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A long-term time series of plankton records
collected by the continuous plankton recorder
(CPR) Survey in the northeast Atlantic indicates
an increased occurrence of Cnidaria since 2002.
In the years 2007 and 2008, outbreaks of the
warm-temperate scyphomedusa, Pelagia nocti-
luca, appeared in CPR samples between 4588888 N
to 5888888 N and 188888 W to 2688888 W. Knowing the biology
of this species and its occurrence in the adjacent
Mediterranean Sea, we suggest that P. noctiluca
may be exploiting recent hydroclimatic changes
in the northeast Atlantic to increase its extent
and intensity of outbreaks. In pelagic ecosystems,
Cnidaria can affect fish recruitment negatively.
Since P. noctiluca is a highly venomous species,
outbreaks can also be detrimental to aquaculture
and make bathing waters unusable, thus having
profound ecological and socio-economic
consequences.
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1. INTRODUCTION
Pelagic, true jellyfish (Cnidaria) form an abundant
guild of top predators in marine ecosystems along
with fish (Purcell & Arai 2001). Cnidaria vary in size
from a few millimetres to a few metres, and they may
be solitary (i.e. medusae of Hydrozoa, Scyphozoa
and Cubozoa) or colonial (i.e. hydrozoan siphono-
phores), and have a life cycle that is either truly
planktonic or that includes a benthic polyp stage
(Boero et al. 2008). Cnidaria are important planktonic
predators of fish larvae and their zooplankton food, so
they can affect fisheries by bottom-up and top-down
control of fish larval survival (Daskalov et al. 2007;
Purcell et al. 2007).

Recent years’ evidence indicates that Cnidaria have
increased in abundance throughout the world’s oceans
and blooms (outbreaks of tens to hundreds of medusae
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per cubic metre) now occur more frequently in many
seas (Purcell et al. 2007); these outbreaks have been
attributed variously to alterations in the trophic struc-
ture of marine ecosystems owing to overfishing, and to
hydroclimatic effects, since sea temperature can influ-
ence jellyfish life cycles and reproductive output
(Purcell et al. 2007; Boero et al. 2008). The socio-
economic effects of cnidarian outbreaks are not solely
confined to pelagic fisheries, however. Since all Cni-
daria possess stinging nematocysts, they are toxic and
so can be detrimental to coastal aquaculture through
damage to caged fish, and to tourism by curtailing
bathing activities (Purcell et al. 2007).

Analysis of data collected by the continuous
plankton recorder (CPR), the most temporally and
spatially extensive plankton survey in the world, has
revealed significant changes in northeast Atlantic
plankton communities over the last two decades that
appear to be related to hydroclimatic variability
(Beaugrand 2004). While it has been suggested that
hydroclimatic forcing has an important influence on
the abundance of some North Sea cnidarian species
(Lynam et al. 2005), the taxa in northeast Atlantic
CPR samples are unknown, as their morphological
identification is impossible.

Here, using molecular methods, we identify the
Cnidaria in northeast Atlantic and northern North
Sea CPR samples collected during 2007 and 2008
between 458 N to 588 N and 18 W to 268 W. To help
understand the changes that have occurred, we com-
pare our results to observations of Cnidaria in the
western Mediterranean where long-term records are
also available.
2. MATERIAL AND METHODS
(a) Plankton sampling in the northeast Atlantic

Data on cnidarian distributions and material for genetic analysis
were obtained from the CPR survey (Batten et al. 2003). Each
CPR sample represents the plankton from 3 m3 of water taken
during 18 km of tow at an average depth of 7 m. Visual identification
of cnidarian tissue and/or nematocysts was used as an index of pres-
ence and mapped for the period 1958–2007 using a 28 grid, where
the nodes were calculated using the inverse-distance interpolation
method (Isaaks & Srivastava 1989). A Kruskal–Wallis test was
applied to detect the significance of changes in yearly, winter
(November to April) and summer (May to October) averages for
the periods 1958–1963, 1964–2001 and 2002–2007; these periods
were identified by a cumulative sums analysis, which graphically
detects local changes in a time series (Kirby et al. 2009). Data
were then divided into two periods, 1958–2001 and 2002–2007,
and the mean spatial distribution in each period, and the anomaly
between them calculated.

(b) Genetic analysis of Cnidaria in CPR samples

Genetic methods were used to identify Cnidaria in CPR samples.
DNA was extracted from 34 samples of cnidarian tissue, collected
from 15 separate CPR samples that were covered fully in cnidarian
material, using standard protocols (Kirby et al. 2006). A 540-bp par-
tial, mtDNA 16S rDNA sequence was then amplified by PCR using
the primers of Cunningham & Buss (1993) and Schroth et al. (2002).
The PCR involved an initial denaturation step of 948C (1 min), 50
cycles of 948C (1 min), 518C (1 min) and 728C (1 min) and a final
extension of 728C (10 min). The PCR products were sequenced
using the forward amplification primer and their identity was estab-
lished by comparison with GenBank. To help identification, a
number of DNA sequences were also obtained from Cnidaria
sampled by plankton net off Plymouth (England) and Stonehaven
(Scotland). These sequences were obtained for both DNA strands
(GenBank accession numbers EU999219–EU999230).

(c) Records of Cnidaria from the Mediterranean

Cnidaria larvae (i.e. ephyrae) and adults were counted in plankton
samples from the Gulf of Tunis (inshore and offshore), in the Bay
This journal is q 2010 The Royal Society

mailto:prli@sahfos.ac.uk
http://dx.doi.org/10.1098/rsbl.2010.0150
http://dx.doi.org/10.1098/rsbl.2010.0150
http://dx.doi.org/10.1098/rsbl.2010.0150
http://rsbl.royalsocietypublishing.org
http://rsbl.royalsocietypublishing.org


Jan

Oct

Jul
Apr

0.1 0.40.30.20 0.5

(a)

(b)

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
Jan

Oct

Jul
Apr

frequency

warm biological 
dynamic regime

cold biological 
dynamic regime

Figure 1. Average monthly frequency of Cnidaria in
(a) North Sea and (b) northeast Atlantic CPR samples
in 1958–2007.
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of Calvi and the Bay of Villefranche (inshore only). The abundance
of adult Pelagia noctiluca was also estimated visually in the Balearic
and Alboran Seas and from the shore in the Bay of Calvi (table
S1, electronic supplementary material). Records of scyphomedusae
from the Mediterranean were used to help understand the seasonal
progression of the main Cnidaria in northwest Atlantic CPR
samples.

(d) Temperature data

Sea surface temperature (SST) (18 grid) was obtained from the
Hadley Centre, UK.
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Figure 2. Cnidaria and sea surface temperature (SST) in the
northeast Atlantic. (a) Map of the anomaly of the frequency

of Cnidaria in CPR samples calculated as the difference in
frequency between the periods 1958–2001 and 2002–
2007. (b,c) Distribution of P. noctiluca outbreaks in the
western Mediterranean and in CPR samples from the

northeast Atlantic in (b) 2007 (black squares show records
from Doyle et al. (2008)) and (c) 2008. Dashed black
arrows indicate the progression of the Atlantic surface
water (AW) stream in the western Mediterranean. Red and
black arrows in the northeast Atlantic indicate continental

slope current (CSC) and the North Atlantic Current
(NAC), respectively. (d) Winter (January to March) SST
anomaly (8C) of 2002–2008 versus 1958–2001. (b) Open
pink square, Jan–Mar; open circle, Jul; filled circle, Sept;
open triangle, Oct; filled square, Oct (see legend); filled

triangle, Dec. (c) Filled pink square, Jan–Feb; open pink
square, Feb; filled yellow triangle, May–Jun; open red
circle, Jul; filled red circle, Aug; open orange triangle, Nov;
filled orange triangle, Dec.
3. RESULTS
Analyses of CPR samples from the North Sea reveal an
increase in frequency of Cnidaria since the early 1980s
(figure 1a), coincident with a change from a cold to a
warm hydroclimatic regime (Beaugrand 2004). In the
northeast Atlantic the frequency of Cnidaria is greater
during the winter months since 2002 than previously
(p , 0.001), i.e. Cnidaria appear earlier in the year
and persist for longer (figure 1b). The greatest
increases in cnidarian abundance in this region
occurred predominantly between 408 N to 588 N and
108 W to 308 W (figure 2a).

Genetic analysis of selected northeastern Atlantic
CPR samples collected between 2007 and 2008
revealed four different species of siphonophore and
the scyphomedusa P. noctiluca, which was the domi-
nant Cnidaria (table S2, electronic supplementary
material). Distributional data from the CPR and
genetic analysis indicated outbreaks of P. noctiluca
during 2007 at latitudes of 458 N, 548 N and 588 N
in September, October and early December, respect-
ively (figure 2b). In 2008, outbreaks of P. noctiluca
occurred during summer and autumn at 548 N in the
northeast Atlantic and at 458 N in the Bay of Biscay
in November (figure 2c).

Observations of P. noctiluca in the western Mediter-
ranean during 2007–2008 indicate that the seasonal
progression of this species commenced in late
Biol. Lett. (2010)
autumn–winter in the southern region off the Tunisian
coast and in the Bay of Calvi (high densities were
maintained in the Bay of Calvi throughout the
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winter), ending in the Bay of Villefranche and in the
Balearic and Alboran Seas in summer (figure 2b,c;
table S3, electronic supplementary material).
4. DISCUSSION
Jellyfish have increased in frequency in CPR samples
from the northeast Atlantic since 2002, especially
during winter. Molecular analyses of jellyfish in CPR
samples reveal that P. noctiluca occurs over a large
area coincident with where recent changes in Cnidaria
are greatest (figure 2a). At this same time, outbreaks of
P. noctiluca were reported in 2007 to cause mortalities
of farmed fish in northeast Ireland and on the Scottish
west coast (Doyle et al. 2008).

Pelagia noctiluca is a warm-temperate holoplank-
tonic scyphozoan and it is distributed widely from
coastal to oceanic waters as far north as the northern
North Sea (Hay et al. 1990). Pelagia noctiluca can
acclimate to a wide range of temperatures (from less
than 88C to greater than 228C in the Mediterranean,
(Sandrini & Avian 1991), varying its metabolism to
enhance the recruitment of young medusae (Morand
et al. 1992), features that enable it to reproduce rapidly
under favourable conditions to reach high densities
the whole year round. Long-term records from the
Mediterranean since the late nineteenth century
reveal that outbreaks of this species, that tended to
occur only once every 12 years and with 4 years dur-
ation before 1998, are now more frequent (Daly
Yahia et al. 2010). As outbreaks of P. noctiluca appear
to be associated with warm winters (Goy et al. 1989),
the recent increase in western Mediterranean SST
(up to 0.58C increase since 2002 (figure 2d)) may
explain their increasing frequency in this region.
Warmer waters in the northeast Atlantic (up to 18C
increase in winter SST since 2002 (figure 2d)) may
have influenced P. noctiluca similarly.

The seasonal occurrence of high densities of
P. noctiluca in the western Mediterranean and northeast
Atlantic also appears to be influenced by surface
hydrography. In the western Mediterranean, the occur-
rence of P. noctiluca swarms follows the progression of
the Atlantic surface water stream, which flows east-
wards from the Atlantic through the Strait of
Gibraltar along the North African coast (close to the
Tunisian coast in winter) before circulating anticlock-
wise around the western Mediterranean basin
(Pinardi & Masetti 2000) (figure 2b). In the northeast
Atlantic, outbreaks of P. noctiluca appear to follow the
progression of the North Atlantic Current (NAC)
and the surface continental slope current (CSC), a
northward branch of the Azores Current that flows
along the eastern slope boundary of the European
basin (Garcia-Soto et al. 2002; Pingree 2002)
(figure 2b; figure S1, electronic supplementary
material). Large-scale atmospheric patterns, i.e. the
North Atlantic Oscillation (NAO), influence the
strength of the NAC and CSC. In particular, during
2007–2008, the NAO was positive during winter and
negative during summer, giving climatic conditions
associated usually with an enhanced northward pen-
etration of the NAC and CSC around Scotland into
the North Sea (Garcia-Soto et al. 2002; Pingree 2002).
Biol. Lett. (2010)
Predictions of global climate change suggest that the
northeast Atlantic and North Sea will continue to
warm (IPCC 2007). Owing to hydroclimatic change,
warmer southern waters and species are now both
recorded regularly further north penetrating into
shelf regions (Beaugrand 2009; Graham & Harrod
2009). Increased advection and mixing of warmer
and offshore waters into coastal shelf seas will also
carry P. noctiluca and other jellyfish into environments
with higher food resources, promoting jellyfish
blooms. Outbreaks of P. noctiluca, along with other
jellyfish, may therefore become more frequent and
extend over a greater proportion of the year than
previously. Any increase in jellyfish blooms may
influence zooplankton production and fish recruitment
to alter the pelagic food web. Since P. noctiluca is one
of the most venomous species in waters around the
British Isles (Mariottini et al. 2008), changes in its
abundance may also have significant socio-economic
effects.
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ations à long-terme de Pelagia noctiluca (Cnidaria,
Scyphozoa). Ann. Inst. Océanogr. Paris 68, 151–158.

Pinardi, N. & Masetti, E. 2000 Variability of the large scale
general circulation of the Mediterranean Sea from obser-
vations and modelling: a review. Palaeogeogr.
Palaeoclimatol. 158, 153–174. (doi:10.1016/S0031-
0182(00)00048-1)

Pingree, R. D. 2002 Ocean structure and climate (Eastern
North Atlantic): in situ measurement and remote sensing
(altimeter). J. Mar. Biol. Assoc. UK 82, 681–707. (doi:10.
1017/S0025315402006082)

Purcell, J. E. & Arai, M. N. 2001 Interactions of pelagic cni-
darians and ctenophores with fish: a review. Hydrobiologia
451, 27–44. (doi:10.1023/A:1011883905394)

Purcell, J. E., Uye, S.-I. & Lo, T. 2007 Anthropogenic causes
of jellyfish blooms and their direct consequences for

humans: a review. Mar. Ecol. Prog. Ser. 350, 153–174.
(doi:10.3354/meps07093)

Sandrini, L. R. & Avian, M. 1991 Reproduction of Pelagia
noctiluca in the central and northern Adriatic Sea. Hydro-
biologia 216–217, 197–202. (doi:10.1007/BF00026462)

Schroth, W., Jarms, G., Streit, B. & Schierwater, B. 2002
Speciation and phylogeography in the cosmopolitan
marine moon jelly, Aurelia sp. BMC Evol. Biol. 2, 1–10.
(doi:10.1186/1471-2148-2-1)

http://dx.doi.org/doi:10.1016/0198-0149(89)90138-6
http://dx.doi.org/doi:10.1016/0198-0149(89)90138-6
http://dx.doi.org/doi:10.1111/j.1095-8649.2009.02180.x
http://dx.doi.org/doi:10.1111/j.1095-8649.2009.02180.x
http://dx.doi.org/doi:10.1016/0077-7579(90)90013-7
http://dx.doi.org/doi:10.1016/0077-7579(90)90013-7
http://dx.doi.org/doi:10.1098/rsbl.2006.0530
http://dx.doi.org/doi:10.1007/s10021-009-9241-9
http://dx.doi.org/doi:10.1017/S0025315405011380
http://dx.doi.org/doi:10.1016/S0031-0182(00)00048-1
http://dx.doi.org/doi:10.1016/S0031-0182(00)00048-1
http://dx.doi.org/doi:10.1017/S0025315402006082
http://dx.doi.org/doi:10.1017/S0025315402006082
http://dx.doi.org/doi:10.1023/A:1011883905394
http://dx.doi.org/doi:10.3354/meps07093
http://dx.doi.org/doi:10.1007/BF00026462
http://dx.doi.org/doi:10.1186/1471-2148-2-1

	A blooming jellyfish in the northeast Atlantic and Mediterranean
	Introduction
	Material and methods
	Plankton sampling in the northeast Atlantic
	Genetic analysis of Cnidaria in CPR samples
	Records of Cnidaria from the Mediterranean
	Temperature data

	Results
	Discussion
	R.R.K. is a Royal Society Research Fellow. We thank the owners, masters and crews of the ships that tow CPRs, the observation service RADEZOO in Villefranche and STARESO in Calvi, and scientific colleagues, A. Collignon, O. Daly Yahia-Kéfi, A. Goffart, S. Hay, R. Pingree and F. Prejger. We are also grateful to S. Hay and an anonymous referee for improvements to the manuscript.
	head11


