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ABSTRACT: Tropane derivatives are extensively used in medicine, but catalytic asymmetric methods for their synthesis are
underexplored. Here, we report Rh-catalyzed asymmetric Suzuki−Miyaura-type cross-coupling reactions between a racemic N-Boc-
nortropane-derived allylic chloride and (hetero)aryl boronic esters. The reaction proceeds via an unexpected kinetic resolution, and
the resolved enantiopure allyl chloride can undergo highly enantiospecific reactions with N-, O-, and S-containing nucleophiles. The
method was applied in a highly stereoselective formal synthesis of YZJ-1139(1), a potential insomnia treatment that recently
completed Phase II clinical trials. Our report represents an asymmetric catalytic method for the synthesis of YZJ-1139(1) and related
compounds.
KEYWORDS: alkaloids, asymmetric catalysis, bicycles, rhodium, Suzuki−Miyaura coupling, kinetic resolution

■ INTRODUCTION
Molecules with N-methyl-8-aza-bicyclo[3.2.1]octane scaffolds,
generally known as the tropane alkaloids, display a wide array
of biological and pharmaceutical activities.1−3 Tropane
derivatives, for example, cocaine (Scheme 1a) and scopol-
amine, are well-known for displaying psychoactive effects, and
other tropane derivatives, including atropine (Scheme 1a), are
used as anticholinergics and stimulants for treatment of
neurological and psychiatric disorders such as Parkinson’s
disease and depression.4−6 A 8-aza-bicyclo[3.2.1]octane
(nortropane)-derived molecule YZJ-1139(1) (Scheme 1a)
was also reported recently as an orexin receptor antagonist,
which has completed Phase II clinical trials and may become a
treatment for insomnia.7

Historically, tropane alkaloids had been extracted from
plants, but their unique biological activities have inspired the
development of synthetic routes to tropane derivatives.
Willstaẗter’s first synthesis of cocaine8 and Robinson’s highly
efficient double-Mannich approach toward tropinone9 are early
milestones in this highly active field. Many strategies toward
enantioenriched tropanes rely on the derivatization of natural
tropane alkaloids, chiral resolution, and synthesis from the
chiral pool.10

Given the fame of these molecules, and their importance to
medicine, it is remarkable that stereoselective methods using
achiral starting materials are limited.3 Current methods largely
use one of two approaches: (1) desymmetrization of meso
tropinone and its derivatives with stoichiometric chiral lithium
amide bases,11−14 and (2) enantioselective synthesis of the
tropane scaffold where the stereochemical information is
introduced concomitant with the formation of the bicycle.15

Chiral auxiliary16−20 and asymmetric catalytic approaches are
known for the latter.21−27

Previously, our group reported asymmetric Suzuki−
Miyaura-type cross-coupling reactions with racemic mono-
and bicyclic allyl chlorides (Scheme 1b).28−34 In these highly
enantioselective transformations, both enantiomers of the
starting material are converted into a single enantiomer of
the product. Deracemization is believed to occur via the
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formation of a common pseudo-prochiral or meso Rh-π-allyl
complex (DYKAT type II).35,36 We wondered if we could
apply a related strategy to the catalytic asymmetric synthesis of
sterically congested bicyclic N-heterocycles and hence develop
an asymmetric cross-coupling approach to the nortropane
scaffold (Scheme 1c).

■ RESULTS AND DISCUSSION
A suitable nortropane-derived allyl chloride (±)-1a was
synthesized from N-Boc-nortropinone in five synthetic steps
(see the Supporting Information). Using previously reported
conditions for Rh-catalyzed Suzuki−Miyaura cross-couplings
established by our group,31 the reaction of allyl chloride
(±)-1a with phenyl boronic acid 2aa afforded 3a in 94%
enantiomeric excess as a single diastereomer (>20:1), albeit
only in 28% yield (Table 1, entry 1).

We extensively examined the influence of temperature,
solvent, base, boronic acid derivatives, catalyst loading,
equivalents of reagents, and the use of additives (selected
examples are presented in Table 1; for additional data see SI

Tables S1 and S2). The protecting group on nitrogen and the
leaving group of the nortropinone-derived substrate were
investigated. We found that L1 was superior to related
bidentate phosphine ligands regarding both reactivity and
enantioselectivity (Table 1, entries 1−4). An increase in yield
was observed by increasing both the equivalents of the base
and the coupling partner (entry 5). Similar results were
obtained using phenyl boronic pinacol ester 2a as the
nucleophile (entry 6), and along with 3a, we also isolated
enantiopure (>99% ee) allyl chloride (+)-1 in 21% yield.

Upon shortening the reaction time from overnight to 0.5 h,
the yields of 3a were similar, but the yield of (+)-1a increased
to 37% (entry 7) with a slight decrease in ee (97% ee). We
attribute the decreased yield of (+)-1a during longer durations
to the slower but competitive hydrolysis of 1a under the
reaction conditions. Using less equivalents of boronic pinacol
ester and base (entries 7 and 8) gave similar results but
purification by column chromatography was easier. Here, using
the pinacol ester gave superior results compared to the free
boronic acid (entries 8 and 9); at 1 h reaction time, 3a was
isolated in 50% yield (95% ee), and enantiopure (+)-1a was
isolated in 37% yield (entry 10).

Changing the protecting group on nitrogen from N-Boc to
methyl carbamate resulted in a higher yield at 63% and ee of
93% (entry 11). However, the diastereoselectivity decreased
drastically from >20:1 to 5.9:1, likely due to steric reasons.

A highly selective kinetic resolution would intrinsically limit
the obtained yields of these reactions to 50%, but we also
speculated that catalyst deactivation or decomposition of the
boronic ester could limit conversion. To help distinguish
between these scenarios, we subjected (+)-1 (>99% ee)
instead of racemic allyl chloride to our standard reaction
conditions and allowed the reaction to occur overnight
(Scheme 2a). Small amounts of the desired coupling product
were obtained (7%), albeit to our surprise only with 61% ee.
Additionally, some enantiopure allyl chloride (+)-1a (50%)
was recovered, while the rest of the substrate was hydrolyzed
to the corresponding allyl alcohol.

This result indicates that, unlike the previous DYKAT
process developed by our group, where both the enantiomers
form a common symmetric Rh-π-allyl complex intermediate,
when using L1, oxidative addition of (+)-1a either does not
occur or does not give the same intermediate as enantiomer
(−)-1a (Scheme 2d), and product formation via (+)-1a is
slow.

To test if oxidative addition (−)-1a would result in the
formation of meso π-complex, which would result in complete
loss in stereochemical information upon oxidative addition, we
performed a cross-coupling reaction with enantiopure allyl
chloride (+)-1a with an achiral ligand biphep (Scheme 2b).
Under these conditions, we obtained (+)-3a in 11 and 37% ee.
The significant loss in ee in the reaction with biphep suggests
that reductive elimination is at least partially enantio-
determining and is controlled by the ligand when Segphos is
used. We attribute the partial, but not complete, loss in
stereochemical information in the experiment with biphep to
either σ−π−σ isomerization mechanism (Scheme 2e), which
occurs at a rate similar to reductive elimination, or to a lack of
selectivity amongst different oxidative addition-type pathways
when biphep is used.

Using a racemic mixture of Segphos as the ligand in the
reaction with enantiopure (+)-1a, we obtained (+)-3a in 81%
yield and 92% ee (Scheme 2c). In analogy to the combination

Scheme 1. Tropane Derivatives and Works on Rh-Catalyzed
Cross-Coupling Reactions of Cyclic Compounds
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of racemic allyl chloride and enantiopure ligand, this
experiment shows the strong matched effect between (+)-1a
and (R)-Segphos in the oxidative addition step (or (−)-1a and
(S)-Segphos), most likely for steric reasons, which ultimately
results in a highly selective kinetic resolution.

The partial DKYAT character of this transformation
(Scheme 2a,e) does not allow for a meaningful quantification
of s-factors (see SI p. S36).

A range of aryl boronic pinacol esters with electron-
withdrawing and donating substituents at the para- and
meta-positions yielded the desired coupling products typically
in 40−50% yield (Scheme 3, 3a−3h, 3l−3o) and >94% ee as
single diastereomers (>20:1 d.r.). These examples included
various aryl halides, alkoxy groups, ester, and an aryl silane,
which are useful intermediates for further reactions.

More challenging coupling partners featuring an iodide,
cyano, or acetyl group (3i−3k) resulting in diminished yields
but consistently high enantioselectivity.

We observed only trace product formation with 2-
methylphenylboronic pinacol ester (2u), likely due to sterics
and/or competitive protodeborylation.37

Heteroaryl boronic pinacol esters can be used. 2-Furanyl-
and 2-chloropyridyl-boronic pinacol esters performed well with
yields over 40% and high enantioselectivities (3p, 3q). 3-
Furanylboronic pinacol esters gave only 15% yield, likely due
to rapid protodeborylation�a common problem with
heterocyclic boronic acids and esters.38

Interestingly, a few examples gave >50% yield (3l and 3p
gave 59 and 56% yield, respectively), which we have briefly

Table 1. Selected Optimization Experimentsa

aRh[(cod)OH]2 (2.5 mol %), ligand (6 mol %), (±)-1a (0.2 mmol), 2aa or 2a, CsOH (50 wt % aq.), THF, 65 °C. bIsolated yield. cEnantiomeric
excess determined by supercritical fluid chromatography (SFC) analysis on a chiral nonracemic stationary phase. dDiastereomeric ratio determined
by the integration of 1H NMR spectra. eNumbers in brackets refer to the yield and ee of recovered allyl chloride.
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investigated but still do not fully understand, and the yield of
3p was found to further improve upon scale-up (see below).

The absolute and relative stereochemistries of the product
and resolved allyl chloride (Schemes 3a and 4a) were
determined by single-crystal X-ray diffraction of 3p and
(+)-1a.39,40

To demonstrate the synthetic utility of our method, we
applied Rh-catalyzed Suzuki−Miyaura coupling with allyl
chloride (±)-1a to formal synthesis of the orexin receptor
antagonist YZJ-1129(1) (Scheme 4a,b),41 which recently
passed Phase II clinical trials for the treatment of sleep
disorders. To the best of our knowledge, the only other
previously reported synthesis of YZJ-1129(1) was recently
reported by a process chemistry group and relied on
preparative high-performance liquid chromatography

(HPLC) separation of the enantiomers or a chiral auxiliary
approach.7

A gram-scale cross-coupling reaction between (±)-1a and 2-
furanylboronic pinacol ester 2p afforded 3p in 64% isolated
yield and >99% ee (Scheme 4a). The enantioenriched allyl
chloride (+)-1a was isolated in 30% yield and >99% ee.

Reduction of 3p with Wilkinson’s catalyst gave (+)-4 in 98%
yield and >99% ee. The furyl group was then converted into a
hydroxymethyl group via a two-step oxidative cleavage/
reduction protocol to give (−)-5 in 49% yield, a previously
reported intermediate in the synthesis of YZJ-1129(1).

Previously, our group reported a Cu-catalyzed kinetic
resolution reaction of a piperidine-derived allyl chloride, and
the enantioenriched allyl chloride was used in enantiospecific
substitution reactions with heteroatom-based nucleophiles,42

Scheme 2. Mechanistic Investigations and the Proposed Mechanisma,e

aRh-catalyzed Suzuki−Miyaura coupling reaction with (+)-1a and 2a. bRh-catalyzed Suzuki−Miyaura coupling reaction with (+)-1a and biphep as
ligand. cRh-catalyzed Suzuki−Miyaura coupling reaction with (+)-1a and rac-Segphos as ligand. dProposed mechanism. eEquilibration between two
Rh-σ complexes.
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and we wondered if related substitutions with (+)-1a were
possible.

The substitution with morpholine, thiophenol, and phenol
gave (−)-6, (−)-7, and (−)-8 in excellent yield and
enantiospecificity (Scheme 4c), respectively. Other enantio-
specific substitution reactions with this substrate are likely
possible. The absolute stereochemistry of (−)-6 was
determined by single-crystal X-ray diffraction, and this,
combined with the knowledge of the absolute configuration
of the starting material, indicates that the substitution reaction
proceeds via an syn-SN2′ pathway (Scheme 4c) The relative
and absolute stereochemistry of (−)-7 and (−)-8 is assigned in
analogy to (−)-6.

■ CONCLUSIONS
In summary, we developed an efficient kinetic resolution of a
nortropane-derived allyl chloride via Rh(I)-catalyzed Suzuki−
Miyaura cross-couplings. The reaction tolerates a range of
different aryl- and heteroaryl boronic pinacol esters with
synthetically useful functional groups in high enantioselectivity
and diastereoselectivity. The coupling product with 2-furanyl
pinacol ester was used in a formal asymmetric synthesis of YZJ-

1129(1). Further, the resolved enantiopure allyl chloride can
undergo enantiospecific syn-SN2′ reactions with O-, S-, and N-
nucleophiles. Overall, this work provides access to a wide range
of enantiomerically enriched tropane derivatives.

■ ASSOCIATED CONTENT
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Crystallographic data for (+)-1a, 3p, and (−)-6 have
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Centre as supplementary publication nos. CCDC
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via www.ccdc.cam.ac.uk/data_request/cif (CIF)
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Scheme 3. Scope of the Reactiona

aRh[(cod)OH]2 (2.5 mol %), L1 (6 mol %), (±)-1a (0.2 mmol, 1.0 equiv), 2 (3.0 equiv), CsOH (50 wt % aq.; 2.0 equiv), THF (0.2 M), 65 °C, 1
h. All yields presented are isolated yields. Enantiomeric excess determined by supercritical fluid chromatography (SFC) analysis on a chiral
nonracemic stationary phase. Single diastereomer (>20:1) obtained unless stated. b4 h. cDioxane instead of THF, 80 °C overnight. d3j: 18:1 d.r.,
3r: 17:1 d.r., 3s: 19:1 d.r. e2 h.
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(33) Kucěra, R.; Goetzke, F. W.; Fletcher, S. P. An Asymmetric

Suzuki−Miyaura Approach to Prostaglandins: Synthesis of Tafluprost.
Org. Lett. 2020, 22, 2991−2994.
(34) Hedouin, G.; Hazra, S.; Gallou, F.; Handa, S. The Catalytic

Formation of Atropisomers and Stereocenters via Asymmetric
Suzuki−Miyaura Couplings. ACS Catal. 2022, 12, 4918−4937.
(35) Goetzke, F. W.; Fletcher, S. P. Additions to Racemates: A

Strategy for Developing Asymmetric Cross-Coupling Reactions.
Synlett 2021, 32, 1816−1825.
(36) van Dijk, L.; Ardkhean, R.; Sidera, M.; Karabiyikoglu, S.; Sari,
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