimate
observed heterozygosity (Ho), expected heterozygosity (He), non-exclusion probability
(NEP) for parentage as well as for identity across loci, and polymorphic information
content (PIC). The Pearson’s correlation between locus polymorphism and non-exclusion
probability has also been calculated.

2.3. SNP Calling and Genotyping

The filtered clean reads of each sample, as mentioned above, were aligned to our
unpublished reference genome of orange-spotted grouper (E. coioides) using BOWTIE2 [54].
The output .sam files were transformed to binary .bam files using SAMtools [55] with view
command, and then sorted with sort command. To call SNP, we indexed the reference
sequences by SAMtools faidx command, used mileup and call command of bcftools [56]
for SNP calling with consensus-caller algorithm (-c) and outputting the variants sites only
(-v), and preliminarily filtered the sites with a QUAL < 20 of the raw .vcf file. We then
used vcftools [57] to further filter SNPs with genotyped offspring following these stringent
criteria partially referred to Zhao [14]: i. kept SNPs with coverage depth greater than 5
(—minDP 5); ii. eliminated insertion/deletion variants (—remove-indels); iii. only kept
biallelic SNPs (—max-alleles 2); iv. eliminated SNPs with < 90% call rate of the population
(—max-missing 0.9); v. eliminated SNPs with quality score < 98 (—minGQ 98).

Since the polymorphism of SNP loci, reflected by minimum allele frequency (MAF),
can directly influence the efficiency of parentage assignment, we set a series of MAF
cut-off values (0.1, 0.2, 0.3, 0.4, 0.425, 0.45 and 0.475) to figure out the lowest number
with the highest polymorphism of loci for parentage assignment. SNPs deviated from
Hardy-Weinberg equilibrium (HWE) with p-value < 0.05 (—hwe 0.05) were removed by
Plink 1.9 [58]. Further, Linkage disequilibrium (LD) decay analysis using PopLDdecay [59]
indicated that squared allele count correlation (r2) decreased sharply until around 10 kb, so
for each SNP panel with differed MAF cut-off, we pruned one locus from each pair of loci
within a 50 kb sliding window with r2 > 0.2, shifting windows by 1 bp steps, conducted by
Plink 1.9. After that, we visualized the LD blocks of each locus set using Haploview 4.2 [60],
which indicated that SNPs aligned to scaffolds instead of assembled chromosomes and were
relatively highly linked, so we eliminated these loci in later analysis. The final obtained vcf
files were converted to GENEPOP format using PGD SPIDER version 2.0.5.0 [61]. Likewise,
observed heterozygosity (Ho), expected heterozygosity (He), combined non-exclusion
probability across loci, and polymorphic information content (PIC) were estimated by
CERVUS 3.0, and Pearson’s correlation was calculated.
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2.4. Parentage Analysis

We conducted parentage assignment with microsatellite and SNP panels in CERVUS
3.0 and COLONY 2.0 [62]. Parentage analysis was also conducted by PAPA 2.0 [63], and
since PAPA was unable to deal with the large number of SNPs, we only applied it for
microsatellites. CERVUS is a classic parentage allocation analysis program based on pair-
wise likelihood method, which considers the log-likelihood score of candidate parent
(presented as LOD score) for specific offspring and assigns parent pair with the highest
LOD score to offspring. COLONY, on the other hand, uses full-pedigree likelihood method
which divides individuals into three subsamples including candidate males, candidate
females and offspring, and assigns sibship and parentage simultaneously. PAPA is a
parental pair allocation program based on breeding likelihood. Unlike CERVUS, it defines
the likelihood of a parental pair of genotypes as the probability of it breeding the given
offspring genotype among all of its possible descents, which may outperform CERVUS
using data with sex-known potential parental pairs.

For microsatellites, in order to compare with SNPs and estimate optimal number
alongside with polymorphism of loci, we ranked 11 microsatellite loci by PIC value, and
conducted parentage assignment stepwise adding locus from the top (the most poly-
morphic) one to the bottom one accumulatively, which means 11 times of assignment in
CERVUS. We simulated 10,000 offspring produced by 4 candidate fathers and 4 candidate
mothers, with 100% parents sampled, 98% proportion of loci genotyped, 1% genotyping
error rate and confidence levels assessed by LOD distribution (relaxed > 80%, strict > 95%).
The minimum typed loci were set to ≥ 45% of the whole number of loci. Based on the
simulation, the empirical data was tested. In PAPA, we ran loci cumulative sequence parent-
age allocation with a ±1 offset model (error distribution: 0.000 0.010 0.980 0.010 0.000),
and correctness was assessed in simulator producing 10,000 offspring with 100 iterations.
We also used COLONY to conduct parentage assignment for each microsatellite panel,
assuming polygamy for both parents, using full-likelihood method with no sibship prior,
updating allele frequency. The genotyping error rate and allele dropout rate was set to 0.01.
Only the inferred parent pair with > 95% probability were accepted.

For SNPs, we imported each SNP panel filtered by different MAF cut-off values, as
mentioned above, into CERVUS to conduct simulation and parentage assignment, with
the same parameter as microsatellites except proportion of loci genotyped, which was
set to the corresponding value to the specific panel. We also used COLONY to conduct
parentage assignment for each SNP panel, with the same parameter described above as
microsatellites.

Since true pedigree information was unknown prior to analysis, we defined the
‘standard pedigree’ as the exactly consistent pedigree assigned by 208 SNPs (derived from
0.1 MAF cut-off value) and 11 microsatellites in CERVUS (confidence > 95%) and COLONY.
Individuals obtained different parentage assignment using the two types of molecular
markers were excluded for the downstream analysis, because we could not ensure their
true parents. We then compared each allocation result obtained from different marker
panels with ‘standard pedigree’ to assess the accuracy of parentage assignment, so as to
determine the most efficient loci number of SNP and microsatellite panel.

2.5. Relatedness Analysis

In order to compare the performance of the two types of molecular markers in distin-
guishing different relatedness (unrelated, half-sibling, full-sibling and parent–offspring), we
also estimated pairwise relatedness between each pair of individuals using RELATED [64].
RELATED is an R package that can simulate and calculate relatedness based on seven
estimators (including four non-likelihood-based and three likelihood-based ones). The
expected relatedness values (r) are 0.5 between full-sib pairs or parent–offspring pairs,
0.25 between half-sib pairs and 0 between unrelated individuals [65]. We firstly used
compareestimators function in this program to generate 100 pairs of individuals for estimat-
ing different relatedness, and determined that the wang [66] estimator was optimal for
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microsatellites and SNPs taken together. RELATED is able to generate simulated genotypes
based on given population allele frequency, so for each set of SNPs and microsatellites, we
generated 100 pairs of individuals for each level of relatedness using familysim function,
and then estimated their pairwise relatedness values using coancestry function with the
wang estimator. According to the result, we drew density plots of relatedness values for
simulated pairs, so as to assess the overlap in relatedness values of individuals of different
relatedness, which reflects the power of marker panels in distinguishing different pairwise
relatedness. We also calculated the relatedness values between the 8 candidate parents to
test their kinship.

3. Results
3.1. SNP Marker Development

After GBS sequencing, we obtained a total of approximately 13.5 million reads for
297 samples, generating about 64.4 GB of clean data. The overall alignment rate to the
reference genome was 96.6%. After preliminary filtering and SNP calling with vcftools,
6,508,412 variants were kept for downstream analysis. Subsequently, we filtered SNPs
following the stringent criteria described above, acquiring seven low-density SNP panels
(ranged from 1013 to 5047 loci) with different MAF cut-off values. After removing the loci
deviated from HWE (p < 0.05) and the loci in LD (r2 > 0.2), we finally retained 208, 137, 123,
100, 91, 78 and 44 loci for SNP panels with MAF cut-off values 0.1, 0.2, 0.3, 0.4, 0.425, 0.45
and 0.475, separately (Table 1).

Table 1. Genetic characterization and combined non-exclusion probability for parent of microsatellites and SNPs.

Molecular
Marker n MAF

Cut-Off

Proportion
of Loci
Typed

Ho He PIC NE-1P NE-PP

Microsatellites

11 - 1 0.794 0.672 0.623 0.0289 2.13 × 10−5

10 - 1 0.821 0.698 0.651 0.0316 2.97 × 10−5

9 - 1 0.820 0.709 0.661 0.0395 6.69 × 10−5

8 - 1 0.834 0.720 0.673 0.0500 1.48 × 10−4

7 - 1 0.852 0.734 0.687 0.0637 3.40 × 10−4

6 - 1 0.871 0.743 0.697 0.0854 8.50 × 10−4

5 - 1 0.904 0.752 0.708 0.118 2.25 × 10−3

4 - 1 0.911 0.761 0.719 0.166 6.16 × 10−3

3 - 1 0.912 0.771 0.732 0.240 0.0179
2 - 1 0.914 0.790 0.757 0.348 0.0524
1 - 1 0.903 0.807 0.778 0.559 0.201

SNPs

208 >0.1 0.941 0.401 0.395 0.309 6.53 × 10−9 1.15 × 10−25

137 >0.2 0.937 0.481 0.478 0.362 5.00 × 10−7 9.36 × 10−20

123 >0.3 0.935 0.495 0.491 0.370 1.40 × 10−7 3.89 × 10−18

100 >0.4 0.936 0.500 0.498 0.373 1.91 × 10−6 5.24 × 10−15

91 >0.425 0.936 0.501 0.499 0.374 5.93 × 10−6 9.70 × 10−14

78 >0.450 0.936 0.501 0.500 0.374 3.18 × 10−5 6.80 × 10−12

44 >0.475 0.939 0.496 0.501 0.375 2.83 × 10−3 4.90 × 10−7

Legend: n, the loci number; He, expected heterozygosity; Ho, observed heterozygosity; PIC, polymorphic information content; NE-1P,
average non-exclusion probability for one candidate parent when both parents were unknown; NE-PP, average non-exclusion probability
for a candidate parent pair when both parents were known.

3.2. Genetic Characterization and Identification Power of Microsatellite and SNP

For 289 offspring, a total of 72 alleles were detected across 11 microsatellites, with
an average of 6.545 alleles per locus, ranged from 5 to 10. For SNP panels, mean Ho
(ranged from 0.401 to 0.501) as well as mean He (ranged from 0.395 to 0.501) was lower
than that of microsatellites (Ho ranged from 0.794 to 0.914 and He ranged from 0.672 to
0.807, separately) (Table 1). Meanwhile, mean PIC value (ranged from 0.309 to 0.375) across
SNPs was also lower than microsatellites (ranged from 0.623 to 0.778) (Table 1).



Genes 2021, 12, 1042 7 of 16

Identification power of both two types of molecular markers were estimated by cal-
culating the combined non-exclusion probability for parent and individual identification,
respectively. Combined non-exclusion probability for parent refers to the average proba-
bility that the given set of loci fail to exclude one or a pair of unrelated candidate parents
from parentage of an arbitrary offspring. Here, the combined non-exclusion probability
for one candidate parent when both parents were unknown (NE-1P) of SNPs (ranged
from 2.83 × 10−3 to 6.53 × 10−9) was much lower than that of microsatellites (ranged from
0.0289 to 0.559) (Table 1). Combined non-exclusion probability for individual identification
refers to the average probability that the given set of loci fail to differentiate between two
randomly selected unrelated individuals or full-siblings. Likewise, the combined non-
exclusion probability for individual identification of SNPs show much better identification
power than microsatellites, even 44 SNPs (MAF > 0.475) can achieve several orders of
magnitude higher power for individual identification (1.85 × 10−19 and 1.11 × 10−10, for
unrelated and full-sibling pairs respectively) than the best value of microsatellite panels
(11 loci; 8.03 × 10−10 and 1.57 × 10−4, for unrelated and full-sibling pairs, respectively)
(Figure 1).

Figure 1. Combined non-exclusion probability for identity based on microsatellites (a) or SNPs (b). NE-I refers to the
combined non-exclusion probability for identity of unrelated individual pairs, NE-SIB refers to the combined non-exclusion
probability for identity of full-sibling pairs.

Significant negative correlation between non-exclusion probability and locus polymor-
phism was testified in both microsatellite and SNP markers, especially in SNPs (p < 0.01)
(Supplementary Table S1). The polymorphic information content (PIC) and expected
heterozygosity (He) of loci was significantly negatively correlated with non-exclusion
probability for parentage as well as for identity in both microsatellites and SNPs (p < 0.01),
while the observed heterozygosity (Ho) was only significantly negatively correlated with
non-exclusion probability in SNPs (p < 0.01) (Supplementary Table S1).

3.3. Parentage Analysis

Due to the inconsistency or low confidence of parentage allocation of SNPs and
microsatellites as well as low genotyping rate (<50%), a total of 11 individuals were
eliminated (3.81%), and the remaining 278 offspring which were assigned to the same
parent pairs using both 208 SNPs and 11 microsatellites (confidence > 95%), were thus
retained for the downstream analysis (Supplementary Table S2). According to our result, a
severe skew contribution of spawners was found, and the 278 offspring were assigned to
one female half-sib family, including 173 individuals produced by dam GF01 and sire GM01,
and 105 individuals produced by dam GF01 and sire GM04 respectively (Supplementary
Table S2).
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Overall, the accuracy of parentage assignment using both microsatellites and SNPs
increases as the number of loci used increases, and ultimately reaches saturation at a
certain point. For microsatellites, we analyzed differently sized panels using CERVUS,
COLONY and PAPA. The accuracy of parentage assignment obtained from CERVUS was
slightly better that from PAPA at the same number of loci, and both of the accuracy curves
went similarly, which increases rapidly to 85.25% (83.81% in PAPA) when the second
polymorphic locus gets involved, grows to 94.96% (93.17% in PAPA) at five loci, and then
reaches 98.20% (96.04% in PAPA) at 10 loci (Figure 2). On the other hand, the accuracy
of parentage assignment obtained from COLONY keeps lower than that from CERVUS
and PAPA obviously until the eighth microsatellite loci is added in, after which it reaches
a maximum of 100% (Figure 2). For SNPs, we analyzed differently sized panels using
CERVUS and COLONY. The accuracy of parentage assignment obtained from CERVUS
increases from 86.33% to 98.56% when MAF cut-off value was set to 0.450 (78 SNPs),
while in COLONY the critical point shows at 0.4 MAF cut-off value (100 SNPs), where
the accuracy increased rapidly from 62.23% to 100% (Figure 2). In general, CERVUS
and PAPA performs better than COLONY when using a small number of loci, while
COLONY can achieve higher accuracy when the number of loci reaches a certain amount.
Further, according to our result, the accuracy of parentage assignment using around
100 polymorphic SNPs is equivalent to that of using around 10 polymorphic microsatellites.

Figure 2. Accuracy of parentage assignment using differently sized microsatellite (a) and SNP (b) panels in different
analysis programs. The accuracy was defined as the consistency derived from different marker panels compared with
‘standard pedigree’.

3.4. Relatedness Analysis

The simulated estimation of relatedness value was closer to expected value when using
SNP panels than that of microsatellites (Figure 3). Density plots representing histograms
of the relatedness values provide informative reference for the reliability and accuracy
of estimated relatedness values using specific marker panels. The overlap shows the
intersection between estimated relatedness value for pairs of individuals of different
relationships. Based on simulation and estimates of relatedness value, our results show
that the power of differentiating relative relationships of SNP marker panels was better
than that of microsatellite marker panels, even between the least number of SNPs (44)
and the greatest number of microsatellites (11) (Figure 3). Regardless of the type of
molecular markers, using a greater number of markers results in a less overlap between
different estimated relatedness value of different relationships (Figure 3, Supplementary
Figures S1 and S2).
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Figure 3. Density plots of relatedness values for simulated pairs of known relatedness (unrelated, half-sibling, full-sibling
and parent–offspring) based on given population allele frequency of different marker panels: (a) the microsatellite panel
SSR1 composed of 1 microsatellite locus; (b) the microsatellite panel SSR11 composed of 11 microsatellite loci; (c) the SNP
panel SNP44 composed of 44 SNP loci (MAF cut-off > 0.475); (d) the SNP panel SNP208 composed of 208 SNP loci (MAF
cut-off > 0.1).

The relatedness values of the eight candidate parents were calculated using 11 mi-
crosatellites and 208 SNPs by wang estimator. Although most of the candidate parents
seem to be unrelated (92.86% for microsatellites and 82.14% for SNPs, respectively), a
certain proportion of potential kinship was found (7.14% for microsatellites and 17.86% for
SNPs, respectively) (Figure 4).
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Figure 4. The distribution of relatedness value (r) of candidate parents calculated by wang estimator
based on 208 SNPs or 11 microsatellites.

4. Discussion

Until recent years, obtaining genetic markers was costly and laborious, and as a result,
large numbers of markers were unavailable except for a few well-studied species [67].
With the rapid development of next-generation sequencing, it is easier for researchers
to access to abundant genetic markers in a more cost-effective way. In terms of the ad-
vantage of GBS, Sequencing and genotyping for SNPs simultaneously offers an optional
solution for relatively traditional SNP genotyping methods, which often require a mass of
preparatory work at the discovery stage before genotyping of large numbers of individu-
als [68]. Furthermore, the relatively low coverage of GBS data enables a less computational
resource-demanding pipeline for alignment with BOWTIE 2 and filtering with SAMtools
and vcftools [40], and the computational time could be further reduced when conducting
parentage assignment with low-density SNP panels. Although there has been a concern of
the next-generation SNP genotyping methods such as missing genotype data, genotyping
error and allelic dropout, several coping strategies of stringent filtering of SNPs were
proposed, and a relatively stable performance of SNP panels on conducting parentage
analysis were testified [12–14,40]. Although Andrews et al. [12] suggested that GBS was
not suitable for long contig-assembly approach for designing SNP assays, Zhao et al. has
illustrated an operation pipeline for low-density SNP assays designment from de novo
assembly to genotyping assays utilizing Agena MassARRAY technology [14]. The bioin-
formatic approach we described here has testified that GBS sequencing is a cost-effective
alternative for the development of microsatellites and SNPs for parentage analysis, with a
low sequencing cost of lower than $40 per individual.

We assessed the polymorphism of loci to compare the potential for parentage analysis
between microsatellites and SNPs. The 11 microsatellites used here represented a relatively
high polymorphism and low non-exclusion probability (0.623 for mean PIC and 0.0289 for
NE-1P), consistent with that of the 15 microsatellites developed by Kim et al. for giant
grouper (0.511 for mean PIC and 0.02464 for NE-1P) [47]. In this study, SNPs showed a lower
polymorphism yet much higher exclusion ability for both non-parentage and individual
identity, suggesting a better resolution for parentage analysis compared with microsatellites.
This is understandable, since SNPs are biallelic and thus lead to a lower polymorphism per
locus than multi-allelic microsatellites, while the much larger number of available loci helps
to accumulate their discerning ability for individuals. The significant negative correlation
between non-exclusion probability and locus polymorphism in both molecular markers
proved again that higher polymorphism of loci could enhance the power of markers for
parentage analysis. Nevertheless, the number of loci may have a more significant effect on
the power of parentage analysis than expected. Premachandra et al. [3], similarly, found
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the number of SNPs had a clear and major impact on the accuracy of sibship assignment,
as the increase of number of SNPs led to a bigger raise in accuracy measures than that of
the average MAF values. Baruch and Weller [69] conducted a series of simulations and
found that non-exclusion probability decreased with increasing number of SNPs at the
same level of MAF cut-off. Therefore, the advantages of SNPs in the number of available
loci may have a considerable impact on their better performance of parentage analysis
than microsatellites.

For captive breeding programs, it is important to maintain the genetic diversity of
broodstock, and reliable relatedness parameter is needed to prevent an overrepresentation
of inbreeding [15]. Moreover, appropriate demographic data for conducting classic parent-
age analysis is not always available for some studies, especially wild populations [68].
Thus, besides parentage analysis, the kinship of population could be illustrated by pairwise
relatedness estimation. We estimated the relatedness values based on the population allele
frequencies simulated from each set of SNPs and microsatellites, and found an obvious
clearer resolution of distributions for individuals with different known relatedness was
obtained when using SNPs or increasing the number of loci. This suggests that SNPs
have the better distinguishing power of relatedness estimating than microsatellites as well.
Furthermore, the assessment of genetic diversity and kinship for candidate breeders is
also an important support for pre-breeding programs [70]. We also tested the relatedness
values among eight candidate parent fish using 11 microsatellites and 208 SNPs, and found
a certain degree of potential relatedness in at least 7.14% of parents. This result implied a
potential risk of inbreeding and loss of diversity of broodstock, and also, the number of loci
required for distinguishing two closer relatives would have been potentially increased [71].

To maximize the efficiency of parentage analysis, it is necessary to consider the trade-
offs between number of putative primers, cost of development and panel efficacy [72].
Generally, researchers tend to resolve parentage issues by a smaller number of loci yet
with higher polymorphism. We found here, for microsatellites, that a 10-loci panel (mean
Ho = 0.821) could offer an accuracy of about 98% for parentage analysis, and meanwhile
for SNPs, a panel of 100 loci (mean Ho = 0.500, MAF cut-off value of 0.40) was able to
offer about an accuracy of 99%. This result is similar to previous reports: Kaiser et al. [36]
found that 97 SNPs (mean Ho = 0.19) was as powerful as six multiallelic microsatellites
(mean Ho = 0.86) for paternity assignment in black-throated blue warbler; Steele et al. [73]
empirically confirmed that a panel of 95 SNPs (mean MAF = 0.34) was comparable in
accuracy to a panel of 17 microsatellites (mean Ho = 0.74); Glaubitz et al. [20] suggested
that a panel of 100 moderately polymorphic SNPs (each with a MAF of 0.20) would
provide equivalent power to 16–20 independent microsatellites (each with an He of 0.75)
for relationship discrimination or parentage analysis. It has also been concluded that a
relatively small number of SNPs (60 to 200) can have an equivalent or better performance
in parentage analysis than available microsatellites [13]. Indeed, low-density SNP panels
with relatively high polymorphism are testified to be able to conduct accurate parentage
analysis. Dussault and Boulding explored how different values of MAF influence the
number of SNPs required for accurate parentage assignment, demonstrating that larger
panels with low average MAF are needed to achieve the same accuracy as smaller panels
with high average MAF [21].

According to the result of pedigree reconstruction, interestingly, we found a severe
skew contribution of spawners. Among the eight communally rearing candidate parents, it
seems that only two males and one female engaged in breeding, producing a large family
consisting of 173 half-siblings and 105 full-siblings, respectively. The higher producing
male GM01 contributed to 62.23% of the offspring, and female GF01 contributed to all
of the offspring. We also found the similar skew phenomenon in previous parentage
research on orange-spotted grouper (E. coioides) [53]. This result is unexpected, since Bright
et al. [49] have described that, although a skew parental contribution exists in communally
spawning giant grouper, all males and females successfully participated in production
over the spawning period. The most possible explanation is that our sampling frequency
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of offspring was incomplete relative to the whole spawning periods, which could lead
to a loss of genetic diversity and low parental contribution [49]. Moreover, since our
samples come from grown-up fish instead of eggs or larvae directly, the different survival
rates of progeny—which are influenced by the management practices, cannibalism and
family genotype—could also result in a bias parental contribution [38,74]. More complete
sampling and longer-term tracking is needed to clarify this issue.

A total of 11 individuals, which accounted for 3.81% of the total sampled offspring,
were eliminated from the parentage analysis because of the inconsistency or low confidence
of parentage allocation using SNPs and microsatellites. Among them, two individuals were
not tested because of a low genotyping rate of 208 SNPs (< 50%), and two individuals were
eliminated due to a low confidence albeit the consistent allocation between microsatellites
and SNP panels. The remaining seven individuals were eliminated for inconsistence
between the assignment of two molecular marker panels, while five of them showed
fairly different genotype from all of the candidate parents in most loci. Besides this, we
also compared the results of parentage analysis with our previous GWAS research using
the same family [35]—which conducted family clustering based on identical by descent
(IBD) using Plink—so as to further confirm the accuracy of parentage allocation, and
found it completely consistent except for the five individuals described above. One likely
explanation was that there might be individuals accidently introduced from other families
during the fish culturing period. In order to figure out what happened during this process, a
detailed hatchery record of spawners would be informative to provide a reference [73]. For
the remaining two individuals with inconsistent allocation in two molecular marker panels,
we found a divergent allocation between female GF01 and GF02 for one individual, as
well as male GM03 and GM04 for another one; although considering all of the assignments
including IBD clustering, the most consistent result tended to assign these two individuals
to GF01 and GM04, respectively. This might be explained by the potential relatedness
which were detected among candidate parents, who would share more similar genotypes
and were more difficult to be distinguished, thus reducing the confidence of parentage
allocation [75].

In this study, we found that the accuracy of parentage assignment using CERVUS
was similar to that of PAPA, while differs from that of COLONY. Generally, CERVUS and
PAPA performed better with a relatively small marker set, while COLONY offered a higher
accuracy when the number of loci went to a certain amount. This result was surprising,
since COLONY usually has a better performance than CERVUS in previous reports, despite
a longer running time [76,77]. COLONY incorporates the sibship among putative offspring
besides parent–offspring relatedness, and the likelihood of the inferred pedigree is derived
from the cluster likelihoods instead of the pedigree likelihoods used in CERVUS, so that it
makes more use of the pedigree information and is thus expected to perform better [78,79].
The partially decreased accuracy of parentage assignment in COLONY here might be
associated with the skew group size of the largest sampled siblings, which consisted almost
exclusively of two large full-sib families. As Almudevar and LaCombe deduced in their
simulations, if the largest sibling group size was extremely big or the number of loci used
was fairly small, the likelihood criterion might split large true clusters into smaller ones,
so the clustering structure of the likelihood used in COLONY could not entirely solve the
scaling problem [79]. The similar condition was described in Premachandra et al. [3], where
they found the SNP pedigrees tended to split part of the full-sib families determined by
microsatellites into smaller groups or produced single individuals unrelated to any other
members. Moreover, the default low genotyping error rate of 0.01% to 1% seemed too low
even for a relatively low-density SNP panel [80], allowing only for ≤ 2 genotyping errors
for a whole panel of 208 SNPs, which might cause interference to a certain extent and lead
to the erroneous assignment of parents. Hall et al. [40] detected a genotyping error rate of
5% in GBS data, which suggested a finer selection of SNP loci would be needed to alleviate
the consequence brought by such kind of error.
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Another possible factor that might reduce the genotyping rates could come from
the bioinformatic pipeline, although we have filtered SNPs following a stringent criterion
including eliminating loci deviated from Hardy–Weinberg equilibrium or with high linkage
(r2 > 0.2) [14]. Since the reference genome we used for alignment was from orange-spotted
grouper (E. coioides), and considering the DNA sequence divergence between orange-
spotted grouper and giant grouper, it might be more ideal to refer to a genome of giant
grouper for this study.

5. Conclusions

Here, we described a GBS-based bioinformatic pipeline for the development of mi-
crosatellite as well as low-density SNP marker panels for giant grouper for the first time,
and testified their performance on parentage and relatedness analysis. The power of SNPs
for exclusion and relatedness estimation was better than that of microsatellites, and > 98%
accuracy of parentage assignment could be achieved by around 100 polymorphic SNPs or
10 polymorphic microsatellites. Taking advantage of the next-generation sequencing like
GBS, pedigree reconstruction could be conducted with a considerably low cost of money
and time.
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