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Continuous-time Markov process models of contagions are widely studied, not least because of their utility in
predicting the evolution of real-world contagions and in formulating control measures. It is often the case, however,
that discrete-time approaches are employed to analyze such models or to simulate them numerically. In such cases,
time is discretized into uniform steps and transition rates between states are replaced by transition probabilities. In
this paper, we illustrate potential limitations to this approach. We show how discretizing time leads to a restriction
on the values of the model parameters that can accurately be studied. We examine numerical simulation schemes
employed in the literature, showing how synchronous-type updating schemes can bias discrete-time formalisms
when compared against continuous-time formalisms. Event-based simulations, such as the Gillespie algorithm,
are proposed as optimal simulation schemes both in terms of replicating the continuous-time process and
computational speed. Finally, we show how discretizing time can affect the value of the epidemic threshold for
large values of the infection rate and the recovery rate, even if the ratio between the former and the latter is small.
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I. INTRODUCTION

A feature of our environment is the existence of networks,
from real-life human contact networks, to virtual networks
such as online social networks, to functional and technological
networks such as transport networks and the Internet [1].
Networks form a medium for contagions, which spread from
node to node through the links of the networks. Contagions
can be physical [2,3], cultural [4,5], societal [6–8], financial
[9–11], and the modeling of such contagions [12–16]—along
with the understanding of the suitability of various modeling
approaches [17–19]—is vital for matters of the utmost public
importance [20–22].

A common modeling paradigm for studying contagions
is the framework of continuous-time Markov processes
[23–25], where events (such as the infection of a susceptible
individual by an infected individual) occur at certain rates.
The most well known of these models are epidemiological
compartment models [2], which, although introduced as
models of disease spread [26], are also widely used as models
of social contagions such as the diffusion of information and
innovations [27–29]. Continuous-time Markov process models
can provide valuable insights into contagion processes, and
have real value in both predicting and controlling contagious
outbreaks [30–32].

One avenue to study continuous-time Markov process
models is by using discrete-time approximations [32–48].
Such approaches can be either numerical (i.e., synchronous
updating Monte Carlo simulations) or theoretical. In a discrete-
time approach, time is discretized into time steps of length
�t (which usually takes the value �t = 1), and events occur
with certain probabilities. These probabilities are known as the
state transition probabilities, and are simply the product of the
corresponding rate and the time step �t .

Although discrete-time approaches correspond to their
continuous-time counterpart in the limit �t → 0, they can
significantly differ in the case that �t is finite. Allen, in
her work [33], shows that discrete-time susceptible-infected-
susceptible (SIS) and susceptible-infected-recovered (SIR)

models can produce complex behavior such as period doubling
and chaotic effects for sufficiently large values of the time
step and/or contact rate. This behavior is not possible in the
continuous-time SIS and SIR models, and is thus no more than
an artifact of discretizing time. Similarly, Gomez et al. [39]
observe that differences between continuous and discrete-time
SIS dynamics are substantial when an arbitrary time step of
�t = 1 is employed. An understanding of the discrepancies
introduced as a result of discretizing time is thus important,
allowing us to gauge the validity of discrete-time approaches
and when they may accurately be employed.

In this paper, we show the limitations of discrete-time
approaches when used to study continuous-time contagion
dynamics. Our message is clear–that the accuracy of such
methods will be poor if state transition probabilities are too
large, leading to deviations from the underlying continuous-
time process. The repercussions of this are manifold. Discrete-
time theoretical approaches can be significantly inaccurate
for large values of the contagion parameter values (such as
infection and recovery rates), and thus the analysis of such ap-
proaches will not be valid. Furthermore, discrete-time Monte
Carlo simulations—often used as a gold standard [34,49,50]—
can be inaccurate for large parameter values, and such
inaccurate simulations can lead to misleading conclusions.
We illustrate this latter point with an example from the
literature in Sec. IV. Our work highlights the consequences of
erroneous approaches to studying continuous-time contagion
dynamics, which has important implications not only for
the academic study of these dynamics [34–48] but also
for the implementation of such dynamics within large-scale
simulators for real contagions [31,32].

II. CONTINUOUS-TIME CONTAGION DYNAMICS AND
THE DISCRETE-TIME APPROXIMATION

To begin, we describe in some detail both continuous and
discrete-time Markov processes to illustrate mathematically
the difference between the two. In continuous-time Markov
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processes, events are described by rates λ, while events in the
discrete-time analog are described by transition probabilities
λ̃, where λ̃ = λ�t . In the course of our analysis we focus on the
specific example of SIS dynamics; however, our analysis holds
for any continuous-time Markovian dynamics, with the core
message being the limitations on the size of the transition prob-
abilities λ̃ for which discrete-time approaches are accurate.

A. Continuous-time SIS dynamics

Consider SIS dynamics taking place on a network of N

nodes. This is a continuous-time Markov process where at
any time t each node i in the network has a corresponding
state Xi

t , which is either susceptible (Xi
t = S) or infected

(Xi
t = I ) [23,51,52]. The states of each node in the network

change dynamically over time. Susceptible nodes become
infected through each of their infected neighbours at a rate
β per infected neighbor, while infected nodes recover at a rate
μ. “Rate” here refers to instantaneous transition rates, which
in continuous-time dynamics define the transitions between
states; these are defined in terms of probabilities as

μ = lim
�t→0

P
(
Xi

t+�t = S
∣∣Xi

t = I
)

�t
, (1)

β = lim
�t→0

P
(
Xi

t+�t = I via j
∣∣Xi

t = S,X
j
t = I

)
�t

, (2)

where {Xi
t+�t = I via j} is the event that a susceptible node i

became infected through an infected neighbor j . The fraction
terms in the right hand sides of Eqs. (1) and (2) are the probabil-
ities of state changes per unit time and taking the limit of these
fractions as �t → 0 leads to the concept of transition rates. In
general, we can define ri as the rate at which a node i changes
from its current state to the opposite state; this is given by

ri =
{
βmi,t if Xi

t = S

μ if Xi
t = I

, (3)

where mi,t is the number of infected neighbors of node i at
time t .

The evolution of the dynamics in the network can be
fully described by the master equation for the Markov
process [24,53]. If we denote by Yt = {Xi

t }Ni=1 the state of
the network at time t , and by p(y,t) the probability that the
network is in state Yt = y, then the master equation is given by

d

dt
p(y,t) =

∑
y′ �=y

(p(y′,t)ry′→y − p(y,t)ry→y′), (4)

with initial conditions p(y,0) = p0(y). Here ry→y′ is the
instantaneous rate at which the network changes from state
y to y′ and is fully determined by the network structure and the
transition rates μ and β. While the master equation is the gold
standard—exactly describing the evolution of SIS dynamics—
the dimension of its sample space � is 2N , which in general is
prohibitively large for analytical or numerical studies. One way
to tackle this problem is to study the dynamics as a series of in-
dividual transitions between states. In continuous-time dynam-
ics nodes change state one at a time, or asynchronously [54].
Given the state of the network, the probability distributions
governing both the length of time until the next state change

and the node which will change state can be constructed. These
are given by the following lemmas (of which rigorous deriva-
tions can be found in the literature, e.g., Ref. [23], chapter 10):

Lemma 1. Let τ be the holding time of the network, the
length of time that the network remains in its current state
before changing to the next state. Then τ is an exponentially
distributed random variable and the parameter of the distri-
bution is the sum of the individual node transition rates, i.e.,∑N

i=1 ri .
Lemma 2. The probability that the next node in the network

to change state will be node i is ri/
∑N

j=1 rj .
Lemmas 1 and 2 describe how the network probabilistically

evolves from one state to another. They are the basis of
continuous-time stochastic simulation methods such as the
well-known Gillespie algorithm, also known as the stochastic
simulation algorithm or kinetic Monte Carlo [55–58]. Such
simulations are often referred to as event-based simulations
because the time intervals are not fixed but rather correspond
to the time between consecutive state-changes in the system.
At each step in such algorithms, time advances by an amount
τ and node i changes its state, where τ and i are random
numbers drawn according to Lemmas 1 and 2 (Fig. 1).
Stochastic simulations give the opportunity to construct p(y,t)
empirically by running multiple realizations of the stochastic
process and aggregating over an ensemble of realizations. Such
simulations are statistically exact as they are fully based on
Lemmas 1 and 2, which are derived without approximation
from the axioms of the Markov process.

B. Discrete-time approach

In a discrete-time framework, time is no longer treated as
a continuous variable but rather takes the form of a discrete
variable, which advances in time intervals of length �t . Instan-
taneous transition rates are replaced by transition probabilities.
In a single time interval, susceptible nodes become infected
through their infected neighbors with probability β̃ = β�t

per infected neighbor, while infected nodes recover with
probability μ̃ = μ�t . Note that �t is often assumed to take
the value �t = 1, but even in this case it should be included
in the expression for β̃ and μ̃ to clarify that a rate needs to
be multiplied by a time step before it can be expressed as a
probability.

The discretization of time in this manner leads to two
deviations from the continuous-time process. These deviations
arise through both the transition probabilities, which are used
in place of transition rates, as well as the parallel (synchronous)
state changes in discrete-time systems that are uncharacteristic
of continuous-time dynamics. To understand the roots of the
deviations introduced through the transition probabilities we
can examine the definitions of μ and β as rates given in Eqs. (1)
and (2). These equations can be rearranged to give transition
probabilities in terms of these rates, i.e.,

P
(
Xi

t+�t = S
∣∣Xi

t = I
) = μ�t (5)

P
(
Xi

t+�t = I via j
∣∣Xi

t = S,X
j
t = I

) = β�t, (6)

where in this case �t is an infinitesimally small length of time.
In the case that �t is not infinitesimally small, Eqs. (5) and (6)
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FIG. 1. Schematics of both (a) the Gillespie algorithm and (b) the synchronous updating scheme. Vertical ticks on the t axis indicate the
moments through which the simulation advances—in synchronous updating the interval between these moments is a fixed time step with value
�t while in the Gillespie algorithm the interval is a random variable τ given by Lemma 1. The light green and dark red circles are nodes in
the network, which are in the susceptible and infected states, respectively. A square around a node means that the node has been chosen for
updating at a certain moment and may change its state. In the Gillespie algorithm a node is chosen according to Lemma 2 and will always
change its state while in the synchronous updating scheme every node has the chance to change state and will do so with a probability that
depends on their state and the states of their nearest neighbors.

become approximations. In a time interval of length �t in the
continuous-time Markov process, the exact probability that an
infected node will recover is 1 − e−μ�t while the probability
that a susceptible node will become infected by a given infected
neighbor is 1 − e−β�t . The transition probabilities μ̃ and β̃,
the right-hand side of Eqs. (5) and (6), are approximations
to 1 − e−μ�t and 1 − e−β�t , respectively, and an important
question then arises of the effect these approximations have
on the dynamics.

Figure 2 shows the actual probability 1 − e−λ�t along
with the discrete-time probability λ̃ = λ�t , where we use the
parameter λ to represent either μ or β. We also plot the error
ε, which is defined as the difference between the discrete-time
probability and the actual probability. When λ̃ < 0.1, ε < 0.01
and so the approximation is fairly accurate in this range. For
larger values of the state transition probability λ̃, however, the
approximation differs significantly from the true values. At
λ̃ = 0.5, ε ≈ 0.1 and when λ̃ = 1, ε ≈ 0.37. These individual
errors can accumulate and have significant implications on the
dynamics as a whole; indeed we show empirically in Secs. III
and IV that although discrete-time approaches can be very
accurate when μ̃ and β̃ are very small they begin to lose
accuracy when μ̃ and β̃ are of the order of magnitude of 10−1.

FIG. 2. The actual probability (blue solid line) that a rate λ

event will occur in a time step of length �t plotted along with
the approximate probability λ̃ (black dash-dotted line) as used in
discrete-time formalisms. The error ε is defined as the absolute
distance between the two.

Second, we comment on the synchronous updating nature of
discrete-time approaches. This is in contrast to the continuous-
time process where nodes change state asynchronously and the
change of state of one node immediately affects the transition
rates of the other nodes (Fig. 1). The strength of effect will
depend on the transition probabilities, as the values μ̃ and β̃

dictate the number of state changes that take place in each time
step and thus the propensity of multiple nodes to change state
at the same time.

Thus, we arrive at a simple conclusion: the values of μ̃ and
β̃ (and thus μ, β, and �t) used in discrete-time approaches
should be controlled so that these approaches are accurate
representations of the continuous-time process. For large
values of μ or β, the time step �t should be small while
if �t = 1, as in the case of the majority of discrete-time
approaches, the values of μ and β should be relatively small.
Throughout the rest of this paper we will give empirical
evidence of this conclusion.

Finally, we comment on discrete-time numerical sim-
ulation schemes that are used to stochastically simulate
SIS dynamics. A commonly used simulations scheme is
synchronous updating, also referred to as rejection sampling
(Fig. 1) [34,49,57,59]. In this case, time advances in steps of
one time unit, i.e., �t = 1. In a single time unit, a susceptible
node will become infected by its infected neighbors with
probability β̃ per infected neighbor while infected nodes
become susceptible with probability μ̃. Synchronous updating
simulations are statistically exact realizations of the discrete-
time dynamics; these dynamics are fully described by the
discrete-time master equation

p(y,t + 1) =
∑

y′
p(y′,t)qy′→y, (7)

where qy′→y is the probability that the network changes from
state y′ to state y in a time step of length �t = 1 and is
fully determined by the network structure and the transition
probabilities μ̃ and β̃ [24]. Because synchronous updating
simulations exactly mimic the discrete-time dynamics and
master equation they will be used throughout this paper to
gauge the accuracy of the discrete-time approach.
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In the remainder of the paper, we show how the approx-
imations introduced in discrete-time approaches can lead to
misrepresentation of the actual continuous-time dynamics.
We begin in the next section by examining the discrete-time
approximations of Eqs. (5) and (6) for fixed μ and β and
various values of �t . We show that discrete-time dynamics
can accurately reproduce continuous-time dynamics for small
values of �t , but that they incur a breakdown in accuracy as �t

increases. Further to this, we show in Sec. IV that when the time
step is fixed to the value �t = 1, as in much of the literature,
discrete-time approaches break down in accuracy when the
transition rates (μ and β) are too large. This limits the range of
parameters that can be studied with discrete-time approaches.
We illustrate this with an example from the literature, also
showing how synchronous updating simulation schemes can
favour discrete-time formalisms leading to biased conclusions
when comparing against continuous-time theories. Finally, in
Sec. V we show that overly large values of β̃ and μ̃ can
affect the value of the epidemic threshold, even if the effective
transition rate defined as γ = β/μ = β̃/μ̃ is small.

III. EFFECT OF THE TIME STEP �t WHEN
DISCRETIZING TIME

In this section, we analyze the discrete-time approximations
introduced in Sec. II B as a function of the size of the

discrete time step �t . We do this by carrying out synchronous
updating simulations for various values of �t and comparing
them against exact results obtained from the master equation.
Numerical simulations are carried out in C++ and the code is
available online [60].

As our example, we consider SIS dynamics on a complete
graph of N nodes, i.e., a graph where every pair of nodes is
connected. On such a graph, the SIS dynamics are defined by
the rate functions

ri =
{

βZt if Xi
t = S

μ if Xi
t = I

, (8)

where Zt is the number of infected nodes at time t and β and μ

are the infection rate and recovery rate respectively, consistent
with Eq. (3) for the complete graph. We choose the complete
graph because on such a graph the master equation given in
Eq. (4) can be reduced from a system of 2N equations for p(y,t)
to a system of N + 1 equations for p(n,t), the probability that
there are n infected nodes in the graph at time t [24]. This
reduced system is given by

d

dt
p(n,t) = −(μn + βn(N − n))p(n,t)

+μ(n + 1)p(n + 1,t) + β(n − 1)

× (N − n + 1)p(n − 1,t), (9)

FIG. 3. SIS dynamics with β = μ = 1 on a complete graph with N = 10 nodes. (a) Time evolution of the expected fraction of infected
nodes ηt for both the exact master equation Eq. (9) (solid line) and synchronous updating simulations with time steps �t = 0.1 and �t = 1
(dashed lines). The Gillespie algorithm and Exact curves are indistinguishable. (b) and (c) Histograms showing the exact probability mass
function p(z,t) at t = 3—calculated from numerical integration of Eq. (9)—and the probability mass functions obtained empirically from 106

simulation realizations for both (b) synchronous updating simulations with time steps �t = 0.01, �t = 0.1, and �t = 1 and (c) the Gillespie
algorithm, respectively.
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for 0 � n � N with initial conditions p(n,0) = p0(n). For
small values of N , this system can easily be solved using
standard differential-equation solvers, giving us a gold stan-
dard against which to compare the discrete-time simulations.
We also perform Gillespie algorithm simulations to illustrate
the accuracy and the speed of such simulations and thus their
efficacy in simulating continuous-time dynamics.

We present the results for SIS dynamics with β = 1, μ = 1
running on a complete graph with N = 10 nodes in Fig. 3. We
plot the solution of Eq. (9) as well as the numerical results given
by the Gillespie algorithm and synchronous updating schemes
with different time steps �t . For the numerical simulations,
we performed 106 realizations and obtained the corresponding
p(n,t) by taking the fraction of realizations in which there
are n infected nodes at time t . For the synchronous updating
simulations, we consider time steps of �t = 0.01,0.1 and 1.
From Fig. 2, it is clear that these values of �t with μ =
β = 1 will give a comprehensive range on which to judge the
accuracy of the discrete-time approach, while noting that for
�t = 1 and for these μ and β parameter values the system is
deterministic.

We consider the SIS process at time t = 3 at which stage
the expected fraction of infected nodes ηt = ∑10

n=0 np(n,t)
has reached a metastable state (Fig. 3) [61]. At t = 3 we
empirically construct p(n,3) from the synchronous updating
simulations and compare it to p(n,3) calculated from the
master equation (9). The histogram of Fig. 3(b) shows this
comparison. From this histogram, it is clear that while the
discrete-time simulations are quite accurate for small �t this
accuracy can fully break down when �t is too large. The
accuracy of the probability distribution in the metastable state
depends highly on the value of the time step used to reach
the metastable state. In the synchronous updating simulations
with �t = 1 the results are highly inaccurate with all of the
probability concentrated on n = 9, i.e., p(n,3) = δn,9. Even
the case �t = 0.1, while fairly accurate, shows discrepancies
in both the probability distribution p(n,3) and the expected
fraction of infected nodes ηt [Fig. 3(a)]. Considering that the
error ε between μ̃ (β̃) and 1 − e−μ�t (1 − e−β�t ) is less than
0.005 for μ = β = 1 and �t = 0.1 (Fig. 2), we conclude that
these discrepancies are due to the simultaneous state changes
in synchronous updating, which are uncharacteristic of the
continuous-time process.

In the histogram of Fig. 3(c) we compare p(n,3) constructed
empirically from the Gillespie algorithm to p(n,3) calculated
from the master equation. The Gillespie algorithm is extremely
accurate and matches the exact p(n,t) to a high degree
of precision. Furthermore, this algorithm is computationally
rapid. We performed a short comparison of the simulation
algorithms in terms of speed, showing in Table I the simulation
run times for the 106 realizations for the Gillespie algorithm
and for synchronous updating with various values of �t .
For �t = 0.01—corresponding to the simulations which most
closely match the accuracy of the Gillespie simulations—the
Gillespie algorithm is an order of magnitude faster. This
computational speed, along with its natural precision of the
algorithm, make the Gillespie algorithm an optimal algorithm
for simulating continuous-time dynamics.

To summarize, the accuracy of discrete-time approxima-
tions to continuous-time dynamics depends highly on the size

TABLE I. Time T (in seconds) taken to carry out the Gillespie
algorithm and synchronous updating numerical simulations for the
examples described in Sec. III and Sec. IV. The simulation code
was written in C++ and the simulations were run on a single-CPU
contemporary desktop computer.

Complete network (Sec. III)

Gillespie Synchronous

�t T �t T

- 5.67 0.01 65.62
0.1 12.46
1 4.48

Erdős-Rényi network (Sec. IV)

Gillespie Synchronous

�t T �t T

- 42.1 0.01 2555.8
1 81.4

of the discrete-time step �t at which the system evolves.
This has extremely important implications for real-world
predictive models of epidemic spreads that are discrete-time
based [31,32], as overly large time steps can affect the
prediction of both the expected evolution of a contagion
[Fig. 3(a)] as well as variance or confidence intervals around
the expected evolution [Figs. 3(b) and 3(c)].

In the next section, we fix the time step at �t = 1 and show
how the accuracy breaks down when the infection and recovery
rates are too large, showing that discrete-time formalisms using
this approach are limited in the ranges of the rate parameters
that they can study and thus their ability to match continuous-
time dynamics.

IV. LIMITATIONS ON RANGE OF PARAMETER
VALUES WHEN �t = 1

As mentioned in Sec. II B, synchronous updating has
the same characteristics of discrete-time systems, which
are characterized by transition probabilities and difference
equations of the form

p(y,t + �t) = f ({p(y′,t)}y′∈�), (10)

where p(y,t + �t)—the probability that the system is in state
y at time t + �t—is a function of the probabilities p(y′,t)
for all possible states y′ in the sample space �. On the other
hand, continuous-time systems are characterized by transition
rates and differential equations of the form given by the
master equation (4). Although the discrete-time formulation
coincides with the continuous-time one in the limit �t → 0,
the dynamics will differ for noninfinitesimal �t . Issues then
arise when comparing discrete and continuous-time systems
and the choice of numerical scheme becomes important. We
illustrate this now with an example from the literature, while
also showing how the accuracy of discrete-time approaches
with �t = 1 can be insufficient for large values of the
transition rates.
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FIG. 4. Time evolution of the expected fraction of infected nodes ηt for SIS dynamics with infection rate β = 0.2 and recovery rates (a)
μ = 0.48 and (b) μ = 0.72. The network here is an Erdős-Rényi network with 1000 nodes and average degree 〈k〉 = 4. Each trajectory is
averaged over 104 realisations. Synchronous updating with a time step of �t = 1—as in [36]—is given by the circular symbols (S�t=1). This
significantly deviates from Gillespie algorithm simulations (GA, triangular symbols) and synchronous updating simulations with a small time
step of �t = 0.01 (S�t=0.01, square symbols) if the transition rates μ and/or β are too large.

A prominent current strand of research is the behavior of
the SIS model on infinite networks with power-law degree
distributions [36,49,62–66]. In Ref. [36], Chakrabarti et al.
introduced the nonlinear dynamical systems (NLDS) theory,
a discrete-time approach to SIS modeling with a set of mean-
field difference equations of the form

pi,t+1 = f
({pj,t }Nj=1

)
, (11)

for 0 � i � N , where pi,t+1 is the probability that node i

is infected at time t . They compare their results to two
continuous-time formulations, the heterogeneous mean-field
(HMF) approach of Pastor-Sattoras and Vespignani [49] and
the Kephart-White (KW) [67] approach. The bases of the
comparison are synchronous updating numerical simulations
with a time step �t = 1 and it is found (see for example
Fig. 4 of Ref. [36]) that the NLDS theory is much closer to the
numerical simulations than both the HMF and KW theories.

However, the comparison of discrete-time and continuous-
time formulations in this manner is biased. Synchronous
updating with a time step �t = 1 is the correct procedure
for numerically simulating discrete-time dynamics. On the
other hand, to simulate continuous-time dynamics either
synchronous updating with a vanishingly small time step or
a continuous-time simulation scheme such as the Gillespie
algorithm should be used.

To illustrate the difference resulting from the use of the dif-
ferent updating methods we reproduce an example from [36].
The example is SIS dynamics on an Erdős-Rényi network
of 1000 nodes and mean degree 〈k〉 = 4. Figure 4 shows
various numerical simulations of these dynamics. Again, the
computer code used to perform the simulations is available
from Ref. [60]. Included in Fig. 4 are synchronous updating
simulations with a time step �t = 1, as in Ref. [36], along
with synchronous updating simulations with a small time step
�t = 0.01 and Gillespie algorithm simulations. In Fig. 4(c)
of Ref. [36], where μ = 0.72 and β = 0.2, it can be seen that
the fraction η̄ of infected nodes in the metastable state given
by the NLDS theory matches very closely the synchronous
updating numerical simulations. However, as can be seen in
Fig. 4(b) here, these synchronous updating simulations differ
quite significantly from continuous-time simulations, which
plateau at the metastable state with η̄ ≈ 0.04. The KW theory,
which in Ref. [36] is rejected as being inaccurate, actually

converges to a value much closer to the continuous-time
simulations than the NLDS theory. Thus, using the correct
simulation technique, the conclusions in Ref. [36] should be
reversed: the KW model is more accurate than the NDLS
model.

For fixed �t = 1, the accuracy of the discrete-time ap-
proach decreases as μ and β increase. In the example above,
when μ is decreased from μ = 0.72 to μ = 0.48 the discrete-
time simulations match relatively closer to the continuous-time
simulations [Fig. 4(a)], while when μ is decreased further to
μ = 0.24 the discrepancy between the two simulations in neg-
ligible. Chakrabarti et al. state that their model “outperforms
(the KW model) when μ is high.” However the opposite is the
case: their discrete-time approach breaks down in accuracy
(as an approximation to the continuous-time process) as μ

increases.
We conclude with an observation to motivate the next

section. As μ is increased from μ = 0.48 [Fig. 4(a)] to
μ = 0.72 [Fig. 4(b)], the fraction of infected nodes in the
metastable state η̄ (at, for example, t = 100) decreases for
both the continuous-time simulations and discrete-time simu-
lations. However, η̄ decreases quicker for the continuous-time
simulations and so it would seem that the critical value μc

at which η̄ first becomes zero will be different depending on
whether a discrete-time or continuous-time approach is used.
This has implications for the epidemic threshold, which is the
focus of the next section.

V. EFFECT ON EPIDEMIC THRESHOLD

A characteristic of SIS dynamics is the occurrence of
phase transitions as the effective transition rate γ is varied.
Recall that the effective transition rate is defined as the ratio
of the infection rate to the recovery rate, i.e., γ = β/μ.
Depending on the structure of the network and whether the
network is finite or infinite, the critical point, or epidemic
threshold, γc between different phases can vary. As mentioned
in Sec. IV, there are still remaining questions about the
steady-state behavior of the SIS model—particularly the value
of the epidemic threshold on such networks—and so a good
understanding of how different approximations affect the value
of the epidemic threshold is important. In this section, we show
that although the epidemic threshold is defined in terms of the
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FIG. 5. The fraction of infected nodes η∞ in the metastable state
in an Erdős-Rényi network with 104 nodes and mean degree 〈k〉 = 4
for various values of the transition probabilities μ̃ and β̃. Along each
of the five curves shown from left to right, μ̃ is fixed at the values 1,
0.775, 0.55, 0.325, and 0.1 respectively and β̃ varies so that γ = β̃/μ̃

varies between 0.15 and 0.35. The vertical dashed line indicates the
epidemic threshold γc = 0.25 predicted by both the NLDS and HMF
theories.

ratio γ = β/μ = β̃/μ̃, the individual values of the transition
probabilities β̃ and μ̃ used in discrete-time approaches affect
the value of the epidemic threshold when it is calculated
by (i) performing discrete-time numerical simulations or (ii)
iterating a discrete-time system [such as Eq. (10)] from a set of
initial conditions (as, for example, in Ref. [37]). Note however
that the epidemic threshold predicted by steady-state analysis
[i.e., setting pt+1 = pt in Eq. (11)], such as in Ref. [36], is
completely valid.

We show how μ̃ and β̃ affect the value of the epidemic
threshold in the following manner. For a given network, we
fix the value of μ̃ and vary β̃ so that the effective transition
rate γ varies between γmin and γmax where γmin and γmax are
chosen so that the epidemic threshold lies between them, i.e.,
γmin 
 γc 
 γmax. Thus when μ̃ is small (large), β̃ will be
small (large) so that their ratio lies in the range γmin 
 β̃/μ̃ 

γmax. We perform standard synchronous updating simulations
(with �t = 1) and obtain the critical value γc as the smallest
value of γ such that the fraction of nodes in the metastable
state is nonzero. If the epidemic threshold depends only on the
ratio γ = β̃/μ̃ and is independent of the individual values of
μ̃ and β̃, then γc should be the same regardless of the value of
μ̃, which is fixed. However, we find that this is not the case.

We perform this experiment on an Erdős-Rényi network
with N = 104 nodes and mean degree 〈k〉 = 4, similar to
the network used in the example of Sec. IV (Fig. 5) but
with a greater number of nodes. On such a network, the
epidemic threshold is predicted by steady-state analysis of
both the NDLS and HMF theories as γc = 0.25. From Fig. 5
we see that when μ̃ is small (μ̃ = 0.1), the epidemic threshold
predicted by synchronous updating simulations corresponds to
this value γc = 0.25. However, as μ̃ (and thus β̃) increases, the
accuracy of the discrete-time approach breaks down and both
the fraction of infected nodes in the metastable state and the

epidemic threshold deviate from the true values. The epidemic
threshold decreases from γc = 0.25 when μ̃ = 0.1 to γc = 0.2
when μ̃ = 1, even though the ratio γ = β̃/μ̃ remains in the
same range. Thus, in discrete-time formalisms the steady-state
behavior is not fully determined by the effective transition
rate γ but also depends on μ̃ and β̃. From our analysis in
Sec. III (Fig. 3) it is clear that the metastable state reached
iteratively from an initial condition depends on the single-step
transition probabilities μ̃ and β̃. If these are too large, the
errors introduced in the discrete-time approximation become
significant, affecting the metastable state and the value of the
epidemic threshold.

The results of this section have important implications for
discrete-time approaches. First, they show that the epidemic
threshold calculated empirically using synchronous updating
simulations can be incorrect if μ̃ and β̃ are too large, even if the
ratio between them is small. Second, they have implications for
calculating the epidemic threshold from discrete-time systems
of the form pt+1 = f (pt ) by forward iterating the system from
an initial condition [37]. If the transition probabilities μ̃ and
β̃ used in such systems are too large then the metastable state
will be affected, possibly leading to a miscalculation of the
epidemic threshold.

VI. CONCLUSIONS

In this paper, we have provided conclusive evidence of
the limitations of discrete-time approaches as approximations
to continuous-time contagion processes. When the state
transition probabilities are too large, such approaches become
inaccurate and misrepresentative of the underlying continuous-
time processes, thus compromising their utility and their
applicability to prediction and analysis.

Our message is clear: Due care needs to be taken when
implementing discrete-time methods as approximations to
continuous-time dynamical processes. Being constructive,
we have briefly discussed alternatives. For simulations of
continuous-time processes on networks, event-based sim-
ulations such as the Gillespie algorithm are more favor-
able than synchronous updating schemes both in terms of
accuracy and speed. For theoretical analysis, continuous-
time analogs [63,68] of discrete-time approaches should be
employed because they are unconstrained in the range of
dynamics parameter values that can be studied.
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