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Abstract: After millions of years of evolution, biological chemical sensing systems (i.e., olfactory and
taste systems) have become very powerful natural systems which show extreme high performances
in detecting and discriminating various chemical substances. Creating field-effect sensors using
biomaterials that are able to detect specific target chemical substances with high sensitivity would
have broad applications in many areas, ranging from biomedicine and environments to the food
industry, but this has proved extremely challenging. Over decades of intense research, field-effect
sensors using biomaterials for chemical sensing have achieved significant progress and have shown
promising prospects and potential applications. This review will summarize the most recent advances
in the development of field-effect sensors using biomaterials for chemical sensing with an emphasis
on those using functional biomaterials as sensing elements such as olfactory and taste cells and
receptors. Firstly, unique principles and approaches for the development of these field-effect sensors
using biomaterials will be introduced. Then, the major types of field-effect sensors using biomaterials
will be presented, which includes field-effect transistor (FET), light-addressable potentiometric
sensor (LAPS), and capacitive electrolyte–insulator–semiconductor (EIS) sensors. Finally, the current
limitations, main challenges and future trends of field-effect sensors using biomaterials for chemical
sensing will be proposed and discussed.
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1. Introduction

Biological olfactory and taste systems are two main categories of natural chemical
sensing systems, which play crucial roles for almost all the creatures in survival, feeding,
and breeding [1–5]. After millions of years of evolution, these biological chemical sensing
systems have become very powerful natural systems which show extreme high perfor-
mances in detecting and discriminating various chemical substances [2,6–8]. For instance,
biological olfactory systems are able to detect specific chemical signals presented by the
odorant molecules, even at the trace level [9,10]. Similarly, biological taste systems show
unique performance and versatility for the detection of chemical signals transmitted by
various tastants [2,11]. Creatures are able to obtain essential chemical information about
their surroundings from biological chemical sensing systems in order to find food, to com-
municate with partners, and to avoid predators [12–15]. The key components of biological
chemical sensing systems include functional biomaterials that are able to recognize specific
chemical substances and transduce the sensed chemical signals into cellular and molecular
responses [2,6,7]. These functional biomaterials, which are chemical sensitive cells and
molecules, mainly include olfactory sensory neurons, olfactory receptors, taste cells, and
taste receptors [16,17]. They have been considered the primary source of high performances
of biological chemical sensing systems [7,18,19].
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Creating field-effect sensors using biomaterials that are able to detect specific target
chemical substances with high sensitivity would have broad applications in many areas,
ranging from biomedicine and environments to the food industry, but this has proved
extremely challenging [20–22]. The excellent performances of functional biomaterials
from biological chemical sensing systems are ideal candidates of sensitive elements for the
development of field-effect sensors using biomaterials towards chemical sensing in complex
environments [23,24]. For this reason, these biomaterials have been employed for chemical
sensing to mimic the mechanisms of biological chemical sensing systems. In recent decades,
with rapid advancements in molecular biology and microfabrication process, inspirations
from natural chemical sensing systems have led to the development of various field-effect
sensors using biomaterials that rely on the combination of functional biomaterials with
various field-effect devices [25–28]. Over decades of intense research, field-effect sensors
using biomaterials for chemical sensing have achieved significant progress and shown
promising prospects and potential applications.

The development of chemical sensors has been inspired by utilizing the biological
sensitive materials or mimicking natural porous structures [29–33]. For the latter situation,
many chemical sensors were developed to improve the sensing performance [34]. A
typical example is the architecture hierarchy of butterfly wings, which can be synthesized
chemically via specific approaches. For example, well-organized porous hierarchical
SnO2 was fabricated with connective hollow interiors and thin mesoporous walls for
the sensing of chemical vapors [35,36]; the photonic structures from Morpho butterfly
wings were prepared for the sensitive optical sensing of ethanol [37–40]. In addition,
other biological templates have also been mimicked to fabricate sensitive materials with
hierarchical micro/nanostructures, such as the eggshell membrane [41] and the bristles on
the wings of the Alpine Black Swallowtail butterfly (Papilio maackii) [42]. Considering that
the assembly of biological micro/nanostructures mainly belong to the category of material
chemistry and has been summarized in other reviews [29,30,43], here we would like to
focus on how to utilize the biological sensitive materials with secondary transducers for
chemical sensing. Among various chemical sensors, field-effect sensors using biomaterials
could retain the biological chemical sensing mechanisms to some extent and could achieve
a performance comparable to biological chemical sensing systems by the using of functional
biomaterials as sensitive elements for chemical sensing, which are characterized with high
sensitivity, high specificity, and low detection limit [16,44].

Despite the rapid advancements and growing interests in the research and develop-
ment of field-effect sensors using biomaterials for chemical sensing, limited literature is
available that outlines recent advances in this field. This review will summarize the state
of the art in field-effect sensors using biomaterials for chemical sensing with an emphasis
on those using functional biomaterials as sensing elements, such as olfactory and taste
cells and receptors. Firstly, unique principles and approaches for the development of
these field-effect sensors using biomaterials will be introduced. Then, the major types
of field-effect sensors using biomaterials will be presented, which includes field-effect
transistor (FET), light-addressable potentiometric sensor (LAPS), and capacitive electrolyte–
insulator–semiconductor (EIS) sensors. Finally, the current limitations, main challenges
and future trends of field-effect sensors using biomaterials for chemical sensing will be
proposed and discussed.

2. Fundamental of Field-Effect Sensors Using Biomaterials

In biological chemical sensing systems, the process of chemical signal detection is
initialized by the special interactions between molecular detectors and specific chemical
substances, which can trigger a cascade of intracellular biochemical reactions to convert the
chemical signals into cellular responses such as cell membrane potential changes [45–47].
These cellular responses are transmitted to the central neural system for the further pro-
cessing of chemical signals, which allows for the perception of specific chemical substances.
Biological chemical sensing systems are the most powerful system for the detection of



Sensors 2021, 21, 7874 3 of 15

specific chemical substances with very high performances that cannot be matched by most
existing artificial devices. Therefore, it is worthwhile to develop biosensors using biomate-
rials in order to obtain artificial chemical sensing devices with performances comparable to
biological chemical sensing systems.

The main components of biosensors using biomaterials for chemical sensing include
sensitive elements and transducers, which are combined to mimic the functions of biological
chemical sensing systems to realize the conversion of chemical signals into measurable
signals by existing devices such as electrical signals and optical signals. As shown in
Figure 1, the basic idea of biosensors using biomaterials is to employ the extreme high
capability of functional biomaterials originating from biological systems for the detection
of specific chemical substances. The coupling of highly specialized biomaterials with
a transducer could lead to the generation of potential devices and instruments with a
performance comparable to that of biological chemical sensing systems for the detection of
chemical signals in a trace level within complex environmental conditions.
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2.1. Preparation of Functional Biomaterials

For the development of biosensors using biomaterials, it is required to obtain func-
tional biomaterials, which maintain their unique capability of chemical sensing and are
suitable to be used as sensitive elements to couple with transducers [16]. Because the
activity of biomaterials has a direct influence on the performances of biosensors with
regard to sensitivity, specificity, and stability, it is of great importance to obtain functional
biomaterials for chemical sensing. In addition to maintaining the natural structures and
native functions of biomaterials, it is also desirable to produce them in a cost-effective
manner and store them in a convenient manner. At present, several methods have been
applied in the preparation of functional biomaterials for chemical sensing, which can be
divided into two main categories: one is direct isolation from natural biological chemical
sensing systems, the other one is preparation based on biotechnology.

Direct isolation from natural biological chemical sensing systems is the most conve-
nient approach to achieving functional biomaterials for the development of biosensors
for chemical sensing. It is widely used in the early stage of biosensors, which has the
advantages of maintaining the natural structure and functions of biomaterials allowing for
the recognition of their natural ligands with high performances. In addition, the powerful
capability of biological chemical sensing systems could be preserved to some extent, which
helps to enhance the performance of biosensors. Different types of functional biomaterials
have been isolated from biological chemical sensing systems and successfully utilized
as sensitive elements for the development of biosensors. For instance, olfactory sensory
neurons and olfactory receptors have been isolated from animals or insects and have
served as sensitive elements in biosensors for odor detection [26,48–51]. Similarly, taste
bud cells and taste receptors have also been isolated from animals and applied in the
biosensors for taste substance detection [27]. However, this approach has some limitations
that hamper further development. The main problem is related to the purification of
desired biomaterials, which have crucial influences in the specificity of the biosensors. It
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is usually time-consuming and expensive to achieve sufficient functional biomaterials for
biosensors. In addition, it is also challenging to maintain their native function during the
preparation and measurement process of biosensors. All these limitations make it difficult
to develop a practical applicable or commercially available biosensors, especially for those
in-field applications.

Fast advances in biotechnology provide an alternative approach for the preparation of
functional biomaterials for biosensors. This approach can be used to achieve functional
biomaterials by the expression of desired type of olfactory or taste receptors either in
a heterologous cell system or a cell-free protein synthesis system. This allows for the
preparation of functional biomaterials with desired types of olfactory or taste receptors. In
addition, this approach makes it easy to graft tags in the prepared receptors, which could
greatly facilitate the purification and immobilization of functional biomaterials to improve
the performance of biosensors. For example, desired types of olfactory receptors have been
expressed in human embryonic kidney (HEK) cells [52,53] and yeast [54–57] and utilized as
sensitive elements for biosensors towards odorant detection. Taste receptors have also been
expressed based on biotechnology to prepare functional biomaterials for the development
of biosensors for taste substance detection [24,58–60]. However, this approach still suffered
from the labor-intensive and complex purification process of functional biomaterials. In
addition, the expression of receptors in a heterologous cell system usually led to cellular
toxic effects that are mainly induced by the membrane incorporation and incompatibility of
heterologous expressed olfactory or taste receptors. This results in low expression efficiency,
which makes it difficult to improve the preparation efficiency of functional biomaterials.
Therefore, cell-free protein synthesis is introduced as an alternative method to prepare
functional biomaterials to address this limitation. The synthesis system provides all the
necessary components for receptor synthesis such as amino acids, nucleotides, salts and
energy-generating factors [61,62]. This cell-free system can not only avoid the cell toxic
effect induced by receptor expression, but also could make the preparation process faster,
which could mean that the whole expression process could finish within a few hours.
Recently, olfactory and taste receptors (Figure 2) have been prepared by a cell-free protein
synthesis method and coupled with different transducers for the development of biosensors
towards chemical sensing [63,64]. This method could also help the right receptor protein
folding via the modification of synthesis reaction conditions. However, it is still a big
challenge to produce olfactory receptors in a highly efficient and convenient manner due
to their hydrophobicity and dependence on a lipid bilayer environment [26].
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2.2. Fabrication of Field-Effect Devices

Another key component of biosensors is the transducers. Appropriate transducers
are also highly essential in order to convert the chemical signals sensed by the functional
biomaterials into the measurable signals. For the development of biosensors using biomate-
rials for chemical sensing, mass-sensitive devices (e.g., quartz crystal microbalances, QCM,
and surface acoustic wave, SAW) and field-effect devices (FEDs) are the most commonly
used transducers [65–67]. Both of them can record the responsive signals from functional
biomaterials upon exposure of chemical substances. Basically, FEDs function as trans-
ducers to detect the chemical signals sensed by functional biomaterials and transmit the
responsive signals to the peripheral circuits for further signal processing [68]. Therefore,
it is crucial to achieve very good and stable coupling between field-effect devices and
functional biomaterials in order to develop biosensors with high performances. These
biosensors are usually configured with corresponding measurement setup and peripheral
circuits in order to readout, collect, and process the detected chemical signals. In this
review, we will focus on the biosensors using FEDs as transducers, which mainly include
field-effect transistor (FET), light-addressable potentiometric sensor (LAPS), and capacitive
electrolyte–insulator–semiconductor (EIS) sensors (Figure 3).
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Fast advances in the micro-fabrication process have greatly facilitated the design and
fabrication of various specialized field-effect devices, which could be used as transducers
for the development of biosensors towards chemical sensing. For example, FET can be
fabricated via a standard micro-fabrication process on silicon wafer [20,69]. The mecha-
nisms and structure of FET are schematically shown in Figure 3a. Usually, an insulator
layer is first grown on the surface of silicon wafer via thermal oxidation, which can be used
as the gate of FET devices. In some cases, the insulator layer was further deposited with
a Si3N4 layer to improve the performance of FET devices. By the following, polyimide
is often utilized to form a passivation layer in order to fix with a printed circuit board.
Then, the source and drain electrodes are usually fabricated based on photolithography
process. Finally, epoxy resin could be used to encapsulate FET devices, which is then fixed
with a detection chamber allowing for the exposure of gate surface to the measurement
solution inside the detection chamber. With this configuration, the chemical signals sensed
by functional biomaterials can be coupled to the gate electrodes of FET, which are then
transmitted to the peripheral circuit via the source and drain electrodes of FET.

The LAPS devices and EIS devices are also silicon-based FEDs, as shown in
Figure 3b,c [70–72]. Both of them have the same structure of electrolyte–insulator–
semiconductor. The difference between them is the measurement configuration. LAPS
usually require a moveable focused light to realize addressable measurement on the de-
sired points, while EIS do not require any light illumination during measurement. The
structures of LAPS and EIS devices are much simpler than that of FET devices, which
greatly facilitated the fabrication process. They are often fabricated based on silicon wafer,
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which is first thermal oxide with a layer of SiO2 on its surface to service as insulator layer.
In most cases, the insulation layer surface was further grown with a layer of Ta2O5 or Si3N4
to improve their performance. Then, the oxide layer was removed from the rear side of the
wafer, which is then deposited with a metal layer (e.g., Al or Au) to be utilized as Ohmic
contact. Finally, the wafer was cut into separate small chips and fixed with a detection
chamber. They can thus be applied to the development of biosensors by the immobilization
of functional biomaterials onto the gate surface of FEDs exposed to the detection chamber.

2.3. Coupling of Functional Biomaterials with Field-Effect Devices

The coupling of functional biomaterials with FEDs has a significant influence on the
performance of biosensors. It is thus highly essential to achieve highly efficient coupling
between functional biomaterials and FEDs [23,73]. Highly efficient coupling means not
only maintaining the structure and functions of functional biomaterials to make them
suitable to serve as the sensitive elements for chemical sensing, but also to transduce
the responsive signals into the output signals via FEDs. The output signals will then
be further processed by the peripheral circuits [74,75]. Therefore, biosensors usually
require the related peripheral circuits and measurement setup to realize the detection of
chemical signals.

Functional biomaterials used for the development of biosensors are mainly divided
into two categories, i.e., cellular/tissue biomaterials [28] and biomolecules [26,75]. As
shown in Figure 4, for cellular/tissue biomaterials, it is ideal to provide a surface that is
similar to the cell culture dish, which can provide good surface hydrophilicity and proper
surface charges for cell or tissue culture and attachment. However, the surface of FEDs
usually consists of silicon dioxide or metal oxide, which shows poor biocompatibility
and makes it unsuitable for direct cell or tissue attachment and culture. To improve the
biocompatibility of FEDs, a surface modification process is usually required before cell or
tissue attachment as reported in some cases [28]. For example, poly-l-ornithine and laminin
mixture with a proper rate have been utilized to treat the surface of FEDs to achieve better
coupling between cells and FEDs [71]. However, at present, it is still a huge challenge to
obtain ideal coupling between cell membrane and the surface of FEDs for the development
of biosensors towards chemical sensing.
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For biomolecules, highly efficient coupling with FEDs usually requires capturing
functional biomolecules and avoiding the non-specific adsorption of unrelated molecules
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to improve the specificity of the biosensors. Current available immobilization approaches
mainly include physical adsorption, covalent attachment via chemical reactions, and
specific binding via couple molecular pairs, such as a biotin–avidin system. It is crucial to
choose the optimal approach to develop biosensors according to the properties of functional
biomaterials and surface characters of transducers, since each approach has its intrinsic
advantages and disadvantages. For example, physical adsorption has the advantage
of being simple, label-free, and reproducible, but it often suffers from the instability of
coupling since it can be easily disrupted by minor changes in the microenvironment such
as salt density. On the other hand, covalent attachment is much more stable and robust
than physical adsorption. In addition, it provides an approach to regulate the surface
density of biomolecules, which is very important for achieving optical performances of
biosensors [63]. However, the process of covalent attachment is complex and usually
require the modification of biomaterials or sensitive surface of transducers, which hamper
their applications to some extent. Similarly, the biotin–avidin system can provide strong
and robust noncovalent binding between biomolecules and the gate surface of FEDs,
which shows very high affinity due to the specific strong interactions between avidin
and streptavidin. The biotin–(strept)avidin complex is very strong and robust even in
complex environments, which contribute greatly to the repeatability and reproducibility of
biosensors. However, the biotin–avidin system also suffers from the complex labelling and
reaction process. In general, to obtain the best performances of biosensors, the key point is
to specifically couple the functional biomaterials with transducers with high specificity and
high stability, which could help to avoid the nonspecific adsorption and generate stable and
highly sensitive responsive signals. In addition, it is also very important to maintain the
natural sensing functions of biomolecules, especially for those membrane receptors such
as olfactory and taste receptors. A hydrophobic environment often needs to be provided,
which is crucial to maintaining the chemical sensing function of membrane receptors [66].

3. Development of Field-Effect Sensors Using Biomaterials

Significant progress has been achieved in the field of field-effect sensors using bioma-
terials as sensitive elements and FEDs as transducers. There are three main types of FEDs
that have been applied in the development of biosensors using biomaterials for chemical
sensing, which include FET, LAPS, and EIS sensors. Each of them has shown promising
prospects in various applications.

3.1. FET-Based Biosensors Using Biomaterials

The most commonly used FEDs is FET, in which the gate surface can be modified
with various charge-sensitive layers for the sake of detecting charged biomolecules as
well as potential changes induced by excitable cells such as neurons [76]. The obvious
advantages of FET come from its innate signal amplification capability, which has shown
promising prospects for the detection of weak biological electrical signals. The earliest
study of applying FET to biosensors using biomaterials was reported in 2000, in which FET
was utilized to couple with the antenna of Colorado potato beetles to form a bioelectronic
interface for the detection of a volatile marker (i.e., (Z)-3-hexen-1-ol) of plant damage,
as shown in Figure 5 [20]. This biosensor was able to detect the beetle-damaged plants
with high performance in the field, which represents a powerful tool for plant protection
and food safety. FET can provide a particular reliable joining between an insect antenna
and transducer, which makes it ideal for recording the responsive electrical signals from
antennae of beetle in response to (Z)-3-hexen-1-ol [77,78]. In short, the potential changes
in insect antenna induced by the exposure of specific volatile compounds were recorded
by monitoring the changes in the drain current from the FET source and drain electrodes,
which are dependent on the concentration of specific chemical volatile compounds. In
addition, the small size of biosensors based on FET devices makes it possible to develop
portable instruments for the in-field applications such as the detection of explosive com-
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pounds in the field of public safety, plant damage detection in the field of plant protection,
and smoke detection for building safety.
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At the molecule level, single wall carbon nanotube (swCNT) has been used to modify
the gate surface of FET to generate swCNT-FET, which has been used as transducer and
combined with DNA molecules to develop biosensors for chemical sensing [79]. It is
indicated that this biosensor with hybrid nanostructure is capable of detecting specific
volatile compounds with high sensitivity and specificity. It has been proven that distinct
responsive signals can be recorded from swCNT-FET coupled with different bases of DNA
molecules. The DNA base sequence-dependent responses suggested that this biosensor
is suitable to be utilized to construct gas sensor array towards electronic noses since the
responsive signals to the compounds are mainly dependent on the specific base sequences
of ssDNA molecules. Similarly, olfactory receptor protein (i.e., hOR2AG1) has been immo-
bilized onto the gate surface of FET that had been previously modified with swCNT [52]
or carboxylated-polypyrrole nanotubes (CPNT) [80] for the development of biosensors in
order to detect specific odorants with high sensitivity. Similarly, taste receptors have also
been attached onto the gate surface of swCNT-FET or CPNT-FET to develop biosensors for
the detection of bitter compounds [24,59]. The basic mechanism of these biosensors using
receptors rely on the specific interactions between receptors and their ligands, which can
often be measured by monitoring the changes in the drain-source current of FETs (Figure 6).
These biosensors using human taste receptor protein for bitter compound detection have
been applied for the detection of real food samples, which provide valuable tool and show
promising prospects in the field of food safety.
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3.2. LAPS-Based Biosensors Using Biomaterials

LAPS is a surface potential detector, which is suitable for use as a transducer for
the development of cell-based biosensors [71,81,82]. It is able to record the changes in
extracellular potentials of chemical sensitive cells such as olfactory sensory neurons and
taste receptor cells. LAPS has the advantage of having a flat surface and light addressability,
which make it ideal for cell measurement. Cells can be cultured randomly on the LAPS
surface and a focused light is used to choose the desirable cells for measurement. This
overcomes the limitations of FETs, which usually require cells to be cultured precisely on
the gate area of the devices.

LAPS has been used to develop various biosensors by the combination with different
types of chemical sensitive cells. For instance, olfactory sensory neurons isolated from rat
epithelium have been cultured on the LAPS surface to develop a biosensor towards the
detection of odorants or neurotransmitters, such as acetic acid and glutamic acid [50,51].
In addition, LAPS has also been reported to be able to record the responsive signals from
an intact rat olfactory epithelium induced by different odorants [83,84]. However, the uti-
lization of biomaterials directly originating from animals usually limited by their intrinsic
properties such as unknown types of olfactory receptors existing in the biomaterials. To
address this issue, bioengineered olfactory receptor neurons expressed with well-defined
olfactory receptors were employed to serve as sensitive elements for biosensors towards
odorant detection [85]. It is reported that this biosensor based on bioengineered olfactory
receptor neurons can be used to detect the specific target odorant in a dose-dependent
manner. Furthermore, HEK-293 cells expressed with a specific olfactory receptor, ODR-10,
were utilized to couple with LAPS to develop a biosensor for the detection of specific
odorant, diacetyl. It has been proven that the measurement of the cell acidification signals
recorded by LAPS from single cells can also be used as the responsive signals for the
detection of specific odorant stimulation [60].

Similarly, taste cells isolated from rat tongue have been cultured on the LAPS surface
to develop biosensors for various taste signals such as bitter [86] and acid [87]. For
example, the LAPS surface has been modified with a thin serotonin-sensitive polyvinyl
chloride (PVC) membrane, which has been applied in the research of taste cell-to-cell
communications via the monitoring of serotonin released from single taste cells [88]. It
is reported that this biosensor was able to record the cell membrane potential changes
as well as serotonin release from single taste cells in response to acid stimulation and
taste mixture (bitter and sweet). In addition, the LAPS surface was modified with a
layer of ATP-sensitive aptamers and applied in the detection of ATP release as well as
membrane potential changes from single taste bud cells under taste mixture stimulations
(Figure 7) [89,90]. It has been proven that this biosensor was able to detect local ATP
secretion from a single taste cells in a dose-dependent manner. Biosensors based on
LAPS provide a novel and powerful approach to researching taste sensation, which could
potentially contribute to the understanding of taste signal transduction mechanisms and
cell-to-cell communication.
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3.3. EIS-Based Biosensors Using Biomaterials

Similar to LAPS, capacitive EIS sensors belong to the FEDs category and are a kind
of charge-sensitive devices. EIS sensors are able to detect surface charge changes induced
by the attachment of charged molecules onto the sensor surface. The most common
applications of EIS sensors are related to the label-free detection of pH changes [91,92],
ion concentrations [93–98], charged molecules [99], and charged nanoparticles [100,101].
In principle, the attachment of charged molecules or the binding of receptor and ligand
occurring on the gate surface of an EIS sensor will lead to the redistribution of surface
charge, which will, in turn, result in changes in the space–charge distribution in the
semiconductor layer of the EIS sensors. These changes can be reflected by the changes
in the output signals of the ES sensors. The decisive advantages of EIS sensors are their
simple structure and low cost, which can be fabricated in a convenient and low-cost manner
due to the unnecessary involvement of photolithographic process steps or complicated
encapsulation procedures. In addition, the capability of surface charge detection makes
them suitable for use as transducers for the development of biosensors towards label-free
chemical sensing. For instance, EIS sensors have been combined with an olfactory receptor,
ODR-10, to develop a biosensor for the detection of a specific odorant, diacetyl [63]. The
mechanism of this biosensor was schematically shown in Figure 8a. To improve the
coupling efficiency of olfactory receptors with the EIS sensor, the olfactory receptors were
prepared using a cell-free protein expression system and fused with a His6-tag to realize
the on-chip purification of sensitive elements based on EIS sensor modified with anti-His6-
tag aptamers. The responsive signals induced by the specific binding between olfactory
receptor and its ligand were measured by the monitoring the capacitance changes in the EIS
sensor, which is performed by the capacitance − voltage (C − V) and constant-capacitance
(ConCap) measurements. It has been proven that this biosensor is able to detect diacetyl
in a linear concentration-dependent manner at concentrations ranging from 0.01 nM to
1 nM with a detection limit of 0.01 nM (Figure 8b). This biosensor has great potential to be
applied in various fields related to chemical sensing such as biomedicine, food safety, and
environmental protection.
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4. Conclusions and Prospects

With fast advancement in the microfabrication process, more and more FEDs have
been designed and fabricated for various applications. The increasing utilization of FEDs
as transducers and functional biomaterials as sensitive elements as part of the development
of biosensors for chemical sensing has become a recent trend, which is attracting more
and more attention. Biosensors based on FEDs have also shown promising prospects
and potential applications in a wide range of fields such as biomedicine, food safety,
and environmental protection. However, there are also some limitations that hamper
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the further development and applications of field-effect sensors using biomaterials. At
present, the challenges faced regarding the further development of field-effect sensors
using biomaterials mainly include: (1) how to obtain sufficient functional biomaterials
that are suitable to serve as sensitive elements, (2) how to fabricate microscale/nanoscale
FEDs with sizes that are comparable to the sizes of functional biomaterials, and (3) how to
improve the coupling efficiency of biomaterials and transducers as well as the responsive
signal transduction efficiency. In the near future, the development of biosensors based on
FEDs will probably part of the method of addressing the challenges mentioned above.

Field-effect sensors using biomaterials have shown a powerful capability for chem-
ical sensing, and can not only be used as a novel approach to chemical sensing, but can
also be applied in the research for mechanisms of chemical sensations. The final goal of
future research and development on field-effect sensors using biomaterials is to improve
their performances for chemical sensing in complex environments, which includes im-
provements on sensitivity, specificity, repeatability, and stability. This usually requires the
incorporation of multiple technique advancements in different fields such as biotechnology,
nanotechnology, and microfabrication processes. For instance, progress in nanotechnology
and microfabrication processes allows for the micro/nano FEDs that could facilitate the
coupling with biomaterials. Similarly, advancement in biotechnology could provide novel
approaches for the preparation of functional biomaterials that are more suitable to being
used as sensitive elements in the development of field-effect sensors using biomaterials
for chemical sensing. It is expected that these advancements will greatly contribute to the
further development and applications of field-effect sensors using biomaterials.
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