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Abstract: The capabilities of ceramic PZT transducers, allowing for elastic wave excitation in a
broad frequency spectrum, made them particularly suitable for the Structural Health Monitoring
field. In this paper, the approach to detecting impact damage in composite structures based on
harmonic excitation of PZT sensor in the so-called pitch–catch PZT network setup is studied. In
particular, the repeatability of damage indication for similar configuration of two independent
PZT networks is analyzed, and the possibility of damage indication for different localization of
sensing paths between pairs of PZT sensors with respect to damage locations is investigated. The
approach allowed for differentiation between paths sensitive to the transmission mode of elastic
wave interaction and sensitive reflection mode. In addition, a new universal Bayesian approach
to SHM data classification is provided in the paper. The defined Bayesian classifier is based on
asymptotic properties of Maximum Likelihood estimators and Principal Component Analysis for
orthogonal data transformation. Properties of the defined algorithm are compared to the standard
nearest-neighbor classifier based on the acquired experimental data. It was shown in the paper that
the proposed approach is characterized by lower false-positive indications in comparison with the
nearest-neighbor algorithm.

Keywords: Structural Health Monitoring; impact damage detection; composite structure monitoring;
Bayesian classification; PZT transducers applications

1. Introduction

Structural Health Monitoring (SHM) is a key technology for further advancement
and evolution of industry, transport, civil engineering, or space exploration paradigms.
Increased automation and optimization of industrial processes, widespread use of au-
tonomous Unmanned Aerial Vehicles (UAVs), or design of constructions subjected to
extreme load or environmental conditions will require developing technology for contin-
uous structural integrity monitoring of critical components and early damage detection
systems. Among various approaches to SHM [1–5] PZT ceramic sensors have proven to
be the technology of the universal application capabilities [6–9]. Application of PZT trans-
ducers provides a possibility to excite and receive elastic waves in all kinds of continuous
media [6,10]. Elastic waves can interact with structure discontinuities caused by different
kinds of damage enabling successful PZT use for Structural Health Monitoring. There
exists a vast literature on the subject, providing numerous examples of PZT application [11],
in particular to:

• cracks detection and their growth monitoring [12–14];
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• bolt and rivet joints monitoring [15–19];
• corrosion detection [20–22];
• concrete structures and soil properties monitoring [23–26];
• pipeline damage detection [27,28];
• large structure monitoring [29–32];
• malignant tumor detection [33];
• other applications [34,35].

In addition to the PZT applications mentioned above, monitoring of composite struc-
tures is of the utmost importance, especially in the aerospace industry [36,37]. Composites,
due to their high durability and lightweight are commonly used for civil [37,38] and mili-
tary [39,40] aircraft manufacturing. Their application allowed to increase performance and
reduce fuel consumption of modern aircraft. Despite the many advantages of composite
structures, there are also some drawbacks of their usage. Unlike metal alloys, fatigue
properties of composite structures and methods of their remaining fatigue durability under
damage presence are yet to be fully developed. Those parameters can depend not only
on the properties of constituent layers but also on their layup. Therefore, significantly
more data are needed for fatigue composite structure characterization than in the case
of metallic structures [41]. Additionally, composites are vulnerable even to low-energy
impacts, which can introduce in the structure the so-called Barely Visible Impact Damage
(BVID) [42]. Impacts can introduce transverse cracks of layers and multiple subsurface
delamination in the material (Figure 1), resulting in decreased stiffness and durability of
the structure [43–45]. BVID can be barely visible on the surface of the material. There-
fore, advanced non-destructive methods need to be applied for damage evaluation, e.g.,
ultrasonic testing (UT) [45,46].

Figure 1. Cross section visualization of an impact damage of composite structure obtained with use
of computer tomography.

Significant development of SHM system with the use of PZT transducers for composite
structure monitoring was performed [8,9,37,47], in particular towards BVID detection and
monitoring [48–51].

In this paper, a method for BVID detection and classification based on PZT trans-
ducers application is presented. The steady-state harmonic voltage signal is used for
guided wave excitation in the pitch-catch PZT network configuration. This setup is rarely
used compared to classic approaches such as the Electromechanic Impedance technique or
pitch-catch pulsed excitation of guided waves [7,8]. Signal evaluation is based on Damage
Indices maintaining complete information on the phase and the amplitude of the response
signals, following definition introduced in [52]. In [52], the properties of the approach
were examined with respect to artificially introduced damage. In this paper, it is applied to
BVID damage detection of composites structures caused by low-energy impacts. Another
novelty of this work lies in the definition of a new Bayesian approach to SHM data classifi-
cation. The Bayesian classifier is based on asymptotic properties of Maximum Likelihood
estimators [53] and Principal Component Analysis for orthogonal data transformation [54].
Both the complete Bayesian classification algorithm and its simplified version, proper for
direct implementation in the Python environment, are provided in the paper. Properties
of the defined algorithm are compared to the well-known nearest-neighbor classifier [54]
based on experimental data.

The paper is organized as follows. In the first two sections, methods used for data
acquisition and classification are presented, i.e., in Section 2, the approach to damage
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detection with the use of PZT sensors is introduced, and in Section 3 data classification
model based on Bayesian paradigm is defined. Section 4 provides experimental verification
of the proposed methods. In particular, repeatability of damage indication for similar
configuration of two independent networks of sensors is presented. As discussed in [13,14],
this property is of particular importance in real applications since it allows the training
of an appropriate model for BVID detection on a model PZT network and use it for
the classification of data acquired for other PZT networks installed on target structures.
Additionally, the efficiency of the defined Bayesian classifier is evaluated and compared
to results obtained with the use of the nearest-neighbor classifier. In Section 5, the paper
is concluded.

2. Structural Health Monitoring Based on Harmonic Excitation of PZT Sensors and
Voltage Transfer Ratio

For SHM systems based on elastic wave excitation by a network of PZT transducers,
there are two factors that define in general a given approach to structure monitoring [3,7–9]:

• the configuration of PZT transducers;
• the type of excitation voltage applied to PZT actuators.

Considering network configuration, a single PZT transducer in the network can be
used as a guided waves generator or receiver. Both functions can be adopted simultane-
ously. In the so-called pulse-echo setup, a single PZT transducer can be used for damage
detection. In that case, the idea for structure monitoring is based on the acquisition of
elastic waves emerging from PZT transducer which are scattered and reflected from struc-
ture discontinuities surrounding it. The amplitude of the received signal depends on
wave reflection coefficient on damage for a given excitation frequency [55], the distance of
damage from the PZT sensor as well as attenuation properties of the monitored structure.
This may, in some cases, restrict the range of sensor efficiency, in particular when excitation
voltage applied to PZT transducer is relatively small [11]. Additionally, pairs of PZT
transducers can be used for structure monitoring. Then one of the transducers is used
for elastic wave excitation and the other as a receiver. This approach is called pitch-catch
setup. Application of this setup to SHM provides more flexibility of signal analysis since
depending on the relative localization and orientation of sensing path and damage, both
transmission and reflection modes of elastic waves interaction with damage can be used for
structure assessment. In addition, there are also two approaches to guided wave excitation:
PZT actuator can be sourced with a short-pulsed or steady-state sinusoidal voltage. In
practice, the most commonly used approach is to apply pulsed excitation in the pitch-catch
transducers scheme [8,9] or to use steady-state harmonic voltage source in the pulse-echo
setup as in electromechanical impedance (EMI) technique [7,24,56,57].

In this study, a pitch-catch PZT network setup with harmonic voltage excitation is
used for BVID detection. This approach is also used for SHM purposes [29,52,58–60],
although not to the same extent as EMI or standard pitch-catch techniques [61]. For signal
analysis, the approach presented in [52] will be followed. In this approach, the input
voltage Uin applied to PZT transducer used as elastic waves actuator is sinusoidal signal
with angular frequency ω similarly as for EMI technique. The response signal used for
structure assessment in that case is voltage Uout induced on PZT sensor used as elastic
waves receiver. In the linear case, which should hold for sufficiently low excitation signal
and in appropriate frequency range not containing resonant frequency of PZT transducers,
the output transducer voltage Uout is also sinusoidal with the same frequency as Uin but
can have different amplitude and it can be phase-shifted with respect to Uin. In Figure 2b,
an example of voltage signals obtained for three different PZT sensors (Figure 2a) receiving
elastic waves excited by an actuator sourced with sinusoidal voltage is presented. The three
sinusoidal signals differ in the amplitude and the phase between them, which depend on
their location with respect to PZT actuator excited with sinusoidal voltage Uin.
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Figure 2. Example of a sinusoidal steady–state excitation of PZT sensors [52]: (a) PZT sensors configuration; (b) output
voltages acquired on PZT sensors.

In that case the ratio between output and input voltage, called forward voltage transfer
ratio (FVTR):

FVTR =
Uout

Uin
(1)

can be written in complex form as:

FVTR(ω) =
Uout

Uin
=
|Uout|ei(ωt+ϕ(ω))

|Uin|eiωt = |FVTR(ω)|eiϕ(ω) (2)

where |FVTR(ω)| and ϕ(ω) denote respectively—the amplitude ratio and the phase differ-
ence between output Uout and input Uin signals at a given frequency. Both components of
FVTR can contain information about the eventual damage of the structure within the sens-
ing range of a given sensing path. In principle, it is very hard to find indication of eventual
damage based only on FVTR function acquired for unknown state of the structure, since it
can be dependent on all mechanical properties of the structure within the sensing range of
a given sensing path, whether damage dependent or not. Therefore, damage detection and
structure assessment are usually performed using signal characteristics, called the Damage
Indices (DIs), which are based on a comparison of the baseline signal—acquired for the
pristine state of the structure with the signal obtained for the actual structure condition
and are designed to capture changes of signal eventually caused by damage. Denoting
as FVTR(ω) the voltage transfer ratio obtained for the actual state of the structure and as
FVTR0(ω) the baseline voltage transfer ratio, the DIs useful for structure assessment can
be defined as the ratio of the two transfer functions:

DI(ω) =
FVTR(ω)

FVTR0(ω)
=
|FVTR(ω)|
|FVTR0(ω)| e

i(ϕ(ω)−ϕ0(ω)). (3)

The above Damage Index is defined for a given excitation frequency. However, DIs
obtained for a range of frequencies can be used for damage detection and classification.
It is worth noticing that no information is lost, DIs capture all the information about the
output voltage amplitude and its phase changes, assuming that the baseline FVTR0 is
known. Figure 3 illustrates an example of DIs behavior obtained for a range of frequencies
for undamaged structure and in the presence of damage [52]. For undamaged state, the DIs
are concentrated in the vicinity of the point 1 + i0 in the complex plane, irrespectively of
the excitation frequency. If damage is present, it can change the output voltage amplitude
and its phase. Therefore, DIs diverge from the point 1 + i0, at least for frequencies sensitive
to damage. A necessary condition for SHM methods to work correctly is the repeatability
of damage indications under similar conditions. To achieve that, DIs should be located at
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the same region of the complex plane when comparable damage is present near a sensing
path. This property was demonstrated for particular type of damage in [52] and will also
be discussed in this paper.

Figure 3. Example of the DIs obtained for the pristine state of the structure and when a damage is
present [52].

3. Definition of Data Classification Method

For automated structure assessment, having defined signal analysis methods, includ-
ing Damage Indices allowing for distinction of signal differences due to damage, in addition
also methods of data classification are needed. There are many examples of classical data
classification approaches, e.g., linear/quadratic discriminant analysis, nearest-neighbor
method, Support Vector Machines or neural networks models [54] which can be applied
to SHM. In the paper a framework for data classification based on Bayesian inference is
proposed. Bayesian approach, due to its generality and flexibility, is often adopted for data
classification in the SHM field [62–66].

3.1. General Bayesian Setup

A general definition of Bayesian model in the SHM context can be formulated as fol-
lows. Assuming there exists a finite set of predefined structure conditions M1, . . . , Mk, the
probability distribution of continuous Damage Indices (DI1, . . . , DIm) adopted for struc-
ture assessment denoted as p(DI1, . . . , DIm|Mj), can depend on the state of the structure
Mj within the sensing range of a given sensing path. In the framework it is assumed that
state of the structure can be described by a categorical variable. It is true if SHM system is
required only to indicate damage presence in the structure or distinguish between different
types or stages of developing damage, therefore if the structure needs to be assessed in
continuous terms, e.g., by precise location or size of damage, the framework needs to be
modified accordingly. Although the paper is focused on application of the voltage transfer
ratio to SHM, for the purpose of definition of Bayesian framework for data classification
the notation will be kept general, since it can be also used for other approaches as well. In
Section 3.4 the details of classifier setup used in this particular paper are provided.

Based on the set of Damage Indices (DI1, . . . , DIm) obtained for unknown state of the
structure, Bayesian classification of the observed data is based on the so-called a posteriori
probabilities obtained from Bayes formula [67]:
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p(Mj|DI1, . . . , DIm) =
p(DI1, . . . , DIm|Mj)wj

p(DI1, . . . , DIm)
(4)

where p(Mj|DI1, . . . , DIm) denotes probability of structural state occurrence given mea-
surement output (DI1, . . . , DIm), wj is set of weights describing a priori probabilities of
structural state Mj occurrence and p(DI1, . . . , DIm) is total probability density of the ob-
tained measurement output (DI1, . . . , DIm):

p(DI1, . . . , DIm) = ∑
j

p(DI1, . . . , DIm|Mj)wj.

One of the most common Bayesian classifiers maximize a posteriori probability or
equivalently a posteriori factors PFj, given by:

PFj = p(DI1, . . . , DIm|Mj)wj. (5)

The probability densities p(DI1, . . . , DIm|Mj) governing measurements output in
terms of Damage Indices under given structural state are not always specified as a single
distribution. Instead, when it is hard to precisely define parameters of the distribution,
p(DI1, . . . , DIm|Mj) can be defined as integral over selected parameter family of probability
densities:

p(DI1, . . . , DIm|Mj) =
∫

Θj

p(θ1,...,θn)(DI1, . . . , DIm|Mj)πj(θ1, . . . , θn)dθ1 . . . dθn, (6)

where p(θ1,...,θn) is parametric distribution family on the space spanned by the defined
Damage Indices DI1, . . . , DIm with unknown parameters (θ1, . . . , θn) ∈ Θj ⊂ Rn and
πj is a probability density on the allowable parameter space Θj. As an example, if a
single Damage Index DI would be used for structure assessment and family of normal
distributionN (µ, σ2) would be chosen for its distribution, the corresponding density could
be written as:

p(DI|Mj) =
∫ σmax

σmin

∫ µmax

µmin

1
σ
√

2π
e−

(DI−µ)2

2σ2 πj(µ, σ)dµdσ, (7)

where µmin, µmax, σmin, σmax corresponds to lower and upper limits on mean value and
standard deviation of Damage Index distribution respectively and πj is probability density
on the parameter space (µ, σ).

3.2. Maximum Likelihood Method

The weights w1, . . . , wk, the type of parametric families p(θ1,...,θn)(DI1, . . . , DIm|Mj)
determining DIs distribution and probability densities πj are the so-called a priori knowl-
edge. The parameters w1, . . . , wk describing frequency of structural state occurrence is not
related to approach to SHM and can be only estimated based on operational data or expert
knowledge. However, the distribution πj on the parameter space can be inferred based on
the training data, if there is no a priori knowledge available.

One of the methods for the definition of the families p(DI1, . . . , DIm|Mj) based on
training datasets for a given model Mj is to use the Maximum Likelihood (ML) estimator
and its asymptotic properties [53]. Given the training dataset Tj for a structural state Mj,
consisted of Nj measurement outcomes represented in the form of the defined Damage
Indices:

Tj = {(DI1,1, . . . , DIm,1), . . . , (DI1, . . . , DIm,Nj)}, (8)

the so-called log-likelihood function l can be defined as:

l(θ1, . . . , θn|Mj) =

Nj

∑
i=1

log(p(θ1,...,θn)(DI1,i, . . . , DIm,i|Mj)) (9)
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which is the logarithm of joint probability distribution measurements outcomes consist-
ing of the training dataset. The ML estimators θ̂1, . . . , θ̂n for the unknown parameters
(θ1, . . . , θn) maximize the log-likelihood function, i.e.,:

l(θ̂1, . . . , θ̂n|Mj) ≥ l(θ1, . . . , θn|Mj), (θ1, . . . , θn) ∈ Θj. (10)

As the result of maximization procedure, family parameters θ̂1, . . . , θ̂n are selected, for
which joint probability density of measurements outcomes consisting training dataset Tj is
the highest.

Maximum Likelihood algorithm not only selects the best parameters for representation
of Damage Indices probability density p(θ1,...,θn)(DI1, . . . , DIm|Mj) but it can also provide
their measure of uncertainty, i.e., a priori distribution πj on the parameter space Θj. For
sufficiently large training datasets, it can be proven that the asymptotic distribution of
maximum likelihood estimator can be approximated by n-dimensional normal distribution.
In the context of Bayesian framework we propose to set the distribution πj on the parameter
space as in Equation (6) as multivariate normal πj ∼ N (θ̂1, . . . , θ̂n, Σ), where covariance
matrix Σ can be estimated based on training dataset Tj as well [53]. As admissible parameter
space Θj can be assumed to be 95% joint confidence set for multivariate normal distribution
πj ∼ N (θ̂1, . . . , θ̂n, Σ). In general, it is an ellipsoid set based on Hotelling’s T-squared
distribution (T2) [68], but for simpler numerical implementation Θj is here proposed in
the form of n-dimensional cuboid space Θj = [LCB1, UCB1]× . . .× [LCBn, UCBn] where
LCBi, UCBi are the lower and the upper 95% intervals of one-dimensional normal marginal
distribution for the i-th optimal parameter θ̂i. Since marginal probability distribution for θ̂i
can be approximated by N (θ̂i, Σii) where Σii is the i-th diagonal of the covariance matrix
Σ, then:

LCBi = θ̂i − 1.96
√

Σii, (11)

UCBi = θ̂i + 1.96
√

Σii. (12)

Naturally, the proposed cuboid parameter subspace Θj is no longer the 95% confidence
level set for the joint distribution πj ∼ N (θ̂1, . . . , θ̂n, Σ) on the parameter space, but can be
easier implemented numerically.

In the case of one single Damage Index DI and normal family of probability densities
chosen for its distribution as in example given by Equation (7), ML estimators of the mean
and the variance obtained for a training set Tj = {DI1, . . . , DINj} are [69]:

µ̂ =
1
Nj

Nj

∑
i=1

DIi ≡ DI, σ̂ =

√√√√ 1
Nj

Nj

∑
i=1

(DIi − DI)2. (13)

According to the assumptions, as covariance matrix Σ of the distribution πj we can set:( 1
Nj

σ̂2 ≡ Σ11 0

0 2
Nj
(σ̂2)2 ≡ Σ22

)
. (14)

Then probability density πj(µ, σ) on parameter space in Equation (7) can be written
in the following form:

πj(µ, σ) =
1

2π
√

Σ11Σ22
exp

(
− (µ− µ̂)2

2Σ11

)
exp

(
− (σ− σ̂)2

2Σ22

)
(15)

and integration limits in Equation (7) can be adopted as in Equations (11) and (12).
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There exist closed-form solutions for ML estimators θ̂1, . . . , θ̂n and covariance ma-
trix Σ of their asymptotic distribution for popular families of probability densities [53]
(mostly one-dimensional). Additionally, for one-dimensional ML problem, i.e., for single
Damage Index used for structure assessment, there exist numerical tools for ML estimates
determination of generic parametric probability families, including covariance matrix.

3.3. Principal Component Analysis Representation Space of Signal Features

For the purpose of practical implementation of ML algorithm, also numerical issues
are important. Calculation of conditional densities (6) might be multidimensional if the
Damage Indices (DI1, . . . , DIm) used for structure monitoring are correlated signal features.
In particular, this can be the case for the approach presented in Section 2. The amplitude
and phase of the forward transfer ratio can be correlated. Given a fixed structural state Mj,
a series of measurements over range of frequencies could produce a set of data points which
can be described by a tilted ellipse and a non-diagonal covariance matrix as in Figure 3.
In that case, several parameters needed to describe measurement outcome distribution in
parameter spaces Θj grows, since except of parameters required to determine marginal
probabilities of a given signal feature, also their mutual dependencies, e.g., correlation
coefficients, should be extracted from training data as well. Computational effort grows
significantly with the dimensionality of the considered random variables. Application of
multidimensional integration method from scipy.integrate Python package requires:

• 0.01 s for integration of 1-d normal distribution;
• 1.2 s for integration of 2-d normal distribution;
• 79.5 s for integration of 3-d normal distribution;

on a regular desktop PC.
In addition, closed-form solutions to ML optimization problem exist mostly for one-

dimensional probability families, which is also the case of numerical ML optimization
procedures since these are developed for univariate variables mostly. There exist few exam-
ples of packages for multidimensional covariates optimization in R language, e.g., mvnmle.
However, these are designed for particular probability distributions (e.g., multivariate
normal), and their numerical convergence might be poor. However, for one-dimensional
random variables, there are implementations of ML method for a large family of probabil-
ity distributions in most popular environments, e.g., MATLAB, R or Python. Moreover,
some packages allow obtaining ML estimator for a generic parametrized random variable.
In particular, in this paper class GenericLikelihoodModel of the module statsmodels
implemented in Python environment was used for Bayesian classification based on ML
algorithm implementation [70].

Therefore, in the implementation of the proposed algorithm for data classification
based on ML estimators and Bayesian framework, decomposition of signal feature space
in terms of Principal Components Analysis (PCA) [54] is applied. For training data set
Tj obtained for a structural state Mj, PCA allows for affine orthogonal transformation of

the space (DI1, . . . , DIm) into new set of signal features (DI j,PCA
1 , . . . , DI j,PCA

m ), such that
in terms of PCA derived features, the data in the training data set are uncorrelated. This is
schematically presented in Figure 4 below. Then new measurement outcome in terms of the
defined Damage Indices (DI1, . . . , DIm), which needs to be classified as corresponding to
one of the structural states Mj, can be expressed in terms of PCA local coordinates systems
derived for every training data set Tj.
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Figure 4. Example of the DIs in two dimensions obtained for two simulated structural states with
indication of PCA transformed DIs spaces and vectors corresponding to new data point in both
coordinate systems.

In particular, every training data set:

Tj = {(DI1,1, . . . , DIm,1), . . . , (DI1, . . . , DIm,Nj)}, (16)

of multivariate signal feature space can be transformed to training data set:

T PCA
j = {(DI j,PCA

1,1 , . . . , DI j,PCA
m,1 ), . . . , (DI j,PCA

1 , . . . , DI j,PCA
m,Nj

)}, (17)

of the same dimensionality, but with signal features corresponding to subsequent Prin-
cipal Components. In that way, no information is lost by the transformation; how-
ever, the transformed space of signal features is uncorrelated within the transformed
training set due to the properties of PCA algorithm [54]. We propose to consider PCA
transformed Damage Indices corresponding to different structural states Mj as inde-

pendent variables (DI j,PCA
1 , . . . , DI j,PCA

m ), so their multidimensional probability density

p(DI j,PCA
1 , . . . , DI j,PCA

m |Mj) can be factorized as a product of one-dimensional probability

densities p(DI j,PCA
l ), l = 1, . . . , m. If p(DI j,PCA

1 , . . . , DI j,PCA
m |Mj) is assumed to be multi-

variate normal, then this property is satisfied without loss of generality. The next step
is then to obtain one-dimensional ML estimators for every PCA derived feature DI j,PCA

l ,
l = 1, . . . , m separately. Under this assumption probability density in PCA transformed
coordinates can be expressed as follows:

p(DI j,PCA
1 , . . . , DI j,PCA

m |Mj) =
m

∏
s=1

∫
Θj,s

p(θ1,...,θl)
(DI j,PCA

s )πs(θ1, . . . , θl)dθ1 . . . dθl , (18)
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where p(θ1,...,θl)
are one-dimensional parametric probability families chosen to represent

distribution of PCA transformed Damage Indices p(DI j,PCA
l ), l = 1, . . . , m and πs ∼

N (θ̂1,s, . . . , θ̂l,s, Σs), s = 1, . . . , m are a priori multivariate normal probability densities on
the parameter space (θ1, . . . , θl) obtained from ML algorithm as described in the previous
section. For the purpose of measurement outcome (DI1, . . . , DIm) classification correspond-
ing to unknown state of the structure, it is first transformed to PCA derived coordinate
systems for every defined structural states Mj and then probability densities given by
Equation (18) and a posteriori factors given by Equation (5) can be calculated.

Since there exist numerical procedures for obtaining ML estimates of generic one-
dimensional probability families, the above procedure for data classification can be imple-
mented practically. Yet Equation (18) involves in general multidimensional integration,
which can significantly impact the performance as indicated in the beginning of this
paragraph. Therefore the last step towards simplification of classification procedure is
to disregard off-diagonal part of the covariance matrix Σ of ML-based a priori distribu-
tions πs ∼ N (θ̂1,s, . . . , θ̂l,s, Σs), and assume that it is a product of one-dimensional normal
distributions N (θ̂i,s, Σs

ii), i = 1, . . . , l:

πs(θ1, . . . , θl) =
1√

2πΣs
11

exp

(
− (θ1 − θ̂1,s)

2

2Σ11

)
. . .

1√
2πΣs

ll
exp

(
−
(θl − θ̂l,s)

2

2Σll

)
, (19)

where Σii, i = 1, . . . , l are diagonals of the estimated covariance matrix Σs for ML estimators.
For certain families of probabilities, e.g., as shown in Equation (14) the covariance matrix
of ML estimator distribution is indeed diagonal.

3.4. Definition of Bayesian Setup for Voltage Transfer Ratio Approach to SHM

In the above sections the definition of Bayesian classifier based on ML estimators
for general SHM approach was provided. In this section, its particular implementation,
suited to be applied for the approach described in Section 2 is defined. In that case real and
imaginary part of DIs defined in (3) can be considered to be suitable for Bayesian approach
definition, i.e.,:

DI1 = Re(DI(ω)) = Re
(

FVTR(ω)

FVTR0(ω)

)
, DI2 = Im(DI(ω)) = Im

(
FVTR(ω)

FVTR0(ω)

)
. (20)

That is we consider p(Re(DI(ω)), Im(DI(ω))|Mj) as a probability density on two-
dimensional space which is not dependent on the excitation frequency ω within the
defined frequency range. The details of measurement setup, in particular the adopted
frequency range, are provided in Section 4. Therefore, we treat the result of measurement
DI(ω) = (Re(DI(ω)), Im(DI(ω)) obtained for a given frequency as realization of random
variable with probability distribution density p(Re(DI(ω)), Im(DI(ω))|Mj) dependent
on the state of the structure Mj. In particular, for the example presented in Figure 3 the
Bayesian model could consist of two probability distributions from which DIs values in a
given frequency range are drawn:

p(Re(DI(ω)), Im(DI(ω))|M1), p(Re(DI(ω)), Im(DI(ω))|M2), (21)

where M1 corresponds to the pristine state of the structure and M2 accounts for damage
presence on a given sensing path.

For every defined structural state Mj and corresponding training data set Tj we per-
form PCA transformation of (Re(DI), Im(DI)) space as described in Section 3.3 and obtain
local coordinate systems of signal features in which new data (Re(DI), Im(DI)) can be
expressed for every Mj (Figure 4). We assume that distribution of uncorrelated PCA trans-
formed features belongs to one-dimensional normal familyN (µ, σ2) of distributions. Based
on these assumptions and training data, we calculate ML estimators of µ and σ parameters
for every PCA transformed feature and structural state Mj as well as corresponding a
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priori distributions on the corresponding parameter space. For this purpose, we developed
suitable software in Python environment with use of the class GenericLikelihoodModel
of statsmodels module [70], but alternatively formulas given by Equations (13) and (14)
could also be used. A priori distributions on the parameter space (µ, σ) in the form given
by Equation (15) were adopted.

Measurement outcomes (Re(DI(ω)), Im(DI(ω))) which were supposed to be classi-
fied were expressed in terms of PCA determined signal features space for every structural
state Mj. For every model probability density of the measurement outcome in PCA trans-
formed spaces given by Equation (18) were calculated as well as corresponding a posteriori
factors PFj as in Equation (5). The weights wj corresponding to structural states Mj were set
to be equal. Finally, the observed data (Re(DI(ω)), Im(DI(ω))) was classified to structural
state Mj for which the obtained a posteriori factor was the highest.

4. Experiment Results and Discussion

For the experiment, a GFRP composite panel equipped with two networks containing
8 PZT sensors each was used (Figure 5). Sensor localization was the same for both networks
(Figure 6). Single layered PZT transducers produced by STEMINC (mod. SMD05T04R111-
WL), with a diameter equal to 5 mm, and thickness of 0.4 mm, made of SM111 material and
of 450 ± 10 kHz resonant frequency [71] were used in the experiment. The sensors were
embedded into the internal structure of the composite panel in its symmetry plane. For
sensors excitation and signal acquisition, a dedicated system based on Analog Discovery
2 (AD2) module by DIGILENT [72] connected with eight channels relay switch module
designed in the experiment hosting institution (ITWL) has been used (Figure 5). The
signal generator was connected to A303 high voltage amplifier [73] to obtain a 100 Vpp
(symmetric) harmonic excitation signal in the frequency range of 200–350 kHz.

Figure 5. View of the acquisition system used in the experiment.
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Figure 6. View of the selected specimen used in the experiment with indication of PZT sensors and
artificial damage localization.

4.1. Application of Voltage Transfer Ratio Approach to Artificial Damage Detection

Artificial damage was simulated for both networks by attaching a small mass to
the surface of the panel at five predefined locations with the use of bitumen type paste
(Figure 6). Excitation and response signals were collected for every pair of PZT transducers
for the pristine state of the structure and with artificial damage introduced at predefined
locations, which allowed for DIs calculation in accordance with Equation (3). The sensor
used for elastic wave excitation was electrically isolated from the receiver, for measurement
of the excitation Uin as well as induced voltages Uout standard oscilloscope probes were
used. To diminish the noise, for a given frequency sinusoidal excitation was applied to
PZT actuator and sinusoidal induced voltage was acquired on PZT receiver. Then the
obtained input and output signals were averaged and FVTR coefficients were calculated on
averaged signals. For every series of measurements and every sensing path of the network,
only 50% of data closest to the point defined by median values of DIs obtained for the
series were considered for analysis.

For both PZT networks, the following distinction of sensing paths with respect to
introduced artificial damage has been introduced:

• Type I sensing paths which runs transversally through artificial damage and are
sensitive to transmission mode of elastic waves interaction with damage;

• Type II sensing paths which are tangential to artificial damage or runs it its proximity
and can be affected by transmission mode (to some extent) and reflection mode of
wave interaction with damage;

• Type III sensing paths which are separated from artificial damage but are affected by
waves reflected from damage;

• Type IV sensing paths which are well separated from damage and are not influenced
by its presence.

Therefore, in terms of Bayesian framework defined in Section 3, equivalents of four
structural states were defined for every sensing path. In Figure 7 examples of Damage
Indices obtained for two locations within the first PZT network, i.e., location no. 1 and
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location no. 3 (as shown in Figure 6), are presented. The following classification of sensing
paths has been made in those examples:

• Type I sensing paths are defined by the following pair of PZT transducers:

– for location no. 1: 3–5, 1–7, 2–8, 4–6;
– for location no. 3: 2–8, 3–6.

• Type II sensing paths are defined by the following pair of PZT transducers:

– for location no. 1: 1–6, 4–7;
– for location no. 3: 3–7, 2–5.

• Type III sensing paths are defined by the following pair of PZT transducers:

– for location no. 1: 3–7, 1–5;
– for location no. 3: 2–7, 3–5.

The rest of the sensing paths of the network were not significantly influenced by
damage presence, so these were classified as Type IV sensing paths. The rest of the data
obtained for other artificial damage locations for both PZT networks were labeled in a
similar manner.

Figure 7. Examples of Damage Indices obtained for the first PZT network: (a) for damage in location no. 1; (b) for damage
in location no. 3.

Data obtained under seemingly identical conditions for undamaged state of the
structure, i.e., Type IV sensing paths, can be used to assess the measurement noise. Absolute
values of Type IV data obtained for damage location no. 1 (Figure 7a) are in the interval
(0.95, 1.10) and arguments are contained in (−7◦, 2◦). The variability of forward voltage
transfer ratio, i.e., FVTR as defined in Equation (1) is mainly due to noise of the voltage Uout
induced on PZT receiver, as being orders of magnitude smaller than the input voltage Uin.
Additionally, since the voltage measurement is triggered on the raising slope of the input
voltage Uin, it should not contribute to the phase variability of FVTR. Based on presented
limiting values of the Damage Indices it can be assessed that the measurement noise in
the amplitude of the output signals under seemingly identical conditions does not exceed
10% and variation of phase is less than 7◦. If the dimensions of the network or attenuation
properties of the medium are changed, these values could change as well since it could
have significant impact on the output amplitudes.

Hotelling’s T2 test was performed to assess statistical significance of difference be-
tween data corresponding to different type of sensing paths. The test was performed with
use of Hotelling package in R environment [74]. The value of T2 statistics obtained for data
corresponding to damage location no. 1 between Type II and Type III sensing paths was
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1038 with corresponding p-value equal to 0. Since these are groups of data least separated
from each other (Figure 7a), this means very strong statistical significance between data
obtained for different type of sensing paths under similar measurement conditions.

The results of measurement depend on relative location of damage and sensing path
considered. The data corresponding to different types of sensing paths are in separated
regions of the complex plane (Figure 7). This can be used for sensor location placement
optimization algorithms [75] or modification of structure imaging algorithms, e.g., RAPID
imaging algorithm [76–78] by introduction of additional sensing path geometrical map-
pings, depending on their type. Repeatability of indications was noticed for different
sensing paths belonging to the same group. There are many factors which can impact
results of structure assessment or working condition of monitored structure identification,
e.g., in terms of loads [79]. Some of them, e.g., external measurement conditions such as
temperature or stress level of the structure during measurement, can be either controlled or
their influence can be diminished by proper definition of baseline signals data set, which
can be acquired in broad variability range of such parameters. However, there are also hard
to be controlled parameters which can also influence signals acquired by PZT sensors, e.g.,
strength of adhesive layer between sensor and monitored structure. Therefore, repeatability
of a given Damage Index under similar structure conditions, but for different sensing paths
is not always granted. In particular, proper normalization factors need to be used to take
into account influence of length or the orientation of sensing path on values of Damage
Index. In the presented study, Damage Indices obtained for different sensing paths but
belonging to the same type of sensing paths influenced by damage, especially Type I and
Type II are located in similar regions of the complex plane. In particular, Type I data are
in the region contained in the domain (−0.65, 0.9)× (−0.25,−0.05) of the complex plane
for damage in location no. 1 and in location no. 3 (Figure 7). This result was obtained
for sensing paths with different lengths and orientation for anisotropic GFRP medium,
which indicates that Damage Index based on voltage transfer ratio (Equation (3)) allows
for compensation of factors related to manufacturing of sensor network and anisotropies
of monitored structure as well as anisotropies of piezoelectric properties of PZT sensors.
This property is of significant importance for proper structure assessment based on the
voltage transfer ratio approach to SHM, since it opens a possibility for proper SHM sys-
tem calibration as well as application of data classification methods, Bayesian classifier
in particular.

Aggregated data for both networks are presented in Figure 8. The data corresponding
to Type I and Type II sensing paths, which were sensitive on the transmission mode of
elastic waves interaction with artificial damage, are well separated from DIs obtained for
sensing paths not sensitive to damage (Type IV). For Type III sensing paths, the obtained
data sets can intersect both with data acquired for sensing paths influenced by damage
(Type II) as in location no. 1 (Figure 7a) as well as data corresponding to an undamaged
state of the structure (Type IV) as in location no. 3 (Figure 7b), therefore it was observed
that transmission mode of elastic wave interaction with damage has a stronger effect on
DIs than reflection mode of interaction. Additionally, it can be noticed that the variance of
data is higher for Type II and Type III sensing paths, which are sensitive to the reflection
mode of wave interaction with damage. This can be related to the influence of damage
presence on phase change of received signal for such sensing paths. Phase change can
depend on damage-respective localization of damage and sensing path, which can cause
higher variation of data in those groups.
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Figure 8. Aggregated Damage Indices obtained for different sensor networks: (a) network 1; (b) network 2.

Based on the obtained data, the efficiency and properties of the proposed Bayesian
classifier have been studied. For that purpose, the bootstrap data resampling method
was applied [80] in accordance with the following procedure implemented using boot
library available in the R environment. Data acquired for network one corresponding to
different groups and obtained for randomly selected sensing path and measurement series
were used for Bayesian model definition. Then training data set was removed from the
bootstrap sample, and 100 data points of the remaining set were randomly selected and
classified using the obtained model for model validation, both using the data obtained
for network one and network two. The percentage of correct and misclassified results
was determined, and the next step of the bootstrap resampling procedure was initiated.
Similarly, the nearest-neighbor classifier performance was verified. For this algorithm,
the majority class of 20 nearest neighbors to a given data point was used as a basis for
classification. In the Tables 1–4 below, confusion matrices of Bayesian and nearest-neighbor
classifiers are presented, which were calculated based on mean values of classification
rates obtained for different groups of data after 300 steps of the bootstrap procedure in
both cases.

It can be noticed that the Bayesian classifier is characterized by a very low percentage
of false-positive indications and reduced sensitivity to small disturbances of signal due to
damage (which is the case for Type III sensing paths). For sensing paths not influenced
by damage (Type IV), the probability of DIs misclassification is less than 3%, and the
probability of detection of Type III data is 2–23%. As mentioned above, for sensing paths
not sensitive to the reflection mode of wave interaction with damage, data variance is
smaller. Therefore, ML estimators used in the proposed method tend to be more accurate
for those groups of data, which after integration over hyperparameter space (6) results in
more compact classification domains than for Type II and Type III groups of data (Figure 9).
In those regions, a posteriori probability of class correspondence is higher for Type IV
data, even if a significant number of other types of data are contained there, which is not
the case for the nearest-neighbor model. A reduced ratio of false-positive indications can
be of significant importance for particular applications, e.g., in aerospace, where costs of
unplanned maintenance procedures can be very high. In such cases, reduction of false calls
ratio can be critical to the practical application of the system.
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Table 1. Rate of classification of Bayesian model for network 1.

True Class
Type I Type II Type III Type IV

re
su

lt
cl

as
s Type I 0.93 0.04 0 0

Type II 0.02 0.89 0.11 0
Type III 0.05 0 0.02 0
Type IV 0 0.07 0.87 1

Table 2. Rate of classification of nearest-neighbor model for network 1.

True Class
Type I Type II Type III Type IV

re
su

lt
cl

as
s Type I 0.99 0.12 0.00 0

Type II 0.01 0.87 0.19 0
Type III 0 0 0.26 0.20
Type IV 0 0.01 0.55 0.80

Table 3. Rate of classification of Bayesian model for network 2.

True Class
Type I Type II Type III Type IV

re
su

lt
cl

as
s Type I 0.97 0.17 0 0

Type II 0.03 0.70 0.12 0
Type III 0 0.01 0.23 0.03
Type IV 0 0.12 0.65 0.97

Table 4. Rate of classification of nearest-neighbor model for network 2.

True Class
Type I Type II Type III Type IV

re
su

lt
cl

as
s Type I 0.99 0.24 0 0

Type II 0.01 0.58 0.20 0
Type III 0 0.04 0.33 0.18
Type IV 0 0.14 0.47 0.82

Figure 9. Example of Bayesian classifier decision boundaries obtained for experimental data.
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4.2. Application of Voltage Transfer Ratio Approach to Impact Damage Detection

For additional, practical verification of the method, damage caused by impacts of
low energies were introduced within network no. 2. For that purpose, an air gun able to
provide not more than 17 J of kinetic energy to the pellet with an initial speed not higher
than 300 m/s was used (Figure 10). The specimen was subjected to five shoots which
caused Barely Visible Impact Damage (BVID) in the proximity of artificial damage locations
(Figure 11).

Figure 10. Pellet gun used to introduce impact damage.

Figure 11. Barely Visible Impact Damage introduced in the composite panel (network 2).

Measurements were conducted for the pristine state of the structure and after each
subsequent impact. In the case of BVID damage, the data were divided into three groups:

• Type I sensing paths which runs transversally through BVID;
• Type II sensing paths which runs in close proximity of impact damage;
• Type III sensing paths which are separated from impact damage and are barely

influenced by its presence.

The DIs obtained for BVID damage on network two are presented in Figure 12. Impact
damage affects acquired signals more significantly than artificial damage, resulting in
a higher variance of data corresponding to different groups. Therefore, differentiation
between sensing paths running in the proximity of damage to two groups, as in the case of
artificial damage experiment, was not possible. Data obtained for Type II sensing paths for
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BVID damage are in region of complex plane similar to Type I and Type II data obtained
for artificial damage and data for Type III sensing paths least influenced by BVID damage
(Figure 12b) covers the domain occupied by data corresponding to Type III and Type IV
sensing paths in the case of artificial damage. As indicated in Figure 1 BVID damage can
introduce severe change of local mechanical properties of the structure, therefore its impact
on signal acquired by PZT receiver can be more significant.

Figure 12. Aggregated Damage Indices obtained for different type of damage: (a) artificial damage (network 1); (b) BVID
damage (network 2).

Signals acquired for network 1 in the presence of artificial damage were used as
training data for Bayesian and nearest-neighbor model definition and data classification
in the presence of BVID damage within network 2. The confusion matrix for Bayesian
classifier is provided in Table 5 and in Table 6 for nearest-neighbor classifier.

Table 5. Rate of classification of Bayesian classifier for BVID data (network 2) based on training data
obtained for artificial damage (network 1).

True Class
Type I Type II Type III

re
su

lt
cl

as
s Type I 0.66 0.78 0

Type II 0 0.06 0
Type III 0 0.11 0.04
Type IV 0.34 0.05 0.96

Table 6. Rate of classification of nearest-neighbor classifier for BVID data (network 2) based on
training data obtained for artificial damage (network 1).

True Class
Type I Type II Type III

re
su

lt
cl

as
s Type I 0.71 0.54 0

Type II 0 0.42 0.15
Type III 0 0.04 0.01
Type IV 0.29 0 0.84
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Bayesian classifier trained on artificial damage resulted in a very low false-positive
ratio for BVID damage—4% compared to 16% of false calls obtained for the nearest-
neighbor classifier. Signals acquired for sensing paths running in the proximity of BVID
damage but not intersecting them were more heavily influenced by structural damage
than by artificial mass. A significant fraction of data for Type II sensing paths, i.e., 78%
for Bayesian and 54% for the nearest-neighbor classifier, were classified as Type I sensing
paths. Additionally, in the case of Type I sensing paths, more significant shift in the phase
of received signals and spread of data were observed (Figure 12) which caused a significant
fraction of those data being classified as undamaged type (Type IV), i.e., 34% for Bayesian
and 29% for nearest-neighbor classifier.

5. Summary

In this paper, an approach to SHM based on sinusoidal excitation of PZT transducers
and voltage transfer ratio-based Damage Indices has been proposed. The approach was
applied to artificial and BVID damage detection of composite structures. Based on the
proposed signal features it was possible to detect both type of damage. Additionally,
it was possible to differentiate data obtained for sensing paths that are sensitive to the
transmission mode of elastic waves interaction with damage and those capturing waves
reflected from it. In principle, the method can be applied to detect all types of damage
which can influence the amplitude or the phase of output voltage induced on elastic waves
receiver. It is expected it could be applied to detection of fatigue cracks or corrosion damage
of metallic components as well as impact damage or debonding of composite structures.
However, further studies are required to confirm damage detection capabilities in those
scenarios.

Importantly, the method proved to be repeatable under similar measurement condi-
tions, i.e., damage type and its relative position and orientation with respect to sensing
paths. Measurements were performed for anisotropic medium using two independent
networks of PZT transducers and independently introduced damage in different specimen
locations. This property is of significant importance for proper structure assessment based
on the voltage transfer ratio approach to SHM, since it opens the possibility of proper SHM
system calibration on test structures and transfer the obtained results to target components.
It was demonstrated in the paper that the method is robust enough to apply data classifi-
cation with damage detection rate above 90% and with acceptable ratio of false-positive
indications below 3% (Tables 1 and 3). In the authors opinion such performance should
be acceptable for SHM systems on early stage of development, especially with respect
to false-positive indications as such events generate additional maintenance cost due to
unnecessary non-destructive inspections. It is worth noting that such a result was obtained
for classifiers trained on data acquired for the PZT network independent from the network
for which they were applied for signals classification, as would be the case when the SHM
method is used in practice.

In addition to voltage transfer ratio approach to SHM, a new Bayesian approach
to SHM data classification was proposed in the paper. The definition of the classifier is
general, it can be applied to SHM systems based on Damage Indices approach to structure
assessment, not necessarily obtained with the use of voltage transfer ratio approach de-
scribed in the paper, although the efficiency and validity of the proposed classifier in other
approaches is an open issue. The classifier definition is based on asymptotic properties of
ML method and Principal Component Analysis for orthogonal data transformation; the
only a priori data necessary for its definition is the type of one-dimensional probability
families underlying distribution of SHM data for a single class and weights corresponding
to a different type of data. The efficiency and validity of the classifier were confirmed
based on the experimental data. Its damage detection rate was comparable with a well-
known nearest-neighbor classifier, i.e., above 93% for Bayesian classifier and above 99%
for nearest-neighbor method while maintaining a significantly lower false calls ratio, i.e.,
below 3% versus below 20% respectively (Tables 1–4).
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Further work can be focused on verification of voltage transfer ratio approach in
detection of other damage types than considered in this article, e.g., fatigue cracks or
corrosion of metallic components. Another open question is to study vulnerability of
the proposed Damage Indices to influence of external measurement conditions, e.g., the
temperature or load level of the monitored structure, as such parameters can influence the
amplitude and the phase of voltage induced on PZT transducers. Additionally, properties
of the proposed Bayesian classifier should be further studied, in particular its efficiency
and validity when applied to other SHM systems based on Damage Indices approach to
structure assessment.
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