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Abstract: Aging impairs vascular function, but the mechanisms involved are unknown. The aim
of this study was to analyze whether aging-related hyperphosphatemia is implied in this effect by
elucidating the role of oxidative stress. C57BL6 mice that were aged 5 months (young) and 24 months
(old), receiving a standard (0.6%) or low-phosphate (0.2%) diet, were used. Isolated mesenteric
arteries from old mice showed diminished endothelium-dependent vascular relaxation by the down-
regulation of NOS3 expression, increased inflammation and increased fibrosis in isolated aortas,
compared to those isolated from young mice. In parallel, increased Nox4 expression and reduced
Nrf2, Sod2-Mn and Gpx1 were found in the aortas from old mice, resulting in oxidant/antioxidant
imbalance. The low-phosphate diet improved vascular function and oxidant/antioxidant balance
in old mice. Mechanisms were analyzed in endothelial (EC) and vascular smooth muscle cells
(SMCs) treated with the phosphate donor ß-glycerophosphate (BGP). In EC, BGP increased Nox4
expression and ROS production, which reduced NOS3 expression via NFκB. BGP also increased
inflammation in EC. In SMC, BGP increased Collagen I and fibronectin expression by priming ROS
production and NFκB activity. In conclusion, hyperphosphatemia reduced endothelium-dependent
vascular relaxation and increased inflammation and vascular fibrosis through an impairment of oxi-
dant/antioxidant balance in old mice. A low-phosphate diet achieved improvements in the vascular
function in old mice.

Keywords: aging; hyperphosphatemia; endothelial dysfunction; fibrosis; reactive oxygen species; in-
flammation

1. Introduction

The endothelium is a dynamic and functional organ involved in the regulation of many
important biological functions, including maintenance of vascular tone and permeability,
immunity, inflammatory responses, control of the coagulation process and angiogenesis
promotion [1–3]. Vascular function is regulated by secreting molecules that act in an autocrine
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and paracrine manner, with nitric oxide (NO) being one of the most important mediators of
endothelial function [4–6] apart from the redox balance [7] and endothelin-1 (ET-1).

Aging also modifies the arterial wall by changing the structure and function of vascular
cells. In this way, SMCs tend to modify their phenotype from contractile to synthetic, deter-
mining the media layer thickness [8]. These structural changes are associated with an in-
crease in collagen [9] and a reduction in elastin content [10], reversing the elastin/collagen
ratio [11–15] and increasing the vessel stiffness. In line with this, arterial stiffness [16,17],
considered a key feature of aging-related vascular alterations, is always preceded by an im-
paired endothelial vasodilation suggesting that it is also linked to endothelial dysfunction.
Tissue fibrosis is characterized by the excessive deposition of ECM proteins, such as colla-
gens and fibronectin (FN) [18] in different organs; playing a critical role in the detrimental
damage of these organs [19]. Fibrosis is triggered by the action of growth factors such as
TGF-ß1 and connective tissue growth factor (CTGF or CCN2), resulting in fibroblast activa-
tion or inflammation processes [19,20]. In fact, the appearance of fibrotic areas in the aorta
could be involved in the development of endothelial dysfunction. A typical early feature
of vascular aging is a deterioration of endothelial vasodilatation that precedes the clinical
manifestations of endothelial dysfunction.

Nowadays, vascular aging is considered a modifiable risk factor [21]. Accordingly,
the preservation of endothelial function and vessel wall structure is fundamental for healthy
aging [21,22].

Factors involved in vascular aging are beginning to be understood. Hyperphos-
phatemia is a pathological condition also related to aging and chronic kidney disease
(CKD) [23–25]. Phosphate excess is considered as a critical factor in the pathogenesis of
mineral and bone disorders associated with CKD and recently determined to have toxic
effects on the cardiovascular system and in the aging process [26]. Mice deficient in Klotho
or fibroblast growth factor 23 (FGF23) manifest a premature aging syndrome associated
with hyperphosphatemia, which can be rescued by reducing blood phosphate levels with
dietary interventions [23]. Phosphate also impairs endothelial function [27,28]. High
phosphate levels increase oxidative stress and suppress the bioavailability of NO through
inhibition of phosphorylation that activates NOS3 [27,29]. A dietary phosphate restriction
not only reduced hyperphosphatemia but also improved the impaired vasodilation of
the aorta in adenine-induced kidney disease rats [30].

Oxidative stress is induced by the imbalance between oxidants production and antioxi-
dant capacity of the cells and is involved in many diseases, such as cancer and inflammation,
and it plays a relevant role in aging [31–34]. It is also well known that oxidative stress
can modify endothelial function [21,35]. Several studies have demonstrated that oxidative
stress and inflammation are the most important pathological processes that determine
endothelial dysfunction in healthy older adults and in rodent models [36–38]. In aging,
a rise in blood glucose, obesity, cholesterol, blood pressure and sodium intake can regulate
endothelial dysfunction through oxidative stress and inflammation [39–44].

Moreover, proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-α),
interleukin 6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) [45] increase with
age in healthy individuals [45,46]. Their upregulation in aging produces a chronic low
grade inflammation termed inflammaging, which is associated with aged-diseases [47].

Aging [1,11,12] and hyperphosphatemia impair endothelial function [27] by unknown
mechanisms. Although a phosphate restriction diet can rescue the impaired endothelial
function in animal models associated with kidney disease [30], there are still no studies
in aging animal models. Thus, the aim of the present work was to analyze whether
hyperphosphatemia was involved in aging-related vascular dysfunction, characterizing
the mechanism involved in this effect.
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2. Materials and Methods
2.1. Materials

Culture plates, culture media, BlueStar-prestained protein marker, BCA protein as-
say reagent, nitrocellulose membrane, secondary horseradish peroxidase-conjugated goat
anti-mouse IgG and CL-Xposure films were from Cultek (Thermo Fisher Scientific, Madrid,
Spain); Supersignal West Pico detection system and LightShift Chemiluminescent EMSA
kit were from Pierce (Thermo Fisher Scientific, Madrid, Spain). CellROX deep red probe
for oxidative stress detection were from Molecular Probes; dihydroethidium (DHE) probe,
NucBlue live cells stain Ready probe reagent and Prolong Gold antifade reagent were
purchased from Invitrogen (Thermo Fisher Scientific, Madrid, Spain). Rabbit polyclonal
anti-Fibronectin antibody (ab6584), rabbit polyclonal anti-Collagen-I antibody (ab34710),
rabbit polyclonal anti-Collagen V (ab7046), rabbit polyclonal anti-CTGF antibody (ab6992),
mouse polyclonal anti-Fibronectin antibody (ab6328), Elastic Connective Tissue Stain kit
(ab150667) and Picro Sirius Red Stain kit (ab150681) were from Abcam (Cambridge, UK).
Acrylamide-bisacrylamide was from Hispanlab-Pronadisa (Madrid, Spain). Trizol reagent
and RNA later solution were from Ambion-Life technologies (Thermo Fisher Scientific,
Madrid, Spain). Mouse monoclonal anti-nitrotyrosine (sc-32757) and anti-Ser32 P-IκBα
(sc-8404) antibodies were from Santa Cruz Biotechnology (Heidelberg, Germany). Rabbit
polyclonal anti-Ser536 P-NFκB-p65 antibody (3033S) was from Cell Signaling Technology
(Werfen, Barcelona, Spain). Rabbit polyclonal anti-Nox4 antibody (GTX21929) was from
GeneTex (Labclinics, Barcelona, Spain). Mouse Ser1177 P-NOS3 (612393) and mouse NOS3
(610297) antibodies were from BD Transduction Laboratories (BD BioSciences, Bath, United
Kingdon). Protease inhibitor cocktail tablets and FastStart universal probe master were
from Roche Diagnostics S.L. (Barcelona, Spain). High-capacity cDNA reverse transcription
kit and TaqMan gene expression assays from mice were purchased from Applied Biosys-
tems (Thermo Fisher Scientific, Madrid, Spain). Antagonists from endothelin receptor type
A, BQ123, mouse polyclonal anti-GAPDH antibody (G8795), ß-glycerophosphate (G9891),
acetylcholine chloride (A9101), sodium nitroprusside (S0501), parthenolide (P0667), as-
pirin (acetyl salicylic acid, PHR1003) and norepinephrine (N5785) were purchased from
Sigma-Aldrich-Fluka Chemical Co. (St. Louis, MO, USA).

2.2. Cell Culture

For in vitro studies, we used human endothelial cells (EC, EA.hy926) from ATCC and
human SMC from a primary culture, donated by Universidad Autónoma de Madrid. ECs
were grown in Dulbecco’s Modified Eagle Medium (DMEM) from ATCC (30-2002) and
SMC in DMEM supplemented with 4 mmol/L L-glutamine from Sigma (D6171), both
containing 4.5 g/L glucose and supplemented with 10% fetal bovine serum, 100 U/mL
penicillin and 100 µg/mL streptomycin, in an atmosphere of 95% air and 5% CO2.

2.3. Experimental Designs

In order to evaluate the in vitro effect of hyperphosphatemia, we used the phosphate donor
ß-glycerophosphate (BGP) to treat human EC and SMC at different times with 10 mM BGP,
a dose chosen based on previous studies [28]. The cells were grown to confluence, and then
they were incubated in serum-free medium for 24 h before adding treatment. ROS production
was inhibited using the antioxidant N-acetyl-cysteine (NAC, 100 µM).

2.4. Animal Studies

For in vivo studies, we used male C57BL6 mice from 5 to 24 months of age obtained
from Janvier Laboratories. All mice were kept on a 12:12 h light-dark cycle, at 24 ◦C and
food and water were available ad libitum. Twenty-four month old mice were divided into
two groups: one of them received a low P diet containing 0.2% P, 0.9% Ca and 0.2% Mg
(Experimental diet: S9723-E022 from SSNIFF Spezialdiäten GmbH) for the last 12 weeks of
their life, whereas the other group continued receiving the standard diet containing 0.6% P
as the group of young mice did. Before sacrifice, animals were anesthetized with isofluo-
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rane, and blood samples were collected by heart puncture exsanguinations. The aortas were
isolated and conserved in RNA later solution for protein or RNA extraction or collected
in p-formaldehyde for histological studies. Omentum (for isolation of mesenteric small
vessels) was carefully excised for the functional evaluations. Serum phosphate was mea-
sured by QuantiChrom phosphate assay kit (DIPI-500) from Bioassay Systems (Deltaclon
SL, Madrid, Spain) using a microplate reader. General data of mice including body weight,
body mass index (BMI), food intake and water intake are shown in the Supplementary
Figure S1A.

2.5. Vascular Reactivity of Mice Mesenteric Arteries

First to second order branches of the mesenteric arterial tree were obtained from
omentum specimens and dissected by carefully removing the adhering fat tissue. Arterial
ring segments (~2 mm long and 238 ± 6.1 µm diameter in average) were subsequently
mounted on small-vessel wire myographs (Danish MyoTechnology, Aarhus, Denmark) for
circular isometric tension recordings, as previously described [48–50]. The vessels were
allowed to equilibrate for 30 min in Krebs–Henseleit solution (KHS) continuously bubbled
with a 95% O2/5% CO2 mixture to maintain a pH of 7.4. The passive tension and internal
circumference of vascular segments when relaxed in situ under a transmural pressure of
100 mmHg (L100) were determined. The arteries were then set to an internal circumference
equivalent to 90% of L100, at which the force development is close to maximal. In order to
assess vessel viability, preparations were then exposed to 125 mM K+ (KKHS, equimolar
substitution of NaCl for KCl in KHS), and the contractile response was measured. After
a washout and stabilization period, mice mesenteric arteries were contracted with 1–3 µM
norepinephrine (NE, 80% of KKHS-induced contraction, approximately) and relaxation
responses were evaluated by cumulative additions of acetylcholine (ACh, 1 nM to 10 µM)
or sodium nitroprusside (SNP, 1 nM to 10 µM) to the chambers. In some experiments,
a non-specific NOS inhibitor, L-nitro-arginine methyl ester (L-NAME, 100 µM), was added
30 min before the concentration-response curves to ACh were started.

2.6. Sirius Red and Elastin Staining and DHE Detection

Aortas, heart and kidneys were collected in 4% p-formaldehyde and then processed
in paraffin. Afterwards, samples were de-paraffined in xylene and then hydrated in de-
scending order of ethanol dilutions to finally be stained with the Picro Sirius Red Stain kit
to assess fibrosis or with the Elastic Connective Tissue Stain kit to visualize elastin fibers.
Kits were used according to the manufacturer’s instructions for 30 min to visualize collagen
fibers in red and muscle fibers in yellow with the Picro Sirius Red solution or for 15 min to
visualize elastin in black with the Elastic Stain solution. After that, they were dehydrated
and mounted with DPX solution to be observed with a microscope. Pictures were obtained
with 40×magnification, the intensities of Sirius red or black elastin were measured by using
Image Pro Plus software (www.mediacy.com/imageproplus). In addition, aorta thickness
was measured in those pictures using Image J software (http://rsbweb.nih.gov/ij/).

A DHE probe was used to detect reactive oxygen species in aorta tissue, which exhibits
blue-fluorescence in the cytosol until oxidized, where it intercalates within the cell’s DNA,
staining its nucleus a bright fluorescent red. Samples were de-paraffined as described
above, and antigen retrieval was performed by heat mediation in a citrate buffer pH 6.
After that, the samples were incubated 30 min at 37 ◦C with 4 µM DHE, washed with PBS
and finally treated with DAPI to stain nuclei (NucBlue live cells stain Ready probes reagent
from Invitrogen) for 20 min at R/T. Lastly, slides were mounted with the reagent Prolong
Gold antifade from Invitrogen. The slides were analyzed with a LEICA TCS-SP5 confocal
microscope (Leica Microsystems; GmbH, Mannheim, Germany) using the helium-neon
laser at 633 nm to detect red fluorescence of DHE probe and at 405 nm to detect blue
fluorescence of nuclei stained with DAPI. Pictures were obtained with 40×magnification
and fluorescence intensity of DHE, and number of nuclei were quantified using Image J
software (http://rsbweb.nih.gov/ij/).

www.mediacy.com/imageproplus
http://rsbweb.nih.gov/ij/
http://rsbweb.nih.gov/ij/
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2.7. Immunohistochemistry of Nitrotyrosine and Nox4

Aorta slices were de-paraffined as described above, and antigen retrieval was by heat
mediation in a citrate buffer pH 6. Samples were blocked with 10% goat serum and 1% BSA
in PBS for 1 h at R/T. After that, they were permeabilized for 10 min with 0.2% Triton X-100,
and after 3 washes they were incubated with mouse anti-Nitrotyrosine (1:10 dilution)
and rabbit anti-Nox4 (1:50 dilution) antibodies with 3% BSA in PBS at 4 ◦C overnight.
After 3 washes, endogenous peroxidase was blocking with 3% H2O2 for 15 min at R/T.
The samples were incubated with the secondary antibody at 1:100 dilution, anti-mouse for
Nitrotyrosine and anti-rabbit for Nox4 with 3% BSA in PBS for 1 h at R/T. Then, samples
were washed and brown color was developed using DAB substrate kit. After that, they
were dehydrated and mounted with DPX solution to be observed with a microscope.
Pictures were obtained with 40×magnification, and the intensity of the brown color were
measured using Image Pro Plus software (www.mediacy.com/imageproplus).

2.8. Quantitative RT-PCR

Total RNA from endothelial cells or aorta tissue from mice were isolated using Trizol
reagent according to the manufacturer’s protocol. cDNA was synthesized using a High
Capacity cDNA reverse transcription kit [28,51]. The expressions of IL-1 beta, IL-6, TNF-
alfa and MCP-1 in endothelial cells and the expression of endothelial nitric oxide synthase
(Nos3), inducible nitric oxide synthase (Nos2), Nrf-2 factor (Nfe2l2), glutathione peroxidase-
1 (Gpx1) and superoxide dismutase-2 Mn (Sod2-Mn) in aortas from mice were determined
by quantitative PCR (ABI Prism 7500 Fast Real-Time PCR System) and analyzed with 7500
Fast sequence detection software v1.3.1 (Applied Biosystems Inc., Foster City, CA, USA),
using specific TaqMan assays and Double delta Ct method. TaqMan probes used for mice
were Nos3 (Mm00435217_m1), Nos2 (Mm00440502_m1), Nfe2l2 (Mm00477784_m1), Gpx1
(Mm00656767_g1), Sod2-Mn (Mm01313000_m1) and Actb (Mm01205647_g1), and for hu-
man cells they were IL1B (Hs01555410_m1), IL6 (Hs00174131_m1), CCL2 (Hs00234140_m1),
TNF-alfa (Hs00174128_m1) and ACTB (Hs99999903_m1).

2.9. Western Blot Assays

Proteins were extracted from cells or aortas by using the Lysis Buffer (20 mM Tris-HCl
pH 7.5, 1 mM EGTA, 1 mM EDTA, 150 mM NaCl, 10 mM sodium pyrophosphate, 1%
Triton X-100 and 0.1% sodium deoxycholate) containing a protease inhibitor cocktail. Lysis
solution was spun at 13,000 rpm for 30 min at 4 ◦C. Protein concentration was determined
with a protein assay kit from BioRad. Samples (30 µg protein/lane) were run on SDS-
polyacrylamide gels (PAGE) under reducing conditions and transferred onto nitrocellulose
membranes, with the exception of gels made for the study of Collagen, which were made
under non-reducing conditions. Membranes were blocked with 5% (w/v) non-fat dry milk
for 1 h at room temperature (R/T) in Tween Tris buffered saline (TTBS) (20 mM Tris-HCl
pH 7.5, 0.9% NaCl, 0.05% Tween 20). After that, they were incubated for 1 h at R/T with
different specific antibodies for the detection of NOS3 (1:2500, 3% BSA), Ser1177 P-NOS3
(1:2500, 3% BSA), Nox4 (1:2000, 0.05% BSA), FN (1:1000, 0.05% BSA), Collagen I (1:500, 3%
BSA), Collagen V (1:2000, 1.5% BSA), CTGF (1:1500, 1.5% BSA), Ser32 P-IκBα (1:1000, 3%
BSA) and Ser536 P-NFκB-p65 (1:1000, 3% BSA). After washing in TTBS, membranes were
incubated for 1 h at R/T with secondary antibody, horseradish peroxidase-conjugated
goat anti-mouse IgG (50,000-fold diluted for NOS3, Ser1177 P-NOS3, and Ser32 P-IκBα) or
goat anti-rabbit IgG (10,000-fold diluted for Nox4, Ser536 P-NFκB-p65, FN, Collagen I/V
and CTGF). The immunoreactive bands were visualized with the SuperSignal West Pico
detection system after 30–60 s of exposure to CL-Xposure films. Finally, membranes were
re-incubated with a mouse anti-GAPDH antibody in order to normalize each protein level.

2.10. Immunofluorescence

SMCs were grown on cover slips and then treated with 10 mM BGP for 6 h in the pres-
ence or the absence of the antioxidant N-Acetyl-cysteine (NAC 100 µM) or the antagonist of

www.mediacy.com/imageproplus
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phosphate receptor Pit-1 (PFA 1 mM). After being washed twice, cells were fixed with 4%
p-formaldehyde for 10 min at R/T, and then they were incubated with 0.5% Triton X-100
for 10 min at R/T. Later, cells were blocked with 5% BSA for 1 h at R/T and incubated
overnight at 4 ◦C with a mix of mouse anti-FN (1:200 dilution) and rabbit anti-Col-I (1:200
dilution) antibodies or with rabbit anti-CTGF (1:200 dilution) antibody. After being washed
in PBS, cells were incubated with a mix of two secondary antibodies at 1:200 dilution,
goat anti-mouse IgG labeled with Alexa Fluor 647 and goat anti-rabbit IgG labeled with
Alexa Fluor 488. After that, cells were washed with PBS and incubated with DAPI to
stain nuclei (NucBlue live cells stain Ready probes reagent from Invitrogen) for 20 min at
R/T, 2 drops per milliliter. Lastly, the cover slips were mounted with the reagent Prolong
Gold antifade from Invitrogen. Samples were analyzed using a LEICA TCS-SP5 confocal
microscope (Leica Microsystems; GmbH, Mannheim, Germany) with helium-neon laser to
detect red fluorescence at 633 nm for FN antibody labeled with Alexa Fluor 647 or with
argon laser to detect green fluorescence at 488 nm for Col I antibody labeled with Alexa
Fluor 488 and to detect blue fluorescence of nuclei stained with DAPI at 405 nm. Images
were obtained, and fluorescence intensity was measured by densitometry by using Image J
software (http://rsbweb.nih.gov/ij/).

2.11. Electrophoretic Mobility Shifts Assays (EMSA)

Nuclear extracts isolated from SMCs were assessed by electrophoretic mobility shift [28]
to check on the activation of nuclear factor-kappa B (NFκB). DNA–protein interactions were
detected with a nonisotopic method using the LightShift Chemiluminescent EMSA Kit.
Oligonucleotide sequences were based on the putative NFκB binding element in the human
FN promoter (from nucleotides 25 to 55; 5′-GGG GGA GGA GAG GGA ACC CCA GGC
GCG AGC-3′) [52]. Biotin end-labeled DNAs containing the binding site of interest (NFκB
from FN, biotin-NFκB) were incubated with 1 µg/µL nuclear extracts for 20 min at R/T.
Protein–DNA complexes were subjected to gel electrophoresis on a native polyacrylamide
gel in 0.5 x Tris Buffer EDTA and then transferred to a positively charged nylon mem-
brane. The biotin end-labeled DNA was detected using the Streptavidin-Horseradish
Peroxidase Conjugate and the Chemiluminescent Substrate as described in the kit. For com-
petition experiments, 200-fold molar excess of competitor DNA (AP-1 oligonucleotides)
was coincubated with biotin end-labeled DNAs (biotin-NFκB).

2.12. ROS Production

SMCs or ECs were grown in 60 µ-dishes 35 mm high with glass bottom (Ibidi, Martin-
sried, Munich, Germany) until 80% confluent and then incubated for 24 h with serum-free
DMEM and finally treated with 10 mM BGP at different times. ROS production was mea-
sured by fluorescence confocal microscopy by using the CellROX Deep Red probe, with
5 µM CellROX being added and incubated for the last 30 min. At the end of incubation,
the cells were washed twice with PBS and fixed with 4% p-formaldehyde for 15 min.
Cells were analyzed using a LEICA TCS-SP5 confocal microscope (Leica Microsystems;
Wetzlar, Germany) with helium-neon laser at 633 nm to detect red fluorescence of the Cell-
ROX probe. Pictures were taken, and the intensity of red fluorescence was measured by
densitometry using the Image J software (http://rsbweb.nih.gov/ij/).

2.13. Statistical Analysis

GraphPad Prism 5 Software was used for statistical analysis. The following statistical
tests were applied in cell experiments: one-way ANOVA followed by Dunnett’s post-tests
for experiments compared with control cells or followed by Bonferroni post-tests for mul-
tiple comparisons. Statistical tests applied in experiments performed on animals were
one-way ANOVA followed by Bonferroni post-tests for multiple comparisons, or two-way
ANOVA in the case of the vascular reactivity assays for comparison of complete dose–
response curves followed by Bonferroni post-test for multiple comparisons. Correlations
were analyzed using the Pearson correlation non-parametric test. Unless otherwise speci-

http://rsbweb.nih.gov/ij/
http://rsbweb.nih.gov/ij/
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fied, data are expressed as the mean ± standard error and expressed as a percentage of
the control values of a variable number of experiments detailed in figure legends. The level
of statistical significance was defined as p < 0.05.

3. Results
3.1. Hyperphosphatemia Induced Vascular Dysfunction in Old Mice by Reducing
Endothelium-Dependent Vascular Relaxation and Increasing Inflammation and Fibrosis

We analyzed whether aging-related hyperphosphatemia was associated to age-related
changes in vascular relaxation. For this purpose, we evaluated vascular reactivity in mesen-
teric artery rings isolated from young and old mice. Additionally, a 21 month old mice
group received a low P diet for the last 3 months of life to reduce the phosphate intake
in order to evaluate the role of hyperphosphatemia in vascular relaxation. Firstly, it was
confirmed that our aging animal model from 24 months old mice presented hyperphos-
phatemia and that this could be reduced significantly with a restriction in phosphate intake.
Phosphate levels in mg/dL (mean ± SEM) were as follows: Young mice, 13.55 ± 0.98;
Old-24 m, 21.60 * ± 0.95; Old-24 m Low P, 16.67 # ± 0.84; * p < 0.05 Old-24 m vs. Young
and # p < 0.05 Old-24 m Low P vs. Old-24 m. In addition to hyperphosphatemia, old
mice exhibited a significant reduction in SNP and ACh-induced responses, endothelial
independent and dependent vascular relaxation, respectively, compared to young mice
(Figure 1A,B, on the left). Old mice fed with the low P diet showed an improvement of
endothelium-dependent vascular relaxation in response to ACh (Figure 1B, on the right).
By contrast, no changes were detected in the endothelium-independent vascular relaxation
induced by SNP (Figure 1A, on the right). Additional experiments of vascular reactivity
were performed in the presence of L-NAME, a NOS3 inhibitor, to confirm the potential
role of NOS3 in the endothelium-dependent relaxation induced by ACh. When mesenteric
arteries were exposed to L-NAME, relaxation in response to ACh became worse in all
groups of mice (Figure 1B): young mice, old mice and even old mice fed with the low
P diet. For that reason, it was checked whether NOS3 expression was reduced in old
mice. The mRNA expression of NOS3 was analyzed in aorta by real time PCR, and it was
diminished in old mice with respect to young mice, but it was improved in mice fed with
the low P diet (Figure 1C). A negative statistical correlation was found between NOS3
expression and serum phosphate levels from those mice (Figure 1C).

In order to assess the effect of hyperphosphatemia on vascular inflammation, the pro-
inflammatory cytokine IL-6 and monocyte chemoattractant protein-1 (MCP-1) were ana-
lyzed in the aortas from mice by real time PCR. Both increased significantly in aortas from
old mice with respect to young mice, whereas mice fed with low P diet presented lower
expression (Figure 1D). A significative correlation was found between IL-6 expression and
P serum levels (Pearson r = 0.6789, p < 0.0002) (Supplementary Figure S1B).

Finally, we checked whether hyperphosphatemia was associated with aging-related
vascular fibrosis. We compared the expression of ECM proteins in aortas isolated from
young and old mice, with or without phosphate dietary restriction. Figure 2 illustrates
a significant increase in the expression of FN, collagen I and collagen V (Figure 2A) analyzed
by Western blot. Restriction in phosphate intake reduced the expression of these proteins
(Figure 2A) with respect to old mice receiving a standard diet. The aorta wall from old
mice had less elastin expression, assessed by immunohistochemistry (Figure 2B), and more
appearance of fibrosis mainly located into the media layer of SMC, which was measured
in media layer using Sirius Red staining (Figure 2C). The low P diet was able to significantly
reduce the fibrosis from old mice, however, elastin expression did not change significantly.
Since the blood vessels are divided depending on function, location and size, we have
also included histological data from vessel wall changes from the other organs of these
mice, such as the heart and kidney (Supplemental Figure S1D). Fibrosis was also detected
in small vessels from heart and kidney samples from old mice, and it was reduced with
the low P diet. Moreover, the ratio of Sirius red/elastin is significantly inverted between
old and young mice (see table of Figure 2D, left panel) and was improved in mice fed with
the low P diet. Even the aorta thickness was significantly increased in old mice, but a few
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changes after treatment with low P diet were detected (Figure 2D, right panel). We also
identified a positive correlation between serum phosphate levels and the expression of
FN, collagen V and Sirius red staining (Figure 2E). We even found a positive correlation
between IL-6 expression and FN expression (Pearson r = 0.5813, p < 0.0036) (Supplementary
Figure S1C), suggesting a potential association between fibrosis and inflammation.
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Figure 1. Hyperphosphatemia reduces endothelium-dependent vascular relaxation in old mice by
reducing NOS3 expression and increases vascular inflammation. Male C57Bl6 mice from 5 month old
(Young, closed triangle), 24 month old fed with normal diet (Old-24 m, closed circle) and 24 month
old mice fed with a low phosphate diet for the last 3 months of life (Old-24 m Low P, closed square)
were used. Vascular reactivity was measured in mesenteric arteries from those mice (A,B). Vascular
relaxation in response to SNP are shown in panel A, comparing Young with Old mice on the left panel
A and comparing Old-24 m with Old-24 m low P mice on the right panel A. N indicates the number
of animals measured, and n denotes the number of segments analyzed. (B) Vascular relaxation
in response to ACh was measured in the presence of inhibitor of NOS3, L-NAME 100 µM (open
symbols) or in the absence of L-NAME (closed symbols). Young versus Old mice on the left panel B
are compared with or without L-NAME treatment, and old mice fed with standard diet on the right
panel B are compared with respect to old mice fed with a low P diet, with or without L-NAME.
(C) On the left panel, NOS3 expression by real-time PCR of the aorta tissue from those mice is shown,
and on the right the graph of correlation between P serum levels and NOS3 expression in aorta is
shown (Pearson r = −0.6034, p = 0.0018). (D) IL-6 and MCP-1 expressions were analyzed in aorta
by real-time PCR. Values are the mean ± SEM of 10 mice per group, * p < 0.05 vs. the other groups,
# p < 0.05 compared Old-24 m vs. Old-24 m Low P.
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Figure 2. Hyperphosphatemia induces fibrosis in aorta from old mice. Male C57Bl6 mice from
5 month old (Young, closed bars), 24 month old fed with normal diet (Old-24 m, striped bars) and
24 month old mice fed with a low phosphate diet for the last 3 months (Old-24 m Low P, grey bars)
were used. (A) Aorta tissue was isolated from mice to evaluate fibronectin (FN), collagen I (Col I)
and collagen V (Col V) protein expressions by Western blot. A representative Western blot is shown
above with the densitometric analysis below. (B,C) Elastin staining (B) and Sirius red staining (C)
of the aorta from mice (40×) is shown on the left of each panel with the graph of densitometric
analysis on the right. Scale bar, 100 µm. Green arrows indicate elastin expression in black, blue
arrows indicate Sirius red expression in red and white arrows indicate the thickness of the aorta wall.
(D) On the left, a table with the ratio between Sirius red and Elastin expression of each group of mice
is shown, and a graph with the densitometric analysis of aorta thickness from all groups is shown
on the right of the panel. (E) Graphs of correlations between P serum levels and different parameters
of fibrosis are shown: P levels and FN expression (Pearson r = 0.4775, p = 0.0136), P levels and Col V
expression (Pearson r = 0.6056, p = 0.0017) and P levels and Sirius red expression (Pearson r = 0.8101,
p = 0.0001). Values are the mean ± SEM of 10 mice per group, * p < 0.05 vs. young, # p < 0.05 vs.
Old-24 m.

3.2. Hyperphosphatemia Impairs Oxidant/Antioxidant Balance and Induces Nitrosative Damage
in Aorta from Old Mice

In order to explore the mechanisms involved in the observed effects, we assessed
whether hyperphosphatemia was related to oxidative stress. Old mice showed higher levels
of ROS production, measured by immunofluorescence with the DHE probe, with respect
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to young mice (Figure 3A). Low P diet was able to significantly reduce ROS production
from old mice (Figure 3A). As NADPH oxidase is an important source of ROS production,
Nox4 expression was also measured in aorta. Old mice showed a significant increase
in Nox4 expression, which was blocked with the low P diet (Figure 3B), suggesting that
aging-related hyperphosphatemia could mediate ROS production through Nox4 activation.
Moreover, the antioxidant barrier was also studied in aorta samples by qPCR using specific
TaqMan probes for Nrf2 factor and the antioxidant enzymes Sod2-Mn and Gpx1 that are
regulated by Nrf2. Nrf2 and antioxidant enzymes were reduced in old mice (Figure 3C).
However, no changes were observed in old mice treated with low P diet. These results
suggest an imbalance between oxidant production and antioxidant capacity in aorta from
old mice in favor of ROS production.
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Figure 3. Hyperphosphatemia impairs oxidant/antioxidant balance in the aorta from old mice. Male
C57Bl6 mice from 5 month old (Young, closed bars), 24 month old fed with normal diet (Old-24 m,
striped bars) and 24 month old mice fed with a low phosphate diet for the last 3 months (Old-24 m
Low P, grey bars) were used. (A) Oxidative stress in aorta tissue was detected with the DHE probe (in
red fluorescence) by using a confocal microscope. Representative microphotographs are shown with
40×magnification and the densitometric analysis is shown below the pictures, where the bar graph
represents the ratio between DHE intensity fluorescence and the number of nuclei. Scale bar, 50 µm.
(B) Nox4 expression of the aorta from mice (40×) is shown with the graph of densitometric analysis
below the pictures. Scale bar, 100 µm. (C) Antioxidant barrier was evaluated by the expression of
Nrf-2 factor and antioxidants genes Sod2-Mn and Gpx1 analyzed by real time PCR in aortic tissue.
Values are the mean ± SEM of 6 mice per group, * p < 0.05 vs. young, # p < 0.05 vs. Old-24 m.
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On the other hand, we studied whether hyperphosphatemia was related to aging-
related nitrosative damage. For this purpose, NOS2 was analyzed in aorta from mice
by real time PCR. NOS2 increased significantly in aorta from old mice with respect to
young mice, whereas mice fed with low P diet blocked NOS2 induction (Figure 4A). Lastly,
as NOS2 stress and oxidative stress were increased in old mice, nitrosative damage were
assessed in aorta slices by Nitrotyrosine expression, finding a significant rise in old mice
compared with young mice, which was significant reduced with the low P diet (Figure 4B).

Antioxidants 2021, 10, x FOR PEER REVIEW 12 of 23 
 

oxidative stress in the aorta from old mice, which altogether could mediate endothelial 
dysfunction. 

 

Figure 4. Hyperphosphatemia induces NOS2 expression and nitrosative damage in aorta from old 
mice. Male C57Bl6 mice from 5 month old (Young, closed bars), 24 month old fed with normal diet 
(Old-24 m, striped bars) and 24 month old mice fed with a low phosphate diet for the last 3 months 
(Old-24 m Low P, grey bars) were used. (A) NOS2 expression was evaluated by real time PCR in 
aortic tissue. (B) Nitrotyrosine expression is shown in the aorta slices from mice (40x) with the 
graph of densitometric analysis on the right panel. Scale bar, 100 µm. (C) Values are the mean ± 
SEM of 6 mice per group, * p < 0.05 vs. young, # p < 0.05 vs. Old-24 m. 

3.3. Hyperphosphatemia Downregulates NOS3 by Increasing Oxidative Stress through NFkB 
Activation in Endothelial Cells 

In order to explore a possible mechanism involved in the reduction in NOS3 ex-
pression induced by hyperphosphatemia, in vitro studies were performed in human 
endothelial cells, analyzing the role of oxidative stress in this effect. Firstly, NOS3 activity 
and NOS3 expression was assessed at different times in human endothelial cells treated 
with BGP, an extracellular donor of phosphate. BGP induced a significant reduction in 
phosphorylation of Ser1177 P-NOS3 protein expression as well as a reduction in NOS3 pro-
tein expression, which remained inhibited even until 72 h (Figure 5A), indicating that 
NOS3 was less effective. Secondly, Nox4 expression was evaluated by Western blot and 
ROS production by confocal microscopy. BGP induced not only Nox4 expression but also 
ROS production (Figure 5B). The presence of the antioxidant NAC, a precursor of gluta-
thione, avoided the reduction in NOS3 expression (Figure 5C), suggesting that ROSs are 
mediating hyperphosphatemia-induced NOS3 downregulation. 

Figure 4. Hyperphosphatemia induces NOS2 expression and nitrosative damage in aorta from old
mice. Male C57Bl6 mice from 5 month old (Young, closed bars), 24 month old fed with normal diet
(Old-24 m, striped bars) and 24 month old mice fed with a low phosphate diet for the last 3 months
(Old-24 m Low P, grey bars) were used. (A) NOS2 expression was evaluated by real time PCR in aortic
tissue. (B) Nitrotyrosine expression is shown in the aorta slices from mice (40×) with the graph of
densitometric analysis on the right panel. Scale bar, 100 µm. Values are the mean ± SEM of 6 mice
per group, * p < 0.05 vs. young, # p < 0.05 vs. Old-24 m.

These in vivo results from mice point to a potential relationship between aging-related
hyperphosphatemia and the presence of vascular fibrosis, inflammation and oxidative
stress in the aorta from old mice, which altogether could mediate endothelial dysfunction.

3.3. Hyperphosphatemia Downregulates NOS3 by Increasing Oxidative Stress through NFkB
Activation in Endothelial Cells

In order to explore a possible mechanism involved in the reduction in NOS3 expression
induced by hyperphosphatemia, in vitro studies were performed in human endothelial
cells, analyzing the role of oxidative stress in this effect. Firstly, NOS3 activity and NOS3
expression was assessed at different times in human endothelial cells treated with BGP,
an extracellular donor of phosphate. BGP induced a significant reduction in phospho-
rylation of Ser1177 P-NOS3 protein expression as well as a reduction in NOS3 protein
expression, which remained inhibited even until 72 h (Figure 5A), indicating that NOS3
was less effective. Secondly, Nox4 expression was evaluated by Western blot and ROS
production by confocal microscopy. BGP induced not only Nox4 expression but also ROS
production (Figure 5B). The presence of the antioxidant NAC, a precursor of glutathione,
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avoided the reduction in NOS3 expression (Figure 5C), suggesting that ROSs are mediating
hyperphosphatemia-induced NOS3 downregulation.
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Figure 5. BGP-induced downregulation of NOS3 depends on ROS production in human endothelial
cells. A human endothelial cell line (EA.hy926) was treated with 10 mM BGP at different time points
(A,B). Some cells were incubated in the presence of 100 µM N-acetylcysteine (NAC), and then BGP
was added for 24 h (C). (A) NOS3 activity and NOS3 expression were studied by the expression
of Ser1177 P-NOS3 and NOS3, respectively, in human endothelial cells treated with 10 mM BGP at
different times. (B) Oxidative stress was analyzed by Nox4 expression by Western blot (on the left
panel) and by ROS production using a CellROX probe that was added during the last 30 min of
incubation. ROS production in red fluorescence were visualized by confocal microscopy, repre-
sentative microphotographs are shown on the right panel with 40× magnification, scale bar and
50 µm, and the densitometric analysis is shown below. (C) Endothelial cells were preincubated with
100 µM NAC before adding BGP for 24 h, and then NOS3 expression was evaluated by Western blot.
A representative Western blot is included at the top of each panel with the densitometric analysis
below. Values are the mean ± SEM of 5 (A,B) or 4 (C) independent experiments, * p < 0.05 vs. control
cells (C) and # p < 0.05 vs. BGP alone.

The downregulation of NOS3 through activation of the NFκB transcription factor by
different pathways has been described [53–55]. For that reason, we explored whether BGP
could stimulate NFκB in endothelial cells. BGP induced phosphorylation of both, IκB and
NFκB p65, suggesting the activation of NFκB transcription factor (Figure 6A). After that,
we analyzed NOS3 expression in cells treated with BGP in the presence of two described
inhibitors of NFκB such as parthenolide (PTN) and acetyl salycilic acid (ASA) [56,57]. PTN
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and ASA blocked significantly BGP effect on NOS3 expression (Figure 6B). Moreover, both
inhibited BGP-induced NFκB activation (Figure 6C), suggesting that NFκB are involved
in the regulation of NOS3 induced by BGP. Lastly, we explored the activation of NFκB
in cells treated with BGP in the presence of NAC in order to assess whether oxidative stress
mediates NFκB activation. Figure 6D shows NAC blocked BGP-induced NFκB activation.
These results suggest that hyperphosphatemia reduces NOS3 expression through activation
of oxidative stress-induced NFκB.
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Figure 6. BGP-induced NOS3 downregulation depends on oxidative stress-induced NFκB activation
in human endothelial cells. A human endothelial cell line (EA.hy926) was treated with 10 mM
BGP. (A) Phosphorylation of IκB and NFκB p65 was studied by expression of Ser32 P-IκB and Ser536

P-NFκB p65, respectively, in human endothelial cells treated with 10 mM BGP at different times.
(B) Endothelial cells were preincubated with 5 µM parthenolide (PTN) or 5 mM acetyl salycilic
acid (ASA) before adding BGP for 24 h, and then NOS3 expression was evaluated by Western blot.
(C,D) Endothelial cells were preincubated with 5 µM PTN or 5 mM ASA (panel C) and with 100 µM
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N-acetylcysteine (NAC) (panel D) before adding BGP for 60 min, and then Ser32 P-IκB and Ser536

P-NFκB p65 expressions were evaluated by Western blot. A representative Western blot is included
at the top of each panel with the densitometric analysis below. Values are the mean ± SEM of 3
independent experiments, * p < 0.05 vs. control cells (C) and # p < 0.05 vs. BGP alone.

3.4. Hyperphosphatemia Induced Inflammation by Increasing Oxidative Stress in Endothelial Cells

In order to study a possible mechanism involved in hyperphosphatemia-induced
inflammation, in vitro studies were performed in human endothelial cells. The effect of
BGP on pro-inflammatory cytokine expression was evaluated in endothelial cells by real
time PCR. BGP significantly stimulated the expression of several cytokines, including TNF-
alpha, IL-6, IL-1-beta and MCP-1 (Figure 7A). TNF-alpha reached maximum expression
levels at 4 h, while the other cytokines required 8 h to reach peak expression levels.
As oxidative stress can regulate the inflammation process, endothelial cells were pre-
treated with NAC before adding BGP to evaluate cytokine expression. NAC blocked BGP
effect on all cytokine expression (Figure 7B), suggesting that oxidative stress could also
mediate inflammation.
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Figure 7. BGP-induced inflammation depends on oxidative stress in human endothelial cells. A human
endothelial cell line (EA.hy926) was treated with 10 mM BGP at different times (A). Some cells were
incubated in the presence of 100 µM N-acetylcysteine (NAC) and then BGP was added at indicated
times (B). (A,B) The expressions of several cytokines, TNF-α, IL-6, IL-1ß and MCP-1, were analyzed by
real-time PCR in endothelial cells treated with BGP at different times (A) or in cells treated with BGP
in the presence or the absence of NAC at indicated times (B). Values are the mean ± SEM of 6 (A) or 4
(B) independent experiments, * p < 0.05 vs. control cells (C) and # p < 0.05 vs. BGP alone.
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3.5. Hyperphosphatemia Induced Vascular Fibrosis by Increasing Oxidative Stress in Vascular
Smooth Muscle Cells

In order to study a possible mechanism involved in hyperphosphatemia-induced
vascular fibrosis, in vitro studies were carried out using human SMC, evaluating the role
of oxidative stress on vascular fibrosis. The effect of hyperphosphatemia was checked
using 10 mM BGP at different times in cultured SMC. The ECM protein expressions, FN
and collagen I, were evaluated by immunofluorescence (Figure 8A) and by Western blot
(Supplemental Figure S2A). BGP induced the expression of all these proteins, reaching
a maximum effect between 6 and 8 h. Furthermore, CTGF expression was analyzed by
Western blot, and it increased in the presence of BGP (Supplemental Figure S2A). Then, ROS
production was measured by confocal microscopy. BGP significantly increased reactive
oxygen species production approximately 15 min after exposure in SMC (Figure 8B). After
that, experiments in SMC with BGP in the presence or the absence of the antioxidant NAC
to block synthesis of reactive oxygen species were performed to evaluate CTGF, FN or
collagen I expressions. NAC significantly blocked the BGP inducer effect on these proteins
(Figure 8C and Supplemental Figure S2B). The effect of BGP on fibrosis was specific of
phosphate, as it is blocked in the presence of PFA, an antagonist of phosphate transporter
Pit-1 (Supplemental Figure S2C). In addition, the role of NFκB factor was studied, as it can
regulate the FN promoter. BGP induced the binding of NFκB to nuclear proteins, a biotin-
labeled oligo which recognizes specifically the sequence of NFκB transcription factor
in human FN promoter (Figure 8D). The effect was maximal between 30 and 60 min after
adding BGP. In addition, the presence of NAC inhibited the binding of NFκB as analyzed
by EMSA assays (Figure 8E). This result suggests that BGP regulates FN expression through
activation of oxidative stress-induced NFκB.
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man FN promoter. (D) A representative EMSA is shown join to a competition assay using nuclear 
extracts from control cells; lane 1, negative control without nuclear extract; lane 2, biotin-labeled 
NFκB; lane 3, an excess of unlabeled NFκB; lane 4, an excess of unlabeled AP-1. The densitometric 
analysis is given below the EMSA assay. (E) A representative EMSA of cells treated with BGP and 

Figure 8. BGP induces fibrosis mediated through ROS-induced NFκB activation in vascular smooth
muscle cells. Smooth muscle cells (SMCs) were incubated with 10 mM BGP for 6 h (panels A,C)
or at different times (panels B,D). (A,C) Intracellular expressions of Collagen I (Col I, in green and
stripped bars) and Fibronectin (FN, in red and closed bars) were assessed by immunofluorescence
after treating SMC with BGP for 6 h (panel A) or in the presence or absence of 100 µM NAC before
adding BGP 6 h (panel C). Representative microphotographs are shown with 40× magnification,
scale bar and 50 µm. The densitometric analysis is shown next to pictures. (B) CellROX probe was
added during the last 30 min of incubation. After being washed twice, in vivo cells were visualized
by confocal microscopy to test ROS production in red fluorescence. Representative microphotographs
are shown with 40×magnification, scale bar, 50 µm. The densitometric analyses are shown below
them. (D,E) Nuclear extracts were harvested from cells incubated with BGP at different times (panel
D) or in the presence of 100 µM NAC for 60 min (panel E). Then, nuclear extracts were incubated with
biotin-labeled oligonucleotide containing the NFκB consensus sequence from human FN promoter.
(D) A representative EMSA is shown join to a competition assay using nuclear extracts from control
cells; lane 1, negative control without nuclear extract; lane 2, biotin-labeled NFκB; lane 3, an excess
of unlabeled NFκB; lane 4, an excess of unlabeled AP-1. The densitometric analysis is given below
the EMSA assay. (E) A representative EMSA of cells treated with BGP and NAC is shown with
its densitometric analysis below. Values are the mean ± SEM of 6 (A–C) or 4 (D,E) independent
experiments, * p < 0.05 vs. control cells (C) and # p < 0.05 vs. BGP alone.
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4. Discussion

In this work, we demonstrate that hyperphosphatemia associated with age can pro-
mote vascular dysfunction by reducing endothelium dependent relaxation and increasing
inflammation and vascular fibrosis. We found an important role for oxidant stress in these
effects since hyperphosphatemia induces an imbalance between oxidants production and
antioxidant capacity. In vivo studies were carried out in a model of aged mice to assess
the relaxation, inflammation, fibrosis and the oxidation/antioxidation balance in the aorta.
All these parameters were impaired in old mice with respect to young mice, whereas they
were improved in old mice fed with a low P diet, suggesting that hyperphosphatemia can
be in part responsible for the observed changes. Old mice show hyperphosphatemia possi-
bly because of an alteration of phosphate homeostasis with a decreased Klotho expression
and the increment in the Na-Pi cotransporter in the kidney, as we described in previous
studies [58].

Endothelial dysfunction is usually related to an imbalance of endothelial vasoac-
tive factors, including a rise of ET-1 and a reduction in NO availability. Several exper-
imental studies in animals and humans have confirmed that the age-related reduction
in endothelium-dependent vasodilatation is due to the reduced NO bioavailability caused
by a reduced expression in NOS3 [59–63]. In agreement with that, our old mice also exhibit
less vascular relaxation than young mice where hyperphosphatemia is potentially responsi-
ble, as mice fed with a low P diet significantly improved endothelium-dependent relaxation.
Moreover, the effect of L-NAME in the experiments of vascular reactivity support the im-
plication of NOS3. However, the precise mechanism remains unclear. Several alterations
involved in the reduction in NOS3 expression as well as NO levels in aged endothelial cells
have been studied [63–66], indicating a relevant role for oxidative stress as antioxidants
were able to improve NO bioavailability and endothelial function in older humans and
animals. In this sense, we also observed a reduction in NOS3 expression in the aorta from
old mice, which improved with low P diet. This association was supported by the signifi-
cant negative correlation that exists between phosphate serum levels and mRNA NOS3
expression in aorta. On the other side, ROS production was increased in aorta from old
mice, and mice fed with low P diet show reduced ROS levels. Similar results were found
in vitro using endothelial cells treated with BGP; we found a significant reduction in NOS3
expression and a rise of ROS production. The presence of the antioxidant NAC recovered
the reduction in NOS3 induced by BGP. Some authors have described that NFκB-activating
stimuli, such as lipopolysaccharide, TNF-α and interleukin-1ß [53–55], suppressed eNOS
mRNA and protein levels. Consistent with these data, we found in cultured endothelial
cells that BGP induced downregulation of NOS3 through the activation of NFκB, which
acts as a negative regulator of NOS3 expression via ROS production. This was confirmed
with two known inhibitors of NFκB, acetyl salycilic acid [56,57] and parthenolide, as well
as with the antioxidant NAC. All of them were able to block BGP-induced NFκB activation.
In summary, aging-related hyperphosphatemia seems to be associated with age-related
changes in vascular relaxation by NOS3 reduction via ROS-induced NFκB activation.

Aging is also related to inflammation. Thus, the expressions of two typical pro-
inflammatory cytokines, IL-6 and MCP-1 were assessed in the aorta. Old mice expressed
high levels of IL-6 and MCP-1 with respect to young mice. Restriction in phosphate reduced
cytokines levels. IL-6 has a strong chronic inflammatory component [67], it is arguably
the most important cytokine across age-related pathologies that is used as a common
marker of inflammatory status [47]. Most cytokines interact with cell surface receptors
to initiate intracellular signaling cascades that ultimately activate transcription. Among
the transcription factors that regulate chronic inflammation across multiple diseases are
the NFκB and STAT proteins [68]. Pro-inflammatory condition depends on NFκB signaling
in endothelial dysfunction. NFκB proteins are sequestered in the cytoplasm by binding
to IκB proteins; phosphorylation of IκB in response to inflammatory stimuli or oxidative
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stress results in its degradation and enables nuclear translocation of NFκB where it can
activate gene transcription of pro-inflammatory cytokines. To study whether ROS can be
implicated in the induction of pro-inflammatory cytokines, endothelial cells were treated
with BGP. BGP significantly induced the expression of different cytokines apart from
ROS production. When cells were preincubated with NAC, all cytokine expression was
reduced in a significant way. Therefore, aging-related hyperphosphatemia induced vascular
inflammation through ROS production. This effect could probably also be mediated by
the activation of NFκB, similar to the situation with FN, but more studies are required to
definitively prove this.

Aging is generally characterized by increased fibrotic tissue deposition in many or-
gans [69]. Vascular fibrosis was assessed in the aorta as another factor involved in vascular
dysfunction. Aorta from old mice showed more expression of FN and collagen than young
mice; the Sirius red/elastin ratio was completely inverted, making the arterial wall more
stiff and favoring vascular dysfunction. Small vessels of other tissues such as heart and
kidney also demonstrated more fibrosis in old mice. Phosphate dietary restriction reduced
vascular fibrosis in all tissues studied. As the appearance of fibrosis in aorta was mainly lo-
cated in the media layer of SMC, the mechanisms involved in hyperphosphatemia-induced
fibrosis were studied in vitro in SMC treated with BGP. Many studies have demonstrated
the association of fibrosis and increased oxidative stress in the pathogenesis of some chronic
human diseases [70–72]. Oxidative stress was increased not only in aorta from old mice
but also in SMC treated with BGP. Our data suggest that fibrosis in SMC was mediated by
ROS production, as it was blocked in the presence of the antioxidant NAC.

Adler et al. found that the transcription factor most strongly associated with aging was
NFκB [73], which can drive several aging phenotypes in the skin, spine and brain [73–75].
Wu J et al. [76], reviewed the role of oxidative stress, inflammation and fibrosis in car-
diovascular aging, suggesting the involvement of two important factors, NFκB and Nrf2,
among others. It is well known that NFκB can be activated by oxidative stress in many cell
types [77] to later induce transcription of many genes by binding to specific target sites
in their promoter regions, for instance, human FN [52]. The role of NFκB factor regulating
FN expression was studied in SMC treated with BGP. BGP induced the binding of NFκB to
the FN promoter, and the presence of NAC blocked that effect, suggesting that ROS are
involved in the BGP-induced FN expression through NFκB activation.

Finally, as aging is also related to oxidative stress, the oxidant/antioxidant balance
was assessed in aorta. NADPH (nicotinamide adenine dinucleotide phosphate) oxidase is
an important source of reactive oxygen species. In vascular cells, several isoforms of NADPH
oxidases (Nox1, Nox2, Nox4 and Nox5) are expressed [78]; thus, we explored Nox4 expression
that could mediate ROS production. Higher expression of Nox4 was found in old mice than
in young mice, and the low P diet reduced those levels. Similar results were found in vitro by
using endothelial cells treated with BGP. Antioxidant enzymes are mainly regulated by Nrf2
factor, which can stimulate the expression of superoxide dismutase or glutathione peroxidase
between others [34,79]. Hecker et al. [34] suggested that loss of cellular redox homeostasis
promotes profibrotic myofibroblast phenotypes that result in persistent fibrosis associated
with aging, finding a Nox4/Nrf2 imbalance. According to that, we also found a Nox4/Nrf2
imbalance in the aorta from old mice with respect to young mice. Moreover, Sod2-Mn and
Gpx-1 were also downregulated probably as a consequence of a reduction in Nrf2 factor
expression. However, low P diet did not modify Nrf2 and Sod nor Gpx expressions, which
still continued low. This fact can be explained because Nrf2 is reduced with aging [34],
and it is probably not regulated by phosphate; however, we have not assessed the BGP effect
on Nrf2 regulation in vitro, so further studies would be need to elucidate this point. Our data
suggest aging-related oxidative stress is the result from an elevated expression of the reactive
oxygen species-generating enzyme, Nox4, and an impaired capacity to induce the Nrf2 factor
antioxidant response.

Apart from loss of redox homeostasis, aortas from old mice also presented higher
expression of NOS2 that was accompanied with more nitrotyrosine expression. These re-
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sults suggest that NO synthetized from NOS2 provoked nitrosative damage. It is known
that nitrosative stress is a major factor responsible for endothelial dysfunction, especially
through peroxynitrite that is a product result of reacting NO with ROS. Peroxynitrite
could be desacoplating NOS3, reducing its activity as previously described [80]; however,
the measure of peroxinitrite has not been addressed in this study. A limitation of this
study is the small size of the aorta that it is insufficient for performing more assays such as
the measure of NOS3 activity or peroxinitrite.

In summary, these data suggest that aging-related vascular dysfunction depends, at
least partially, on hyperphosphatemia associated with advanced age in mice. We propose
here that hyperphosphatemia induces an imbalance oxidant/antioxidant in favour of
oxidative stress, which on one hand reduces endothelium-dependent relaxation through
NOS3 reduction and on the other hand increases inflammation and the fibrosis increasing
vascular stiffness. The proposed mechanism is that BGP could activate the NFκB transcrip-
tion factor by increasing ROS production to regulate both the downregulation of NOS3
expression in EC and the induction of FN expression in SMC. However, the involvement
of NFκB in BGP-induced inflammation would need further studies. The relevance of
finding different dietary supplements that can improve endothelial dysfunction should be
investigated in the near future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antiox10081308/s1, Figure S1. Additional data from in vivo studies in old mice. Male C57Bl6
mice from 5 month old (Young, closed bars), 24 month old fed with normal diet (Old-24 m, striped
bars) and 24 month-old mice fed with a low phosphate diet for the last 3 months (Old-24 m Low
P, grey bars) were used. (A) General data from all groups of mice studied (10 mice per group) are
shown in a table including body weight and BMI, as well as water and food intake per day. (B)
Graphs of correlations between the mRNA expression of pro-inflammatory cytokine IL-6 with P
serum levels and with the fibrosis parameter FN are shown: IL-6 expression and P levels (Pearson
r = 0.6789, p = 0.0002), IL-6 expression and FN expression (Pearson r = 0.5813, p = 0.0036). Values
are from 8 mice per group. (C) Sirius red staining of the heart and kidney slices from mice (40×) is
shown on the left of panel C with the graph of densitometric analysis on the right. Scale bar, 100
µm. Values are the mean ± SEM of 6 mice per group, * p < 0.05 vs. young, # p < 0.05 vs. Old-24
m, Figure S2. BGP-induced fibrosis in vascular smooth muscle cells. Smooth muscle cells (SMCs)
were treated with 10 mM BGP at indicated times. (A) CTGF, Collagen I (Col I) and Fibronectin (FN)
were assessed by Western blot. (B) SMCs were incubated with 10 mM BGP for 6 h in the presence or
absence of 100 µM NAC to assay CTGF and FN expression by Western blot. (C) To study the specific
effect of BGP, cells were pre-incubated with 1 mM PFA, an antagonist of cotransporter Na-P termed
Pit-1, and then FN protein content was assessed by Western blot (on the left panel C), and FN and
Col I expression were analyzed by immunofluorescence (on the right panel (C). Representative
microphotographs of immunofluorescence are shown with 40× magnification, scale bar, 50 µm, with
their densitometric analyses below pictures. A representative Western blot is included at the top of
each panel with the densitometric analysis below. Values are the mean ± SEM of 8 (A) or 4 (B,C)
independent experiments, * p < 0.05 vs. control cells (C) and # p < 0.05 vs. BGP alone.
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