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Abstract

A few colors, such as red and yellow, are commonly found in aposematic (warning) signaling

across taxa, independent of evolutionary relationships. These colors have unique traits (i.e.,

hue, brightness) that aid in their differentiation, and perhaps, their effectiveness in promoting

avoidance learning. This repeated use calls into question the influence of selection on spe-

cific warning colors adopted by aposematic prey-predator systems. To disentangle the influ-

ence of color characteristics on this process, we trained week-old chickens (Gallus gallus

domesticus) to learn to avoid distasteful food that was associated with one of three color sig-

nals (yellow, white, red) that varied in both hue and in brightness in order to assess which

of these traits most influenced their ability to learn avoidance. Our results show that while

chicks learned to avoid all three colors, avoidance was based on the hue, not brightness of

the different signals. We found that yellow was the most effective for avoidance learning, fol-

lowed by red, and finally white. Our results suggest that while these three colors are com-

monly used in aposematic signaling, predators’ ability to learn avoidance differs among

them. These results may explain why yellow is among the most common signals across

aposematic taxa.

Introduction

Convergent phenotypic evolution, where traits have evolved independently, is widespread in

the natural world, and as such, provides an intriguing opportunity to examine the evolutionary

pressures driving such patterns. Convergence can be found in a wide variety of taxa from

plants [1] and animals [2] to single-celled organisms [3], making the subject of convergent

evolution an important question in biology. From the evolution of eyes [4] to flight [5], these

“natural experiments” provide perspective into how the natural world functions. Conclusions

drawn from these examples can be quite powerful as they represent a broad, repeated pattern

from which there are apparent evolutionary mechanisms leading to such convergence. Com-

mon explanations for similarity, such as phylogenetic relationships, can be discounted due to

the independence of the phenomena, allowing researchers to get to the underlying evolution-

ary mechanisms that could promote such convergent evolution.

Aposematic (warning) signaling is widespread throughout Animalia (Fig 1), and despite

the variety of colors and patterns employed, there are common components to this signaling
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[6]. Most common are yellow, red, and white coloration, which comprise a dominant com-

ponent to the vast majority of aposematic signals. Aposematic signaling functions by display-

ing memorable coloration to would-be predators [7–10]. White, yellow, and red are also

among the most contrasting colors against a wide variety of natural backgrounds. These

commonalities among diverse aposematic taxa beg the question of why such colors repeat-

edly appear in independent instances of aposematic signaling. It is important to note that

these signals vary not only in color (hue), but also in brightness. It is then possible that

the brightness signal components may be important, perhaps more important than hue,

in predator perception as this directly affects conspicuousness in a variety of lighting

environments.

As research into sensory ecology has progressed, our understanding of the constituent com-

ponents of signaling has also improved. Aposematic signaling has increasingly been under-

stood to not be comprised solely of conspicuous colors, but rather a complex combination of

features that aid in predator recognition, learning, and avoidance [11–13]. Everything from

color, pattern, behavior, and lighting environment can impact the learning and recognition of

an aposematic signal [14]. Here, we seek to decouple hue from brightness to determine which

is more important to the learning of an aposematic signal by predators.

While predators of aposematic species are undoubtedly quite varied and possess a variety of

visual systems, birds are commonly used in aposematism studies [15–17]. The primary reasons

for this is that they are common predators of aposematic taxa and have tetrachromatic vision,

allowing them to perceive and discern color very well [18]. Consequently, we utilized a model

avian predator to examine how well naïve individuals can learn to avoid a variety of apose-

matic signals that vary in both hue and brightness.

Fig 1. Aposematic signaling has been documented in a wide variety of taxa. These include, but are not limited to, A)

Dendrobatid frogs, B) Salamandrid salamanders, C) Micrurus coral snakes, D) Nudibranchs, E) Heliconius butterflies, and F)

Hymenopterans. Among these, similar colors have evolved, which are commonly some variation of yellow, red, and/or white.

Printed under a CC BY license, original copyright J.P. Lawrence 2017.

https://doi.org/10.1371/journal.pone.0194279.g001
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Materials and methods

This research was approved by the University of Mississippi IACUC and conducted under

University of Mississippi IACUC 14–026.

Color analysis

We created three different color signals to test learning. Signals were pictures of drawn frogs

with either white, yellow, or red stripes that mimic a pattern found in Dendrobates tinctorius
(with the exception of red). Bodies were black and legs were blue. White and yellow colors

were extracted from photographs of D. tinctorius from Grand Matoury and Kaw in French

Guiana, respectively, while the red color was extracted from photographs of Oophaga pumilio
from Bastimentos, Panama. These represent colors common in aposematic signaling, but they

also represent low (red), medium (yellow), and high (white) brightness (Fig 2). The modeled

colors were not meant to exactly match the frogs from which they were extracted, but provide

three distinctly different colors varying in both hue and brightness.

We took three color measurements for each color band (see Fig 2) of each printed frog

using an Ocean Optics Jaz A3305 spectrometer (S1 Text). We measured three different regions

on the color band at the top, middle, and bottom of the band. Measurements were averaged

and smoothed in the pavo package [19] in R [20] to create reflectance curves for each signal

(Fig 2).

Fig 2. Reflectance curves for each color signal. Color signals were smoothed and averaged using the pavo package in R. Lines represent means of all nine

measurements for each of the three colors red, yellow, and white (in black) while the shaded region represents a 95% confidence interval for each

corresponding signal.

https://doi.org/10.1371/journal.pone.0194279.g002
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We analyzed spectra using the pavo package [19] to examine the chromatic (color, hue) and

achromatic (luminance, brightness) contrasts between the two colors. The pavo package calcu-

lates contrasts in Just Noticeable Differences (JNDs) where a value of 1 JND would mean dif-

ferences could be observed under the modeled vision system when objects are stationary

under bright conditions [21]. However, in more natural conditions, signals with 3 JNDs or less

are unlikely to be distinguished from one another under a modeled visual system [21].

We used the average avian vision system for visual contrasts and chicken double cone sensi-

tivity to calculate achromatic contrasts under the D65 (standard daylight) illuminant [22]. We

conducted all pairwise comparisons between the three measurements for each band. Conse-

quently, each among-band comparison had nine different JND estimates. As JNDs represent a

threshold where a modeled visual system can or cannot distinguish signals from one another,

we analyzed whether or not means for each signal differ from 1 JND and, a more conservative

estimate, 3 JNDs using a nonparametric one-tailed sign test [21].

Learning experiments

In order to assess how predators learn avoidance, we used one-week-old chickens (Gallus gal-
lus domesticus; male cornish rock crosses from the commercial supplier, Ideal Poultry). These

were housed in wire brooders (approximately 1m x 1m x 30cm) together while not being tested

and fed a commercial corn meal mash. To examine how naïve predators learn color signals,

chicks were equally divided (N = 15 per treatment; 45 chicks total) into three different treat-

ments: white signal, yellow signal, and red signal. Trials were done in 30cm x 60cm wooden

compartments under full spectrum lighting. Chicks were placed individually into a compart-

ment and allowed to habituate for 2 hours. Chicks were food-deprived during this acclimation

period to ensure motivation to feed during the trials.

Once in the compartment and after the 2-hour acclimation period, training consisted of

teaching the chicks to eat a dried mealworm (Tenebrio molitor) from a petri dish with a printed

brown frog on a tan background below the transparent dish. The training phase was completed

once the chick had eaten three consecutive times, after which we allowed the birds to rest for a

period of 5 minutes.

The avoidance-learning trials consisted of the consecutive presentation of mealworms on

a petri dish with a printed frog beneath the dish displaying a warning signal matching the

dorsal pattern of D. tinctorius (described above) with either a white, yellow, or red (these col-

ors hereafter referencing the whole printed frog displayed in Fig 2, not solely the bands) on a

tan background. In order to make them unpalatable, mealworms were soaked in a solution

of 10% chloroquine for >1 hour. We recorded the hesitation time (i.e., the time until the

chick approached and ate the mealworm), and registered any behavioral reaction to the dis-

tastefulness of the mealworm after tasted or eaten. Such behaviors most often involved beak

wiping and head shaking. Each trial lasted 5min, followed by 5 resting minutes after which a

new petri dish with an unpalatable mealworm was offered on the same aposematic back-

ground. This procedure was repeated until the chick refused to eat the mealworm over three

consecutive trials. The test ended either when chicks “learned” the signal or proceeded

through 10 trials, whichever came first. If chicks proceeded through 10 trials without three

consecutive refusals, they did not learn the signal. When a chick refused the chloroquine-

soaked mealworm on the aposematic pattern, a palatable mealworm was offered on the train-

ing (brown frog) background, which the chick did not associate with an unpleasant experi-

ence. If the palatable mealworm on a brown frog background was refused (n = 5), these trials

were discarded due to the potential for satiation to be confused with learned avoidance. For

this reason, trials were run with additional chicks to ensure each treatment had 15 replicates.

Avian learning of warning signals
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We registered the number of trials (i.e., mealworms consumed) that it took for the chick to

learn to avoid the signal. This research was conducted under University of Mississippi

IACUC animal care protocol14-026.

Data analysis. We analyzed the data (S1 Table) from the learning experiments using an

analysis of variance (ANOVA) in R [20]. We examined the number of attack trials (i.e., how

many trials in which chicks tasted the mealworm) and average hesitation time. If ANOVA

yielded significant results, we conducted post-hoc Tukey’s Honest Significant Difference tests

to examine pairwise comparisons among color signals. We examined whether there were dif-

ferences in chicks’ ability to learn different signals using a generalized linear hypothesis test

with Tukey contrasts.

Results

Color differences

As expected, mean Just Noticeable Differences (JNDs) for each comparison of chromatic

contrasts was found to be quite distinct (mean ± SE: red—white: 10.81 ± 0.38, yellow vs. red:

10.37 ± 0.11, and white vs. yellow: 11.86 ± 0.16; Fig 3A). However, achromatic contrasts

were distinct between the red—white (mean ± SE: 8.56 ± 0.83) and yellow—red (mean ± SE:

9.27 ± 0.82), but the white—yellow comparison averaged less than 1 JND (mean ± SE:

0.8 ± 0.17; Fig 3B). Nonparametric sign tests for chromatic contrasts revealed that all three

comparisons were significantly greater than 1 JND (red—white: p = 0.002; yellow—red:

p = 0.002; white—yellow: p = 0.002) and 3 JNDs (red—white: p = 0.002; yellow—red:

p = 0.002; white—yellow: p = 0.002). Achromatic contrasts were significantly greater than 1

JND and 3 JNDs for the red—white (1 JND: p = 0.002; 3 JNDs: p = 0.002) and yellow—red

(1 JND: p = 0.002; 3 JNDs: p = 0.002) comparisons, but were not significantly greater than 1

JND, and thus 3 JNDs, for the white—yellow comparison (1 JND: p = 0.91; 3 JNDs: p = 1).

Fig 3. Mean Just Noticeable Differences (JNDs) between different signal comparisons for both A) chromatic and

B) achromatic contrasts. Signal comparisons were Red—White (R—W), Yellow—Red (Y—R), and White—Yellow

(W—Y). The dotted line represents 1 JND and the dashed line represents 3 JNDs. Error bars represent standard error.

https://doi.org/10.1371/journal.pone.0194279.g003
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Learning experiments

When examining both the number of trials required to learn avoidance and the average hesita-

tion time, we find significant differences between color treatments in both avoidance trials and

average hesitation time (F2, 42 = 5.514, p = 0.007 and F2, 42 = 5.295, p = 0.009, respectively).

Pairwise comparisons yielded significant differences when comparing results from the yellow

treatment and white treatment (attack trials: p = 0.005; hesitation time: p = 0.007). While none

of the other pairwise comparisons yielded significant differences, the average hesitation time

between the red and white treatments did trend towards significant (p = 0.092). When com-

paring whether there was a difference between signals in how often chicks learned to avoid

signals, we found that red was not significantly different from white (p = 0.498) or yellow

(p = 0.157). However, when comparing yellow and white, we did find a significant difference

(p = 0.016) with chicks more likely to learn to avoid yellow than white (Fig 4).

Discussion

Many components likely contribute to a predator’s ability to remember and avoid novel warn-

ing signals. These can include, but are not limited to, hue, pattern, and brightness. Here, we

sought to decouple hue and brightness and determine which is more important at eliciting

avoidance behavior. Our results suggest that hue is likely more important than brightness for

predator learning, although not all colors are avoided equally. We saw distinct differences

between yellow and white signals, with red being intermediate for both learning and hesitation

time (Fig 4). Were brightness to be important in determining or limiting predator avoidance,

we would have expected white and yellow to be more similar and for both to have evoked

greater, or more efficient, learning than red.

Indeed, our results concur with findings previously reported in the literature with regard to

hue (color) being the most important factor in determining avian predator learning [23,24].

There may also be an interaction between color and pattern that enhanced avoidance [25],

though as we only examined color differences, we are unable to support or refute this. To that

end, it is important to note that there are a number of factors that can influence predator learn-

ing that are beyond the scope of this study, including lighting environment [14], contrasting

backgrounds [26], predator communities [27], etc. Further, our reflectance spectra show some

fluorescence in the white signal. While this is likely an artifact of being printed on paper, it is

important to note that prior literature suggests that this fluorescence should not affect predator

attacks rates between fluorescent and non-fluorescent colors [28]. Despite this, we would

encourage some caution in broad application of our results as some color traits are not neces-

sarily broadly applicable to all animals.

While this research was conducted with domestic chickens in a laboratory setting, it is

important to give this research context to wild populations and patterns, particularly because

prior studies have demonstrated that chicks can be neophobic to novel signals [29]. Interest-

ingly, the pattern observed in our study is mimicked in wild poison frog predator populations

where yellow, in general, is better protected than red [26] indicating that patterns observed in

the wild are repeatable in laboratory settings. Likewise, several clay model experiments have

shown that yellow is especially protective against avian predators [15,26,30] with red providing

moderate protection ([31,32]–though importantly, these studies did not examine relative dif-

ferences of red to other aposematic colors).

This research provides interesting insight into the evolution and proliferation of aposematic

signals in the wild. Aposematic signaling is prevalent throughout the animal kingdom, but a

number of colors continually evolve independently as signal components (Fig 1). Our results

indicate differential learning abilities of avian predators that may explain why we see such

Avian learning of warning signals
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Fig 4. A) Proportion learned and B) mean hesitation time of chicks (Gallus gallus domesticus) for each of the three signals. Error bars on the bar

graph represent SE. Box plot shows mean, 25th and 75th percentiles of data while vertical lines indicate data range. Circles represent extreme values.

Different letters above bars and boxes indicate statistical significance (α = 0.05) from one another.

https://doi.org/10.1371/journal.pone.0194279.g004
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signal variation in natural systems. While all three colors did lead to learned avoidance from

chickens, the chicks clearly had a more difficult time learning to avoid white, particularly

when compared to yellow. As avian predators likely drive aposematic signal evolution in a

number of taxa [17,33–35], this could explain why warmer colors (yellow, orange, red) are

more commonly used than other, brighter, colors. While birds are capable of seeing into the

ultraviolet spectrum, avian visual systems are more sensitive to longer wavelengths [36]. This,

coupled with innate biases towards warmer colors [37,38], suggests why warmer colors are

prevalent in aposematic signaling.

Of course, our research does raise the question as to why suboptimal signals such as red or

white may persist in aposematic species. While we examined the influence of color on apose-

matic signaling, these colors likely have a wide variety of functions outside of warning signal-

ing. Research suggests that, for example, in the Strawberry Poison Frog (Oophaga pumilio)

color may be an important component in mate choice [39,40]. Further, aposematic function

can be dependent on the distance and behavior of aposematic species [14,41]. At certain dis-

tances, counterintuitively, aposematic signals can be disruptive or cryptic. These colors likely

have a wide variety of functions that go beyond simple warning signaling, which could explain

why suboptimal signals persist and may even be promoted by selection. And finally, suboptim-

ality of aposematic signal should be considered in context of the entire predator community.

Avian predators are thought to be important in driving color evolution in poison frogs

[22,42,43], however, recent evidence suggests that alkaloid toxin defenses may target insects

[44]. As such, while these signals may be suboptimal to avian predators, they may be more

effective to other predator taxa.

Conclusions

Repeated patterns across independent taxa provide an intriguing opportunity to examine

underlying evolutionary pressures that may promote such patterns. For example, the repeated

banding or longitudinal striping patterns seen in snakes have been shown to have either flicker

effects or cause predators difficult in locating vulnerable parts of the body [45]. By dissecting

color signals into their constituent parts, we can discern what components are most important

for predator decision making. Here, we present evidence that color, not brightness, is impor-

tant in predator decision making and learning. While our research is limited to a small sample

of aposematic colors found in natural systems, it provides important insight into why these

colors persist. Further research should focus on why colors, such as yellow, elicit such a strong

response in avoidance learning and if this, perhaps, is due to predator physiology (i.e., sensitiv-

ity to particular color spectrums) or cognition.

Supporting information

S1 Text. Raw data for color measurements.
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S1 Table. Raw data for learning trials.

(XLSX)
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