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ABSTRACT

Objective: To facilitate clinical/genomic/biomedical research, constructing generalizable predictive models us-

ing cross-institutional methods while protecting privacy is imperative. However, state-of-the-art methods as-

sume a “flattened” topology, while real-world research networks may consist of “network-of-networks” which

can imply practical issues including training on small data for rare diseases/conditions, prioritizing locally

trained models, and maintaining models for each level of the hierarchy. In this study, we focus on developing a

hierarchical approach to inherit the benefits of the privacy-preserving methods, retain the advantages of adopt-

ing blockchain, and address practical concerns on a research network-of-networks.

Materials and Methods: We propose a framework to combine level-wise model learning, blockchain-based

model dissemination, and a novel hierarchical consensus algorithm for model ensemble. We developed an ex-

ample implementation HierarchicalChain (hierarchical privacy-preserving modeling on blockchain), evaluated it

on 3 healthcare/genomic datasets, as well as compared its predictive correctness, learning iteration, and execu-

tion time with a state-of-the-art method designed for flattened network topology.

Results: HierarchicalChain improves the predictive correctness for small training datasets and provides compa-

rable correctness results with the competing method with higher learning iteration and similar per-iteration exe-

cution time, inherits the benefits of the privacy-preserving learning and advantages of blockchain technology,

and immutable records models for each level.

Discussion: HierarchicalChain is independent of the core privacy-preserving learning method, as well as of the

underlying blockchain platform. Further studies are warranted for various types of network topology, complex

data, and privacy concerns.

Conclusion: We demonstrated the potential of utilizing the information from the hierarchical network-of-

networks topology to improve prediction.

Key words: blockchain distributed ledger technology, privacy-preserving predictive modeling, hierarchical network, clinical infor-

mation systems, decision support systems

INTRODUCTION

Background and significance
Cross-institutional predictive modeling can accelerate clinical, geno-

mic, and biomedical research1–5 by learning more generalizable mod-

els from the increased number of patient records (Figure 1A). Aiming

at protecting privacy of the patients, several centralized privacy-

preserving algorithms6–9 were developed based on the principle of ex-

changing the models instead of disseminating Protected Health Infor-

mation (PHI) data directly (Figure 1B). Although these approaches

ensured prediction correctness while honoring patients’ privacy, the
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fact that only a central server manages the entire model training pro-

cess creates problems yet to be solved: (1) imbalance in the compute

resource allocation can occur, where the central server can potentially

assign work to a participating healthcare institution unfairly while let-

ting the other institutions remain idle most of time; (2) model parame-

ters in the central server can be modified obliviously during model

training; (3) the provenance (ie, source institution) of models may be

changed by the central server in an undetectable way by local sites;

and (4) information gaps about disseminated models occur between

the central servers with full visibility about generated models and non-

central-servers with only partial visibility.10 These potential concerns

can become hurdles when adopting privacy-preserving learning algo-

rithms among multiple institutions.

To mitigate these risks, a plausible solution is to adopt block-

chain,11 the underlying technology of modern fully decentralized

crypto-currencies (Figure 1C). (1) As a peer-to-peer architecture,12

blockchain can serve as a distributed ledger for the institutions to ex-

change machine learning models without a central server thus re-
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Figure 1. Comparison of privacy-preserving learning methods on different network topologies. A. The participating sites in a flattened network topology, which is

a fully-connected network. The number indicates the size of the records in the database at each site. For a smaller site (eg, s3), the number of records may not be

enough to train a generalizable predictive model, however the direct exchange of data is not preferred due to privacy considerations. B. The centralized learning

methods can build a global model by exchanging the models instead of the data on a flattened network. However, they may have risk concerns such as single

point of control, mutable data/records, change provenance, and partial visibility.10 C. The decentralized methods on a flattened network can address the above-

mentioned privacy risks by having no single point of control, immutable data/records, data provenance, and complete visibility.10 D. The real-world network-of-

networks topology which may contain practical issues such as (1) data size may be small for rare diseases/conditions, (2) each site may prefer to prioritize their lo-

cal data while considering the data size, and (3) each subnetwork may prefer to retain their own models. E. The proposed hierarchical learning method exploiting

the network-of-networks information, which is not fully utilized by the decentralized learning methods designed for a flattened network, to address the practical

issues. Specifically, by computing, recording, and combining the models from each level with different weights based on data size, the hierarchical method aims

at (1) improving predictive correctness with small data (eg, s1), (2) prioritizing local data for each site (eg, s3), and (3) retaining consensus for each subnetwork

(eg, Level 2). It also inherits the advantages of the decentralized method designed for a flattened network.
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moving the concern of a single-point-of-control and potential com-

putational unfairness. (2) The design of the consensus protocols in

blockchain makes the change of the ledger extremely difficult and

therefore ensures the immutability of the models stored on the

blockchain.12 (3) Blockchain also preserves provenance of the led-

ger, which makes the source of the models verifiable.13 (4) Block-

chain is transparent (ie, “everyone can see everything”),13 and

therefore all models are visible to every participating healthcare in-

stitution. It should be noted that although there are many other

existing decentralized architecture (eg, gossiping algorithms14–16)

blockchain contains the above-mentioned technical features (ie, im-

mutability, provenance, and transparency) and has been adopted for

critical financial applications for an extended period of time.11

Therefore, we utilize blockchain as the decentralized architecture to

alleviate the concerns of centralization.

However, the state-of-the-art blockchain-based learning meth-

ods10,17,18 assume that the network has a “flattened” topology, as

shown in Figure 1A. In the real world, the structure of research net-

works can be more complicated than a simple topology. For exam-

ple, PCORnet,19 a major initiative to support an effective,

sustainable national research infrastructure, includes 13 clinical

data research networks (CDRNs). Specifically, pSCANNER,20 one

of the CDRN subnetworks in PCORnet led by University of Califor-

nia San Diego (UCSD), includes subnetworks with data from diverse

sites, and is part of this multi-level “network-of-networks” (ie,

pSCANNER includes SCANNER21 and UCReX22 subnetworks,

with each containing multiple sites).

As shown in Figure 1D, such a real-world network-of-networks

topology can imply practical issues such as (1) small data size for

rare diseases/conditions (eg, Kawasaki Disease23,24), (2) each site

may prefer to prioritize their own model (eg, UCSD may tend to put

more weight on the model learned from local data, while still includ-

ing models from other institutions to increase model generalizabil-

ity) while still considering its data size; and (3) subnetwork model

maintenance (eg, the pSCANNER network may prefer to retain the

aggregated model from its own participating networks in parallel

with the model learned from the whole network such as PCORnet).

Without utilizing the information of the hierarchical topology, the

learning method designed for a flattened topology10,17,18 could not

address these practical issues effectively. As a result, the attempt to

improve the correctness of the cross-institutional predictive model-

ing while preserving patient privacy may not be feasible due to the

insufficiency of the existing methods regarding small data size,

model prioritization, and model maintenance for subnetworks.

Therefore, a hierarchical approach (Figure 1E) that considers the

network-of-networks information is critical to address these issues.

By computing, recording, and combining the models from each level

with different weights based on data size, we anticipate the hierar-

chical method to (1) improve predictive correctness with small data,

(2) prioritize local data for each site while considering the number

of records, and (3) retain consensus for each subnetwork. Also, the

benefits of the methods designed for flattened network (eg, the prop-

erty of fair compute loads for every site of GloreChain10) and the

advantages of adopting a decentralized architecture (ie, no single

point of control, immutable data/records, data provenance, and

complete visibility10) should be inherited.

Objective
We aim at developing a hierarchical modeling framework with 3

goals: (a) inherit the benefits of the privacy-preserving learning

methods designed for flattened network, (b) retain the advantages of

adopting a decentralized architecture, and (c) address practical data

size, local model, and subnetwork consensus issues on a real-world

clinical, genomics and biomedical research network-of-networks.

MATERIALS AND METHODS

To achieve the first goal of inheriting the benefits of the state-of-the-

art learning method at every level of the hierarchical network-of-

network topology (Figure 1E), we adopt the learning methods

designed for a flattened network. With this design, we ensure that at

each level the predictive correctness and fair compute loads proper-

ties are preserved. Next, to retain the advantages of a decentralized

architecture, we utilized peer-to-peer blockchain technology11,13,25–35

to disseminate models and therefore avoid concerns such as single

point of control. Finally, to tackle the practical issues on a real-world

research network-of-networks, we propose to leverage the hierarchical

topology information to store and combine the models from each

level. Figure 2 demonstrates the concept of the proposed hierarchical

consensus learning using an example of pSCANNER, which consists

of 2 subnetworks (SCANNER and UCReX).

We developed HierarchicalChain to evaluate our proposed frame-

work. HierarchicalChain contains the following 3 main components:

1) a level-wise learning method which is originally designed for a flat-

tened network, 2) a blockchain network and its on-chain data struc-

ture, and 3) a hierarchical consensus learning algorithm. These

components are introduced in the next 3 subsections, followed by the

implementation details, datasets, and experiment settings.

Level-wise GloreChain decentralized model learning
Our proposed general framework can adopt both online and batch

decentralized learning algorithms. Online methods, such as Model-

Chain17 and ExplorerChain,18 focus on efficient retraining (ie,

updated model for new data without a complete retrain of the

model). In contrast, batch methods, such as GloreChain,10 empha-

size effective prediction results (ie, learn mode using all data at once

to achieve higher correctness).

For HierarchicalChain, we selected the batch method Glore-

Chain, because we aim at achieving high predictive correctness.

GloreChain also provides an additional advantage of having fair

compute loads for each participating site.10 GloreChain is based on

GLORE,7 a centralized privacy-preserving learning method. We

adapted GloreChain to a level-wise method, such that the consensus

models can be trained at each level of the hierarchical topology (eg,

a total of 7 models learned from 3 levels as shown in Figure 2). We

denote the adapted method as GloreChain-LevelWise.

The blockchain network and on-chain data structure
HierarchicalChain utilized a permissioned blockchain network, in

which only authorized sites (eg, member institutions of consortia

like PCORnet19) can participate. Such a permissioned network

improves privacy protection by prefiltering participants. The incen-

tives for each site and each subnetwork are the improved model gen-

eralizability and thus predictive correctness, as well as the

immutably recorded models for each level of the network-of-

networks. Although the network structure is hierarchical, we use

only one blockchain network to disseminate all models. This simple

design can reduce the maintenance cost.

The transaction metadata of blockchain was exploited to store the

models and related information, as shown in Figure 3. The transaction
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amount are all zeroes because we adopt blockchain as a pure ledger

for data dissemination instead of coin transferring. The details of

the data stored on-chain are explained in Table 1. Compared to

GloreChain,10 we added 4 new fields (ie, “Hierarchy,” “Record,”

“Level,” and “Type”) in HierarchicalChain to incorporate informa-

tion from the hierarchical topology. The space complexity of the

on-chain transaction metadata is O (M2 þ H), where M is the num-

ber of covariates and H is the number of the level of the hierarchy.

By only disseminating partially learned models (ie, aggregated

parameters) on-chain and keeping all observation-level PHI data

off-chain, the privacy of the patient can be preserved.

The Proof-of-Hierarchy consensus learning algorithm
We developed Proof-of-Hierarchy (PoH), a new algorithm to learn

the consensus predictive model on a hierarchical network-of-

networks. First, the consensus models of each level are learned using

GloreChain-LevelWise method. These models are stored on the

single shared blockchain network and thus can be accessed by every

site freely. Finally, to predict the outcome of a new patient data re-

cord, a site computes the prediction scores using all models and

combines the scores to generate the final prediction result.

To combine the scores, we adopted an ensemble approach,

which has been utilized often in biomedical informatics research,

such as in medical information extraction on clinical notes23,39 and

early detection of breast cancer using X-ray images.40 In the PoH al-

gorithm, we exploited 2 simple weighted-average ensemble meth-

ods40: horizontal ensemble and vertical ensemble. The horizontal

ensemble (Figure 4A) combines Level 1 models, weighted by their

training data size, with the intuition that a large institution may pre-

fer to emphasize their own model for the prediction. The vertical en-

semble (Figure 4B) combines all levels of models related to the local

site weighted by the size of each level of network. The intuition of

this method is to consider both the specificity from the small/local

data and the generalizability from the remote/subnetwork data.

Note that although these 2 ensemble methods combine the results

Figure 2. Hierarchical consensus learning. Suppose this 3-level hierarchical network-of-networks consists of 4 sites (Level 1) from 2 subnetworks (SCANNER21

and UCReX22 at Level 2) of an overarching network (pSCANNER20 at Level 3), and we would like to predict a new outcome for site s1. After the consensus models

are learned at each level, we first stored all models (7 in this example), used each of the models to predict the score for the new record (in the test data on site s1),

collected the prediction scores for the new record, and then combined the scores using weighted-average method based on the size of the training data.

Figure 3. Example of block, transaction, and transaction metadata of HierarchicalChain. The predictive model and related information are stored in the transaction

metadata (eg, Metadata of Transaction T11). The 4 red fields (“Hierarchy,” “Record,” “Level,” and “Type”) incorporate the newly added hierarchical information

for HierarchicalChain compared to GloreChain.10 The details of the data fields are described in Table 1.
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from the models of each level of the hierarchical topology, those

models are stored immutably on the blockchain and can be retrieved

at any time as needed.

The details of the PoH algorithm are described in Supplementary

Algorithms A.1, A.2, and A.3 in Appendix A. The main PoH (Supple-

mentary Algorithm A.1) contains both level-wise model learning (Sup-

plementary Algorithm A.2) and horizontal/vertical ensemble

(Supplementary Algorithm A.3). We assume the topology of the

network-of-network is a perfect tree (eg, the network-of-networks

contains 2 sub-networks and each sub-network contains 2 sites; that

is, the number of levels is 3, and the total number of participating sites

is 4). The 5 hyperparameters of PoH includes the polling time period

D, the waiting time period H, the maximum per-level iteration X, the

total number of participating sites N, and the number of levels H.

The implementation of HierarchicalChain
The system architecture of HierarchicalChain is shown in Figure 5.

We implemented PoH, Blockchain-Connector, and GloreChain-Level-

Wise in Java. HierarchicalChain only uses the patient data to compute

the models (in the GloreChain-LevelWise component) without dissem-

inating the data to the blockchain network. We adopted Multi-

Chain27,41 as our blockchain platform, because it is both a system

built on top of the well-known Bitcoin Blockchain11,42 and a permis-

sioned blockchain network for general-purpose ledgering.10,12,18 The

default consensus protocol, Mining Diversity,27,41 is adopted with de-

fault parameters for MultiChain. The system was developed in the

UCSD campus Amazon Web Services (AWS)43,44 and evaluated on

the integrating Data for Analysis, Anonymization, and SHaring

(iDASH) 2.0 cloud network,45,46 a private cloud network also based

on AWS44 and compliant with the Health Insurance Portability and

Accountability Act (HIPAA) requirements. In both cloud networks,

we used Linux-based Virtual Machines (VMs) to simulate 4-site sce-

nario, and the type of each VM is Amazon EC2 T2 Large (ie, 2 virtual

CPUs and 8GB of RAM) with 100GB of storage.47

Datasets
To evaluate the algorithms and models of HierarchicalChain,

we adopted the following 3 datasets, each with one binary outcome:

Table 1. An example of on-chain data of HierarchicalChain. In this example, M¼ 2 is the number of the covariates in the dataset and H¼ 3 is

the number of levels of the hierarchy. The partial model of GloreChain-LevelWise contains both “Model Mean” and “Model Covariance,”

while the final model is the consensus mean vector.7,10 The “Flag” is TRANSFER, representing the submission of a model from 1 site to an-

other via the blockchain. In this round, the model is transferred from the UCReX Site s2 (“From Site”) to the SCANNER Site s1 (“To Site”) at

“2019-06-28 10: 53: 26” (“Time”). The “Hierarchy” of “pSCANNER, UCReX, and UCReX Site s2” represents the subnetworks of the local

site (“UCReX Site s2”), and the number of records on the local site is 30 (“Record”). The “Level” of 3 shows the current learning process

happening on Level 3, and the “Type” of the model is single-level (“SINGLE”). The “Iteration” of 16 is the number of learning iterations at

current level, and the “Result” indicates the value of the evaluation metric for correctness (eg, the full area under the receiver operating

characteristic curve [AUC]).36–38 The 4 newly added fields, compared to GloreChain,10 are marked with an asterisk.

Field Description Possible Values Example

Model

Mean

The mean vector of the GloreChain-

LevelWise partial model7,10

A numerical vector with its length

equals Mþ1

[ 0.676883, 1395.043314, 55.376925 ]

Model

Covariance

The variance-covariance matrix of the Glor-

eChain-LevelWise partial model7,10

A numerical (Mþ1) x (Mþ1) square

symmetric matrix

[ [ 2.164606, 913.081988, 60.973002 ],

[ 913.081988, 1524148.948051,

17102.681580 ], [ 60.973002,

17102.681580, 3334.172388 ] ]

Flag The type of action a site has taken to the

model

UNKNOWN, HIERARCHY,

INITIALIZE, UPDATE,

EVALUATE, TRANSFER,

CONSENSUS, COMPLETE,

TEST, CLEAR

TRANSFER

From Site The site that has submitted the model A unique name or identifier repre-

senting the site

UCReX Site s2

To Site The site which will receive the model A unique name or identifier repre-

senting the site

SCANNER Site s1

Time The time that the site submitted the model A timestamp 2019-06-28 10: 53: 26

Hierarchy * The subnetworks that the local site belong

to

A string vector with its length equals

H and contains unique names or

identifiers of each level of the hier-

archy

pSCANNER,

UCReX,

UCReX Site s2

Record * The number of the records of the local site A non-negative integer 30

Level * The current level of hierarchy for learning

(“1” for ensemble models)

A non-negative integer 3

Type * The type of the model, either single-level

(“SINGLE”) or ensemble

(“HORIZONTAL” or “VERTICAL”)

UNKNOWN,

SINGLE,

HORIZONTAL,

VERTICAL

SINGLE

Iteration The current iteration of the learning process

at current level

A non-negative integer 16

Result The value of the evaluation metric when the

learning process completes

A numerical value between 0 and 1 0.921604
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(1) Edinburg Myocardial Infarction (Edin):48 this dataset includes 9

covariates and 1253 observations with the purpose of predicting the

presence of disease (class distribution: 0.219 positive and 0.781 neg-

ative); (2) Cancer Biomarkers (CA):49 there are 2 covariates and 141

observations to predict the presence of cancer (class distribution:

0.638 positive and 0.362 negative); and (3) Total Hip Arthroplasty

(THA):10,50 the data contains 34 covariates and 960 observations

aiming at predicting extended hospital stay (ie, hospital length of

stay for total hip arthroplasty surgery > 3 days). For the THA data-

set, an IRB Exemption Category 4 (Project Number 190385XX)

was certified by the UCSD Human Research Protections Program

(HRPP) on March 20, 2019.

Experiment settings
Our goal of experiment is to evaluate whether HierarchicalChain

can improve the prediction correctness for practical issues—espe-

cially for small training data—by using the hierarchical topology in-

formation, prioritizing local data, and retaining consensus models

from each level in the hierarchy. We compare the horizontal and

vertical ensemble methods of HierarchicalChain (ie, Hierarchical-

Chain-Horizontal and HierarchicalChain-Vertical) with Glore-

Chain,10 the state-of-the-art blockchain-based decentralized

learning method designed for flattened network topology.

For both HierarchicalChain and GloreChain methods, the preci-

sion of the convergence criterion was 10�6,7,10 with the following

same hyperparameters based on previous studies,10,18 the network

latency of the cloud networks, and the various sizes and splitting

methods of the data: the polling time period D¼1 (second), the

waiting time period H¼5 (seconds), the maximum per-level itera-

tion X¼100. The latest 4 transactions with the size of the transac-

tion metadata > 20 were checked to identify new transactions on

the blockchain network.

We used the abovementioned 3 datasets (ie, Edin, CA, and THA)

to evaluate the methods. For the hierarchical topology, we set the to-

tal number of participating sites to N¼4, and the total level of hier-

archy to H¼3 (ie, the same topology as shown in Figure 2). That is,

we simulated the network-of-networks by splitting each of the 3

datasets into 4 sites in a hierarchical topology.

To simulate the real-world scenario, we tested 2 different ways

to split the training data among sites: balanced (ie, the number of

records on each site is even) and imbalanced (ie, the number of

records on each site is uneven). Therefore, we split each dataset ran-

domly with (1) balanced ratio of 25% for each site, and (2) imbal-

anced ratios of 10%, 20%, 30%, and 40% for each of the 4 sites,

respectively. For each site, the data was randomly divided into 50%

training and 50% test records. To further evaluate the effect of the

small training data size, we randomly sampled the training data

from 0.1 to 1.0 (using the full training data), in increments of 0.1,

for the Edin and THA datasets. Since the original size of the CA

dataset is already small (141 records), we randomly sampled the

training data from only 0.5 to 1.0, in increments of 0.1. For each

training and test dataset, including the sampled training data, we

preserved a class distribution similar to the original dataset, and

kept at least 1 positive and 1 negative record. Our evaluation metric

is the full area under the receiver operating characteristic curve

(AUC).36–38 We calculated weighted-average AUC on the test data

with the data ratio as the weights (eg, 10%, 20%, 30%, and 40%

for imbalanced data splitting) accounting for both balanced and im-

balanced data-splitting scenarios. We measured consensus iterations

and execution times as well.

The abovementioned process (ie, data splitting, predictive

modeling, and weighted-average test AUC computing) was repeated

30 times to collect the results. For the configuration with the small-

est training sizes, we further conducted a Wilcoxon signed-rank

test51,52 to examine whether the 2 ensemble methods (ie, horizontal

A B

Figure 4. Examples of the ensemble methods adopted in the Proof-of-Hierarchy (PoH) algorithm. A. Horizontal ensemble. For each of the new patient records at

SCANNER Site s1, we first identify all Level 1 sites (ie, SCANNER Site s1, SCANNER Site s2, UCReX Site s3, and UCReX Site s4). The prediction scores from each

Level 1 models (ie, Score1_1, Score1_2, Score1_3, and Score1_4) are then combined using weighted-average with the training data sizes of each site (ie, 10, 30, 40,

and 20 for SCANNER Site s1, SCANNER Site s2, UCReX Site s3, and UCReX Site s4, respectively) as the weights. B. Vertical ensemble. For each of the new patient

records at SCANNER Site s1, we first identify the levels related to SCANNER Site s1, including SCANNER Site s1 itself (Level 1), SCANNER (Level 2), and pSCAN-

NER (Level 3). Then, the prediction scores from the models of each level (ie, Score1_1, Score2_1, and Score3_1) are then combined using weighted-average with

the training data sizes of each level of the hierarchy (ie, 10, 40, and 100, for SCANNER Site s1, SCANNER, and pSCANNER, respectively) as the weights.
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and vertical) of HierarchicalChain perform with statistical signifi-

cant difference when compared with GloreChain in terms of predic-

tive correctness. We reset the blockchain network for each trial to

collect a more accurate execution time.

RESULTS

Predictive correctness
The predictive correctness results on the small training datasets

are shown in Figure 6A. In general, both ensemble methods of

HierarchicalChain outperformed GloreChain. Especially for the

balanced split Edin and THA datasets and the imbalanced split

THA datasets, the differences in AUC were statistically significant

(with P value < .05). For the CA dataset, vertical ensemble per-

formed better on data with both types of splitting methods, and

horizontal ensemble performed better for the balanced split data;

however, all of the results have P value � .05. Also, in almost all

cases (except the horizontal ensemble on CA dataset), Hierarchi-

calChain showed smaller standard deviation when compared with

GloreChain. The results for different training data ratio are

depicted in Figure 6B. In general, HierarchicalChain-Vertical per-

formed similar to GloreChain with a larger training data size,

while HierarchicalChain-Horizontal provided worse correctness

results and was less stable. The lower performance of

HierarchicalChain-Horizontal may be due not using high-level

models (ie, models from Level 2 and Level 3).

Learning iteration
The results of learning iteration on the small training data are shown

in Table 2. In general, HierarchicalChain required 2–10 times of

iterations when compared with GloreChain. The results for different

size of training data are illustrated in Figure 6C. Note that the itera-

tions for HierarchicalChain (computing Level 1, Level 2, and Level

3) were expected to be around 3 times the iterations of GloreChain

(computing only Level 3). While this was true for the full-sized

training data, on smaller training data the variation became larger.

Execution time
The execution time results for the small training data are shown in

Tables 3 and 4. While the total execution times (Table 3) are

roughly in proportion to the learning iterations (Table 2), the per-

iteration execution times (Table 4) demonstrate similar results for

HierarchicalChain and GloreChain. The per-iteration execution

time results for different sizes of training data are depicted in

Figure 6D. In general, the per-iteration time on smaller training data

was also shorter, because the same overhead (eg, initialization time)

Figure 5. System architecture of HierarchicalChain which contains 4 participating sites. The Blockchain-Connector component connects the main Hierarchical-

Chain software to the underlying blockchain platform (MultiChain27,41 in our implementation). Abbreviations: AWS, Amazon Web Services;43,44 iDASH, integrat-

ing Data for Analysis, Anonymization, and Sharing.45,46
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was shared by a larger number of learning iterations. Also, Hier-

archicalChain had lower per-iteration time, because the same over-

head was shared by 3 levels of computation (GloreChain only

computed for 1 level). According to a previous study,10 most of the

execution time was used for waiting/synchronization, and only a

small portion of the time (eg, < 0.2 second10) was used for actual

computation of the models.

DISCUSSION

Findings
According to the results, HierarchicalChain, using vertical ensemble

to combine the models and prioritize the local ones, outperforms

GloreChain for small training data—especially for the THA dataset

collected from UCSD Health. Also, in general, the prediction cor-

rectness of HierarchicalChain is comparable to GloreChain. Despite

the increased learning iterations, the per-iteration execution time of

HierarchicalChain remains at the same level as the one for Glore-

Chain. Additionally, HierarchicalChain inherits the benefits of Glor-

eChain (eg, fair compute loads) and advantages of blockchain (eg,

no single point of control), and can record models for each level on

chain immutably. Finally, HierarchicalChain is more generalizable

than GloreChain. That is, HierarchicalChain can be deployed on a

flattened network, and, in this case, it becomes exactly the same as

GloreChain.

HierarchicalChain, based on GloreChain, can adopt any

privacy-preserving learning algorithms, including both batch and

online methods.10 HierarchicalChain overcomes blockchain confi-

dentiality issues by exchanging models from each level without

transferring patient-level data; avoids the blockchain scalability is-

sue, because the per-iteration learning time (5–30 seconds per itera-

tion) is way longer than the average transaction time of a

blockchain (< 1 second); and mitigates the blockchain 51% attack

issue because of the permissioned network nature.

HierarchicalChain can also adopt different underlying block-

chain platforms. That is, in our experiment, we adopted Multi-

Chain with its low energy-consuming Mining Diversity consensus

protocol; however, any other blockchain platform can also serve

as the peer-to-peer infrastructure. The size of the model in our

experiments is about 5 KB, which is smaller than the default size

limit (2 MB) of MultiChain or other mainstream blockchain plat-

forms.53 Also, the iDASH 2.0 cloud network provides an addi-

tional layer of security protection beyond the permissioned

blockchain network.

Figure 6. The results on data with different training data ratio, including 3 datasets (Edin, CA, and THA) as well as 2 data-splitting methods (balanced and imbal-

anced). We compared 2 ensemble methods (horizontal and ensemble) of HierarchicalChain with the state-of-the-art GloreChain.10 The data are split to balanced

or imbalanced ratios among the sites. A. The predictive correctness results on small training data. The top header represents dataset name (data split ratio). The

models are trained using only small portions of the training data. The evaluation metrics is the weighted-average AUC and the P values are computed using the

Wilcoxon signed-rank test. B. Prediction correctness, measured in weighted-average test AUC for different training data ratio. C. Learning iterations for different

training data ratios. D. Per-iteration execution time measured in seconds for different training data ratios.
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Limitations
The limitations for this work include: (1) Topology. Hierarchical-

Chain was not tested on nonperfect tree topologies, which can con-

tain different site numbers in various levels and may impact the

performance of the correctness, iterations, and execution time; (2)

Data. We did not evaluate on data with a large number of covari-

ates, missing/nonrepresentative data, and highly different data

distribution among the sites or the levels; (3) Advanced privacy con-

cerns. Although this study focused on protecting patient privacy by

having healthcare institutions exchange aggregated machine learn-

ing model without disseminating patient-level data, more advanced

privacy concerns, such as institutional privacy54 (ie, the model may

still reveal some information for the institution) and differential

privacy55 (ie, the patient-level data may be inferred under certain

Figure 6. Continued
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circumstances), were not covered. Also, our method assumed that

each participating institution is “honest but curious,”56 and there-

fore did not deal with the situation where an institution may submit

a malicious model in an attempt to jeopardize the learning process

or to inspect information from other institutions. (4) Ethical, Legal,

and Social Implications (ELSI). We focused on providing a technical

solution and have yet to investigate the ELSI considerations regard-

ing the tradeoff of privacy risks versus patient benefits, which can

depend on the purposes of the analysis (eg, London cholera out-

break,57–60 bioterrorism attack,61,62 or Ebola outbreak63–65).

CONCLUSION

By training the predictive models using level-wise methods, dissemi-

nating the models using a blockchain network, and combining mod-

els using a novel hierarchical consensus learning algorithm, our

privacy-preserving learning framework: 1) improves prediction cor-

rectness especially for the use case of having a small training dataset

for rare diseases/conditions; 2) keeps similar per-iteration execution

time; 3) inherits benefits from decentralized learning and blockchain

technology; and 4) records models of each level, immutably. Al-

though such an improvement may not have clinical significance and

more learning iterations are needed, we demonstrated the potential

of utilizing the information from the hierarchical network-of-

networks topology to improve the prediction. With further evalua-

tions and enhancements, our proposed framework can create more

generalizable predictive models to support clinical/genomic/biomed-

ical studies within real-world research networks.
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Table 2. Learning iteration results on small training data, including both mean and standard deviation (SD). Note that the learning iteration

of HierarchicalChain were the sum of the iterations for learning models on Level 1, Level 2, and Level 3, and the computation of vertical and

horizontal ensemble did not contribute to the number of iterations. Therefore, only one result per data/split combination was reported for

HierarchicalChain. It should also be noted that the maximum per-level iteration X in our experiments is set to 100, and therefore the upper

limit of the iterations for GloreChain is 100, while the limit for HierarchicalChain is 100 (iterations) x 3 (levels) ¼ 300

Dataset

(Training Data Ratio)

Edin

(0.1)

CA

(0.5)

THA

(0.1)

Iterations Mean (SD) Mean (SD) Mean (SD)

Balanced Data Splitting GloreChain 59.300 (22.968) 5.133 ( 2.871) 66.567 (23.636)

HierarchicalChain 143.983 (28.953) 30.042 (19.370) 126.575 (28.100)

Imbalanced Data Splitting GloreChain 47.967 (20.388) 4.800 ( 3.818) 66.900 (22.716)

HierarchicalChain 131.842 (27.006) 40.608 (25.022) 129.183 (25.776)

Abbreviations: CA, cancer biomarkers; Edin, Edinburg myocardial infarction; THA, total hip arthroplasty.

Table 3. Total execution time results on small training data, including both mean and standard deviation (SD). The measurements are in

seconds and are averaged over 4 sites. The time for HierarchicalChain includes the computation of the model on Level 1, Level 2, and Level

3, as well as the calculation of the horizontal and vertical ensembles

Dataset

(Training Data Ratio)

Edin

(0.1)

CA

(0.5)

THA

(0.1)

Execution Time (Second) Mean (SD) Mean (SD) Mean (SD)

Balanced Data Splitting GloreChain 451.292 (152.107) 89.200 ( 29.019) 515.275 (160.332)

HierarchicalChain 1142.308 (227.684) 522.142 (213.102) 1023.15 (199.914)

Imbalanced Data Splitting GloreChain 382.483 (140.145) 92.733 ( 26.047) 526.033 (159.897)

HierarchicalChain 1094.283 (228.273) 645.392 (284.194) 1095.542 (197.014)

Abbreviations: CA, cancer biomarkers; Edin, Edinburg myocardial infarction; THA, total hip arthroplasty.

Table 4. Per-iteration execution time results (total execution time in Table 3 divided by the average iterations, which are shown in Table 2)

Dataset

(Training Data Ratio)

Edin

(0.1)

CA

(0.5)

THA

(0.1)

Execution Time (Second) Mean (SD) Mean (SD) Mean (SD)

Balanced Data Splitting GloreChain 7.610 (2.565) 17.377 (5.653) 7.741 (2.409)

HierarchicalChain 7.934 (1.581) 17.381 (7.094) 8.083 (1.579)

Imbalanced Data Splitting GloreChain 7.974 (2.922) 19.319 (5.426) 7.863 (2.390)

HierarchicalChain 8.300 (1.731) 15.893 (6.998) 8.481 (1.525)

Abbreviations: CA, cancer biomarkers; Edin, Edinburg myocardial infarction; THA, total hip arthroplasty.
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