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Abstract. Migration of endothelial cells is one of the 
first cellular responses in the cascade of events that 
leads to reendothelialization of an injured vessel and 
neovascularization of growing tissues and tumors. To 
examine the hypothesis that endothelial cells express a 
specific migration-associated phenotype, we analyzed 
the cell surface glycoprotein expression of migrating 
bovine aortic endothelial cell (BAECs). Light micro- 
scopic analysis revealed an upregulation of binding 
sites for the lectins Concavalin A (Con A), wheat 
germ agglutinin (WGA), and peanut agglutinin after 
neuraminidase treatment (N-PNA) on migrating en- 
dothelial cells relative to contact-inhibited cells. These 
findings were confirmed and quantitated with an 
enzyme-linked lectin assay (ELLA) of circularly 
scraped BAEC monolayers. The expression of 
migration-associated cell surface glycoproteins was 
also analyzed by SDS-PAGE. The overall expression 
of cell surface glycoproteins was upregulated on 
migrating BAECs. Migrating BAECs expressed Con 
A- and WGA-binding glycoproteins with apparent 

molecular masses of 25 and 48 kD that were not ex- 
pressed by contact-inhibited BAEC monolayers and, 
accordingly, disappeared as circularly scraped 
monolayers reached confluence. Subconfluent BAEC 
monolayers expressed the same cell surface glycocon- 
jugate pattern as migrating endothelial cells. FACS 
analysis of circularly scraped BAEC monolayers 
showed that the phenotypic changes of cell surface 
glycoprotein expression after release from growth ar- 
rest occurred before the recruitment of the ceils into 
the cell cycle (3 vs. 12 h). Suramin, which inhibits 
endothelial cell migration, abrogated the expression of 
the migration-associated phenotype and induced the 
expression of a prominent 28-kD Con A- and WGA- 
binding cell surface glycoprotein. These results indi- 
cate that endothelial cells express a specific migration- 
associated phenotype, which is characterized by the 
upregulation of distinct cellular glycoconjugates and 
the expression of specific migration-associated cell 
surface glycoproteins. 

EENDOTHELIALIZATION of injured blood vessels and 
neovascularization of tissues in embryonic develop- 
ment, wound healing, and neoplasia proceed in 

highly ordered cascades of events that both begin with en- 
dothelial cell migration (Madri et al., 1991; Noden, 1991; 
Lindner et al., 1989; Folkman, 1985). Endothelial cells mi- 
grate out from preexisting, contact-inhibited endothelial cell 
monolayers, either in a sheet-like fashion to cover a denuded 
area of endothelium (Madri et al., 1991; Lindner et al., 
1989) or in sprouts of new capillaries to provide vascular 
perfusion to a growing tissue (Ausprunk and Folkman, 
1977). Although endothelial cell migration in reendotheliali- 
zation and neovascularization is distinct with respect to initi- 
ators (injury vs angiogenic factor), affected vessel caliber 
(large vessels vs capillaries), and functional purpose (repair 
vs new blood vessel formation), the molecular events that 
regulate migration may be similar. Accordingly, in vitro 
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studies on endothelial cell migration have most often been 
conducted with endothelial cells derived from large vessel 
origin (e.g., bovine aorta), using either mechanically injured 
monolayers or sprouting "capillary" bovine aortic endothelial 
cell (BAEC)' tubes as models (Sholley et al., 1977). Within 
the last two decades, both the influence of growth factors and 
the role of distinct components of the extracellular matrix 
have emerged as potential regulators of endothelial cell 
migration. For example, the release of endogenous basic 
fibroblast growth factor (bFGF) or coatings with collagens 
of types I and IV have been identified as requirements for en- 
dothelial cell migration in vitro (Tsuboi et al., 1990; Rosen 
and Goldberg, 1989; Sato and Rifkin, 1988; Madri et al., 
1988; Madri and Stenn, 1982). These studies have given lit- 
tle attention to exploring quantitative or qualitative altera- 
tions in distinct cell surface receptors of growth factor and 

1. Abbreviations used in this paper: BAEC, bovine aortic endothelial cell; 
Con A, Concanavalin A; ELLA, enzymeqinked lectin assay; N, after neur- 
aminidase treatment; PNA, peanut agglutinin; RCA-I, Ricinus communis 
agglutinin I; SBA, soybean agglutinin; WGA, wheat germ agglutinin. 
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matrix mediators of endothelial cell migration. Recent 
reports, however, indicate that modulation of endothelial cell 
surface protein expression and organization (e.g., low 
affinity integrin receptors) often occurs in response to 
changes in adhesive substratum, soluble factors, migration, 
and proliferation rate (Lampugnani et al., 1991; Basson et 
al., 1990; Ingber, 1990). 

The present study intends to characterize the migration- 
associated endothelial cell surface phenotype, focusing on 
glycoconjugate expression in migrating versus contact-inhib- 
ited endothelial cells. This task is accomplished by lectin cy- 
tochemistry to analyze individual, migrating endothelial 
cells and by an enzyme-linked lectin assay (ELLA) to quan- 
tify differences in glycoconjugate expression in populations 
of migrating versus growth-arrested, contact-inhibited en- 
dothelial cells. Our data show a consistent upregulation of 
Concanavalin A (Con A)-, wheat-germ agglutinin (WGA)-, 
and peanut agglutinin (PNA) after neuraminidase treatment 
(N-PNA)-binding sites on migrating endothelial cells. Two 
migration-associated, Con A- and WGA-binding endothelial 
cell surface glycoproteins of 25 and 48 kD are identified. 

Materials and Methods 

Cells and Materials 
Endothelial cells (BAECs) were isolated from thoracic aortas of 18-mo-old 
bovines as described by Booyse et al. (1975). Cells were cultured at 37"C 
in 75-cm 2 flasks in DME containing 10% heat-inactivated FBS and frozen 
in liquid nitrogen at passage 2 or 3. Endothelial cells were used within 10 
passages for subsequent experiments. 

Migration Assays 
Two different assays were used to study migration-associated endothelial 
cell surface glycoconjugate expression. The first assay served to probe in- 
dividual, migrating BAECs by lectin cytochemistry. BAECs were grown 
within the confines of rectangular silicon templates (Heraeus, Hanau, Ger- 
many) inserted into 6-well cell culture dishes (Falcon, Becton Dickinson, 
Oxnard, CA) (Augustin-Voss and Pauli, 1992). Upon reaching confluence, 
BAECs were released from growth arrest by removing the silicon templates. 
Cells were allowed to migrate for 24 h, after which time they were analyzed 
by lectin staining. The second assay was a circular scraping technique that 
was designed to study glycoconjugate expression of migrating cell popula- 
tions using the ELLA technique. BAECs were grown to confluence in 24- 
well plates and then circularly scraped with a soft rubber comb. This tech- 
nique yielded alternate rings of confluent BAECs and bare plastic (Fig. 1). 
BAEC glycoconjugate expression was analyzed by this method at conflu- 
ence and various time points after scraping. This method was also used for 
the analysis of surface iodinated proteins by PAGE but, for this purpose, 
cells were grown in 100-mm dishes. 

Lectin Cytochemistry and Enzyme-linked Lectin 
Assay (ELLA) 
BAECs used for lectin cytochemistry and ELLA analyses were washed 
three times with PBS containing 1.0 mM CaCI2 and 1.0 raM MgC12 at 
room temperature, and processed as described (Augustin-Voss et al., 1991). 
In brief, cells were fixed with 2% paraformaldehyde and 2.5% glutaralde- 
hyde in 0.1 M cacodylate buffer, pH 7.2, for 15 min. Fixed cells were 
washed three times with PBS containing 0.2% gelatin (PBS-G), then in- 
cubated with 1 /zg/ml of biotinylated lectin (Vector Laboratories, Inc., 
Burliagame, CA) for 30 rain. After thorough washing with PBS-G, BAECs 
were incubated with 1 /zg/ml of streptavidin-HRP (Zymed Laboratories, 
Inc., South San Francisco, CA) (5 rain), and washed again with PBS-G. For 
ELLA experiments, bound lectin-enzyme complexes were visualized after 
light protected incubation with 0.4 mg/ml of o-phanylenediamine (Sigma 
Chemical Co., St. Louis, MO) and 12 t~l/ml of 1% 1-I202 in 50 mM citrate- 
buffered 0.15 M saline (pH 7.6, 75/~l/weli, 5 min). The reaction was stopped 

Figure 1. Circular scraping of cultured cell monolayers to study 
populations of migrating cells. Endothelial cells (BAECs) were 
grown to confluence (a) upon which time they were circularly 
scraped with a comb-like instrument (b, immediately after scrap- 
ing). Circularly scraped monolayers were cultured for different 
time periods (c, 3; d, 6; e, 12;f, 24; g, 48; and h, 96 h) after which 
time they were used for the ELLA experiments or radioiodination. 
(i) Inhibition of endothelial cell migration by 0.5 M suramin added 
to the culture medium after scraping for 24 h (compare with f ) .  

by addition of 50/~l/well of 1.0 M H2SO4 and plates read immediately at 
490 mm using a microplate spectmphotometer (Bio-Tek Instruments, Inc., 
Winooski, VT). For light microscopic lectin cytochemistry, lectin-enzyme 
complexes were visualized by incubation with 0.5 mg/mi 3,3'-DAB tetra- 

" hydrochloride (Sigma Chemical Co.) and 12/~l/ml 1% hydrogen peroxide 
in 0.05 M Tris-buffered 0.15 M saline at pH 7.6 (4 min). BAECs were coun- 
terstained with Gill's hematoxylin. These procedures yielded selective 
staining of cell surface glycoconjugates, since fixed BAECs were impermea- 
ble to large molecules such as antibodies and lectlns, as evidenced by the 
absence of immunostaining of cytoplasmic factor Vl/I-related antigen. To 
account for total cellular glycoconjugate expression, BAECs were also stud- 
ied under membrane-permeating conditions. Membrane permeation was 
achieved by incubating fixed BAECs with graded ethanol solutions, fol- 
lowed by a 15-min treatment with 0.3% H202 in methanol to inactivate en- 
dogenous peroxidase. Processing for lectin staining was as described above. 

The lectins (and their corresponding sugar specificities) used in this study 
were Con A (a-Man>t~-Glc), Ricinus communis agglutinin I (RCA-I[Gal 
>GalNAc]), WGA (/3-GIcNAc>NeuNAc), PNA (/3-Gal-[1-3]-GalNAc 
>/3-Gal), and Soybean agglutinin (SBA) (GalNAc>Gal). The lectin Ulex 
europaeus agglutinin-I (UEA-I) frequently used as a marker for human en- 
dothelial cells does not bind BAECs and was therefore not included in this 
study. For identification of cryptic PNA- and SBA-binding sites, ceils were 
incubated with neuraminidase (type V, Sigma Chemical Co.) (0.5 U/rnl, pH 
6.6, 15 rain, 37~ before incubation with the lectin. To evaluate the 
specificity of the lectin binding, BAECs were stained with lectins that were 
preincubated with the specific monosaccharide (0.2 M). In all experimental 
groups, preincubation of lectins with their corresponding monosaccharide 
resulted in complete inhibition of lectin binding. 

Cell Surface lodination 
Endothelial cell surface proteins were labeled by lactoperoxidase-catalyzed 
iodination, essentially as described by Soule et al. (1982). Briefly, BAECs 
grown in 100-ram tissue culture dishes (Falcon, Becton Dickinson) were 
washed extensively in PBS and incubated with 2 ml of 200 mM phosphate 
buffer, pH 7.3, containing 0.2 mCi Na1251 (New England Nuclear, DuPont, 
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Boston, MA), 100/xl of Enzymobead reagent (Bio-Rad, Richmond, CA), 
and 100 #1 of 1% B-D-glucose for 25 rain at room temperature. The reaction 
was stopped and unbound iodine removed by washing cells three times with 
cold PBS. Endothelial cells were collected with a cell scraper, pelleted by 
centrifugation, and lysed in 50 mM Tris-HC1 buffered saline, pH 8.0, con- 
taining 1.0% NP-40, 5 mM EDTA, and 0.1% BSA. Nonsoluble material was 
removed by centrifugation at 15,000 g for 30 min (4~ 

Lectin AJOinity Chromatography 
To detect specific-binding cell surface glycoproteins, mSI-labeled cell ly- 
sates were precipitated with lectins before SDS-PAGE as follows: A lec- 
tin-agarose complex was produced by incubating 20 t~l biotinylated lectin, 
I mg/ml (Vector Laboratories, Inc., Burlingame, CA), 25/~1 avidin-agarose 
(Vector Laboratories, Inc.), and 55 #1 PBS for 2 h at room temperature. 
Lectin conjugates were washed 3 times by centrifugation to remove un- 
bound lectin. The lectin-agarose complex was resuspended in PBS and in- 
cubated with mSI-labelnd cell lysate for 4 h at 4~ Lectin-bound glycopro- 
reins were collected after three cycles of washing and centrifugation. The 
precipitated complex was resuspended in 20 mM Tris-HC1 sample buffer 
containing 10% SDS, 5% 2-mercaptoethanol, and 10% glycerol. 

Gel Electrophoresis and Autoradiography 
125I-surface-labeled cell lysates and msI-labeled cell surface glycoproteins 
purified by lectin affinity chromatography were resolved under reducing 
conditions by SDS-PAGE as described (Laemmli, 1970) using 5-15 % dis- 
continuous gels. The dried gels were exposed to Kodak XAR5 film (East- 
man Kodak Co., Rochester, NY) at -70~ for 2-7 d. 

Flow Cytometry 
BAECs of confluent, subconfluent, and circularly scraped monolayers were 
released from the growth surface with 0.05% trypsin and 0.02% EDTA in 
HBSS. Cells were collected by centrifugation and resuspended in 0.05 
rng/ml of propidium iodine in 0.1% sodium citrate. Flow cytometry of 
propidium iodine-labeled endothelial cell nuclei was performed using a 
computer interfaced multiparameter laser flow cytometer (Coulter Epics 
752, Coulter Electronics, Hialeah, FL). Laser excitation was by an argon 
ion laser tuned to 488 nm delivering 100 roW. Data acquisition was per- 
formed in the list mode with 10,000 events per file to plot DNA histograms 
for the determination of cell cycle distribution. 

Statistical A nalysis 
Means of ELLA experiments were compared by two-way analysis of vari- 
ance. Differences between the experimental groups and the interexperimen- 
tai absorbance level differences were considered as varying parameters. 
When a significant difference between the experimental groups was found, 
individual means were compared by Duncan's multiple range test. 

Results 

Expression of Lectin-binding Sites on Migrating 
Endothelial Cells 
Using the silicon ring compartmentalization technique, 
BAECs were released from growth-arrested monolayers and 
allowed to centrifugally migrate for 24 h. Growth arrested 
cells and a peripheral rim of migrating cells were then si- 
multaneously probed with a panel of lectins allowing semi- 
quantitative comparisons of lectin-binding intensities under 
identical conditions. Con A, WGA, and N-PNA binding in- 
tensifies were moderately upregulated on migrating cells rel- 
ative to growth-arrested cells. This difference in lectin bind- 
ing between migrating and growth-arrested endothelial cells 
became more prominent when cells were stained under 
membrane-permeating conditions. Con A staining was par- 
ticularly intense and was characterized by prominent perinu- 
clear staining (Fig. 2). This staining pattern coincided with 

Figure 2. Con A-binding of migrating and growth-arrested en- 
dothelial cells. (a) The cells at the migrating rim stain more in- 
tensely than the contact-inhibited cells, demonstrating an upregula- 
tion of Con A-binding sites on migrating endothelial cells. (b) 
Preincubation of Con A with methyl-u-D-mannopyranoside com- 
pletely inhibits Con A-binding. 

the perinuclear localization of organeUes involved in glyco- 
conjugate synthesis and processing (i.e., Golgi apparatus 
and ER) and, thus, was indicative of a high rate of synthesis 
of glycoconjugates with intermediate metabolites that are 
rich in mannose residues. RCA-I and N-SBA stained both 
growth-arrested and migrating endothelial cells with similar 
intensities, whereas PNA and SBA stained neither growth- 
arrested nor migrating BAECs. 

The silicon ring compartmentalization technique was use- 
ful in the simultaneous, cytochemical characterization of 
contact-inhibited and migrating endothelial ceils, but was at 
best semiquantitative and did not allow the analysis of popu- 
lations of migrating cells. Therefore, populations of migrat- 
ing endothelial cells were studied in the "circular scraping" 
assay. After scraping the BAEC monolayers, large numbers 
of ceils simultaneously started to migrate reaching a maxi- 
mum between 12 and 24 h after which time they gradually 
became confluent again (Fig. 1). Migrating endothelial cell 
populations were probed with a panel of lectins and binding 
intensities were quantitated spectrophotometrically in an 
ELLA. Confirming the light microscopic lectin cytochemis- 
try data, BAECs strongly bound the lectins Con A, RCA-I, 
WGA, N-SBA, and N-PNA (Fig. 3). WGA- and N-PNA- 
binding intensities were significantly upregulated at several 
time points after circular scraping. Absorbance values of mi- 
grating BAECs clearly exceeded the binding intensity of both 
confluent BAEC monolayers as well as the subendothelial 
extracellular matrix left on the plastic surface after com- 
pletely scraping off the BAECs. As monolayers reached con- 
fluence, absorbance values decreased again to levels of the 
original confluent monolayer. It is worth noting that absor- 
bance values were not corrected for total cell number, since 
confluent and migrating cells covered very different surface 
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Figure 3. ELLA of migrating endothelial cells. Confluent BAECs 
were circularly scraped and allowed to migrate for the time periods 
indicated. Lectin-binding intensities were determined with an 
ELLA as outlined in Materials and Methods. Cells were probed 
with SBA (A) and N-SBA, (B) PNA and N-PNA, as well as (C) 
Con A, RCA-I, and WGA. During migration, binding sites of Con 
A, WGA, and PNA (after neuraminidase treatment) are upregu- 
lated. When scraped monolayer reaches confluence (after 30- 

areas. Thus, considering that fewer BAECs covering a smaller 
area in migrating cultures stronger bound the lectins WGA 
and N-PNA than BAECs in confluent cultures, the upregula- 
tory effect can be appreciated even better. The Con A-bind- 
ing intensity of migrating endothelial cells was upregulated 
relative to confluent endothelial cells. However, this upregu- 
lation could not be reliably attributed to migrating BAECs, 
since Con A bound stronger to subendothelial matrix than 
to BAECs. RCA-I- and N-SBA-binding intensities decreased 
after circular scraping and then gradually increased to the 
level of the original confluent monolayer as cells grew to 
confluence. This absorbance profile reflected the surface area 
covered with cells at different time points after circular scrap- 
ing and, thus, suggests that RCA-I- and N-SBA-binding sites 
were not upregulated during endothelial cell migration. 

Upregulation of WGA- and N-PNA-binding sites on 
migrating endothelial cells as seen in the circular scraping 
assay was also observed on subconfluent BAECs. Sub- 
confluent BAEC monolayers had a significantly stronger 
binding affinity for the lectins WGA and N-PNA than 
confluent monolayers (Fig. 4). In fact, cells seeded at 1/16 
the seeding density of confluent BAECs expressed the same 
binding intensities as confluent monolayers. In contrast, 
RCA-I- and N-SBA-binding intensities reflected the differ- 
ence in the culture dish surface area covered with cells. 

Cell Surface Glycoprotein Expression of 
Migrating BAECs 

BAECs expressed a number of major t25I-labeled NP- 
40-soluble cell surface proteins (Fig. 5 A). Most proteins 
were between 90 and 150 kD, in which autoradiograms 
showed least resolution. Loading the same amounts of activ- 
ity, several lower molecular weight bands appeared to be up- 
regulated after circular scraping, but overall cell surface pro- 
tein expression appeared to be very similar. In contrast, 
SDS-PAGE of BAEC surface glycoproteins isolated by lectin 
affinity chromatography revealed distinct differences be- 
tween growth-arrested and migrating endothelial cells (Fig. 
5, B and C). Autoradiograms from migrating endothelial 
cells consistently showed upregulation of cell surface glyco- 
proteins. As early as 3 h after circular scraping, BAECs ex- 
pressed new Con A- and WGA-binding glycoproteins with 
apparent molecular masses of 25 and 48 kD. Expression of 
these molecules was strongest at 12-24 h after circular 
scraping after which time the bands disappeared again as 
monolayers reached confluence. Overexposure of autoradio- 

40 h), binding intensities decrease to levels of the original confluent 
monolayer. The changes of binding intensities of RCA-I and SBA 
(after neuraminidase treatment) reflect the increases in cell number 
after circular scraping. Binding of the completely scraped mono- 
layer (second bar) demonstrates lectin-binding of the underlying 
extracellular matrix, which in the case of Con A quantitatively 
overshadows the upregulation of lectin receptors on migrating en- 
dothelial cells. Results shown here were obtained under permeating 
conditions. Similar results were obtained under nonpermeating 
conditions. Absorbance values represent the means + SD of three 
experiments performed in triplicate (*, binding intensity upregu- 
lated compared with confluent monolayer, p < 0.01; **, binding in- 
tensity upregulated compared to confluent monolayer, completely 
scraped monolayer, and monolayer immediately after scraping, p 
< 0.01). 
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Figure 4. ELLA of confluent and subconfluent endothelial cells. BAECs were seeded at different densities and cultured for 48 h. The figure 
legend at the fight shows cell densities and cell numbers at the end of the culture period. After fixation, cells were probed with N-SBA, 
N-PNA, Con A, RCA-I, and WGA. Binding sites of WGA and N-PNA are upregulated on subcontinent monolayers. Results are not cor- 
rected for cell number, because individual cells in confluent and subconfluent monolayers are very different in size. Thus, the upregulation 
of lectin-binding sites on subconfluent endothelial cell monolayers can be appreciated, considering that for both, WGA and N-PNA, cells 
seeded at 1/16 the seeding density of confluent cells still reach the same binding intensities as confluent monolayers. The binding intensities 
of RCA-I and N-SBA reflect the different cell numbers in the culture dish. Con A binding does not appear upregulated. However, it appears 
that the decrease of Con A absorbance values is not strictly correlated to the number of cells. Results shown here were obtained under 
permeating conditions. Similar results were obtained under nonpermeating conditions. Absorbance values represent the means + SD of 
three experiments performed in triplicate (**, p < 0.01; *, p < 0.05; binding intensity upregulated compared to confluent monolayer). 

grams showed background level expression of the 25- and 
48-kD glycoproteins in confluent monolayers before circular 
scraping but they were not detectable in superconfluent 
monolayers at 96 h after circular scraping (Fig. 5, B and C). 
The 48-kD cell surface glycoprotein also bound the lectin 
RCA-I (data not shown). 

Analogously to the ELLA experiments, expression of 
~25I-labeled, NP-40-soluble cell surface proteins from con- 
fluent BAEC monolayers was compared with that of subcon- 
fluent monolayers (Fig. 6 A-C). Using the same amounts of 
radioactivity for lectin affinity chromatography (Fig, 6 A), 
total cell surface expression of Con A- and WGA-binding 
glycoproteins was strongly upregulated on subconfuent mo- 
nolayers (Fig. 6, B and C). Subconfluent BAEC monolayers 
also expressed the Con A- and WGA-binding 25- and 48-kD 
cell surface glycoproteins. 

Flow Cytometry of Migrating and Subconfluent BAECs 
To verify whether the observed phenotypic changes of 
migrating and subconfluent BAEC monolayers were attrib- 
uted exclusively to migration or whether they might in fact 
reflect proliferation-associated changes, cell cycle distribu- 
tion analyses of confluent BAECs, BAECs at different time 
points after circular scraping, and subconfluent BAECs were 
performed by flow cytometry (Table I). The major recruit- 
ment into the cell cycle did not occur before 12 h after circu- 
lar scraping. In contrast, lectin-binding patterns significandy 
changed as early as 3-6 h after circular scraping, indicating 
that the expression of the migration-associated phenotype 

preceded proliferation. Interestingly, even the superconflu- 
ent monolayers at 96 h after circular scraping were only 
90.6% GI arrested which we believe reflected the autocrine 
activity of early passage BAECs (all experiments were per- 
formed with BAECs up to passage 10). 

Effect of Suramin on BAEC Surface 
Glycoprotein Expression 
The polyanionic growth factor receptor antagonist suramin 
is known to inhibit autocrinely regulated endothelial cell 
migration (Tsuboi et al., 1990) as well as tumor cell-induced 
endothelial cell migration (Augustin-Voss and Pauli, 1992). 
Adding 0.5 mM suramin to circularly scraped BAEC 
monolayers inhibited endothelial cell migration (Fig. 1) and, 
thus, abrogated expression of the described migration- 
associated endothelial cell surface phenotype (Fig. 7). In- 
stead, suramin-treated BAECs expressed a prominent 28-kD 
Con A- and WGA-binding cell surface glycoprotein (Fig. 7). 
The expression of this molecule was not dependent upon cir- 
cular scraping, and was also seen in confuent suramin- 
treated monolayers (data not shown). 

Discussion 

Endothelial cells in vivo form a confluent, growth-arrested 
monolayer with a very low turnover rate (Fajardo, 1989). 
Denudation injury (Lindner et al., 1989) or angiogenic stim- 
ulation (Folkman and Klagsbrun, 1987), however, rapidly 
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Figure 5. Autoradiogram of cell surface glycoproteins from migrat- 
ing endothelial cells separated by SDS-PAGE. Confluent BAECs 
were circularly scraped and allowed to migrate for the time periods 
indicated (0, 3, 6, 12, 24, 48, and 96 h). Cell surface proteins were 
iodinated and separated by SDS-PAGE (A). Alternatively, 125I- 
labeled lectin-binding glycoproteins were isolated by lectin affinity 
chromatography and separated by SDS-PAGE (B, Con A-binding 
glycoproteins; C, WGA-binding glycoproteins). ECM, Completely 
scraped monolayer (i.e., labeling of empty dish) at 0 h (control to 
differentiate cell surface labeling from extraceUular matrix labeling 
in scraped dishes); 0c, confluent monolayer at 0 h; 0s, confluent 

induces endothelial cell migration as one of the first steps in 
a cascade of events that leads to either reendothelialization 
of an injured vessel or growth of new capillary blood vessels 
(angiogenesis). Despite enormous efforts to elucidate the 
regulatory mechanisms of endothelial cell migration, studies 
that have attempted to characterize the phenotype of migra- 
tory endothelial cells are rather limited. They have yielded 
a migration-associated upregulation in the synthesis of chon- 
droitin sulfate and dermatan sulfate proteoglycans (Kinsella 
and Wight, 1986) and, more recently, a transient expression 
of syndecan cell surface proteoglycan in endothelial ceils 
from granulation tissue (Elenius et al., 1991). In an attempt 
to further characterize the glycoconjugate phenotype of 
migratory endothelial cells, we report here that endothelial 
cell migration is associated with distinct surface hyper- 
glycosylation and expression of specific cell surface glyco- 
proteins. 

Upregulation of  Lectin-binding Sites on Migrating 
Endothelial Cells 

Lectins have been used in the phenotypic characterization of 
various cell types including endothelial cells (Porter et al., 
1991; Schnitzer et al., 1990; Simionescu et al., 1982). Their 
endothelial cell binding sites are often species- (Holth~fer, 
1983), age- (Mills and Haworth, 1986), organ- (Ponder and 
Wilkinson, 1983), and vascular bed-specific (Soda and 
Ravassol, 1983; Mills and Haworth, 1986). In the present 
study, a select battery of lectins was used to characterize the 
surface phenotype of migrating versus growth-arrested, 
confluent BAEC monolayers. Semiquantitative light micro- 
scopic lectin cytochemistry revealed an upregulation of Con 
A-, WGA-, and N-PNA-binding sites on migrating en- 
dothelial cells. Upregulation of these lectin binding sites 
lasted throughout the reendothelialization phase of circularly 
scraped BAEC monolayers and ceased when endothelial cell 
monolayers became confluent. This distinct pattern of up- 
regulated lectin binding sites on migrating endothelial cells 
is indicative of an overall increase in the expression of cell 
surface glycoconjugates containing mannose, N-acetylglu- 
cosamine, and/or sialic acid, as well as subterminal galac- 
tose. Functionally, the upregulation of lectin binding sites on 
migrating endothelial cells may have a significant influence 
on the way endothelial cells interact with their immediate en- 
vironment including other endothelial cells, "blood cells,' 
most notably leukocytes and platelets (Butcher, 1991; 
Nguyen, M., J. Folkman, andJ. Bischoff, 1991. J. CellBiol. 
115:69a), growth factors (Sato and Rifkin, 1988; Tsuboi et 
al., 1990), etc. For example, binding sites for the lectins Con 
A, LCA, and PSA expressed most strongly on lamellipodia 
of migrating endothelial cells have been associated with the 
preferred adherence of monocytes to these sites (De Bono 
and Green, 1984; Di Corleto and de la Motte, 1985; Ball et 
al., 1989). Specific endothelial cell surface lectin staining 
profiles have also been implicated with the binding of tumor 

monolayer immediately after circular scraping (0 h); 96A, overex- 
posure of lane 96 h to demonstrate that the expression of specific 
migration-associated glycoproteins is not a result of the apparent 
upregulation of lectin-binding glycoproteins expressed by migrat- 
ing BAECs. The positions of specific migration-associated glyco- 
proteins are marked with arrowheads. 
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Figure 6. Autoradiogram of 
cell surface glycoproteins from 
confluent and subconfluent 
BAEC monolayers separated 
by SDS-PAGE. Cell surface 
proteins were iodinated and 
separated by SDS-PAGE (A). 
Alternatively, ~2~I-labeled lec- 
fin-binding glycoproteins were 
isolated by lectin affinity chro- 
matography and separated by 
SDS-PAGE (B, Con A-bind- 
ing glycoproteins; C, WGA- 
binding glycoproteins). 1:1, 
1:2, 1:4, 1:8, and 1:16, dif- 
ferent dilutions of endothelial 

cells (corresponding to the cell densities and cell numbers shown in Fig. 4). 1:1A, Overexposure of lane 1:1 to demonstrate that the expres- 
sion of specific glycoproteins is not a result of the apparent upregulation of lectin-binding glycoprotein expression of subeonfluent BAECs. 
The positions of specific migration-associated gl~roproteins are marked with arrowheads. 

cells that metastasize to specific organ sites (Augustin-Voss 
et al., 1991). 

Migration of  Endothelial Cells Versus Proli~ration 

Migration of endothelial cells during reendothelialization 
and angiogenesis typically precedes proliferation (Ausprunk 
and Folkman, 1977; Shelley et al., 1984). Autoradiography 
of in vitro migrating endothelial cells showed the same 
phenomenon: Migration is observed as early as 4 h after 
scraping of a confluent endothelial cell monolayer, yet 
significant incorporation of [3H]thymidine does not occur 
until 12-20 h after scraping (Ball et al., 1989; Shelley et al., 
1977). In the present study we determined the cell cycle dis- 
tribution of BAEC after circular scraping to see whether the 
observed phenotypic changes were migration-associated or 
whether they reflected cell cycle-dependent, proliferation- 
associated changes. There was no significant recruitment 
into the cell cycle for the first 12 h after circular scraping, 
while the described cell surface phenotypic changes on 

Table L Flow Cytometric Analysis of Cell Cycle 
Distribution of Confluent Migrating, and Subconfluent 
BAEC Monolayers 

Percent of Percent of 
BAEC population cells in GI cells in GII, S, and M 

0c 84.5 + 6.8 15.5 + 6.8 
0~ 84.1 • 6.3 15.9 + 6.3 
3 h 82.6 + 6.5 17.4 + 6.5 
6 h 81.4 + 5.5 18.6 + 5.5 
12 h 74.6 + 14.1 25.4 + 14.1 
24 h 73.3 + 8.3 26.7 + 8.3 
48 h 86.6 + 2.5 13.2 + 8.3 
96 h 90.6 + 3.1 9.4 + 3.1 
1:1 81.2 + 4.8 18.8 + 4.8 
1:2 81.0 + 3.5 19.0 5:3.5 
1:4 69.3 + 3.6 30.7 -1- 3.6 
1:8 61.6 + 5.8 38.4 + 5.4 
1:16 58.9 • 1.8 41.1 • 1.8 

Results represent means + SD of three experiments, 0~, Confluent monolayer 
at 0 h; 0 .  comquent monolayer immediately after circular scraping (0 h); 3, 
6, 12, 24, 48, and 96 h time periods after release from growth arrest by circular 
scraping; and 1:1, 1:2, 1:4, 1:8, and 1:16, different dilutions of andothelial 
cells (corresponding to the cell densities and cell numbers shown in Fig. 4). 

migrating BAECs were observed as early as 3-6 h after cir- 
cular scraping. Furthermore, light microscopic lectin cyto- 
chemistry revealed that the phenotypic changes were con- 
fined to the cells outgrowing from growth arrest-released 
monolayers, and were not observed in the zone of prolifera- 
tion which is located typically behind the migrating front of 
endothelial cells. 

Subconfluent BAECs expressed the same phenotype as 
migrating endothelial cells. Since these cells are fully 
recruited into the cell cycle and since migration of en- 
dothelial cells precedes proliferation during reendothelial- 
ization and angiogenesis, the intriguing question arises 
whether the migratory phenotype might be essential for the 
initiation of cell proliferation. A further characterization of 
proliferation- and tumor-induced endothelial cell proteins 
recently identified by two-dimensional PAGE (Clarke and 
West, 1991), might shed new light on possible molecular 
links between migration and proliferation of cells. Moreover, 
the demonstrated phenotypic differences between confluent 
and subconfluent BAEC monolayers illustrate the necessity 
to carefully monitor the confluence of monolayers used for 

Figure 7. Autoradiogram of 
cell surface glycoproteins from 
citedarly scraped BAEC mono- 
layers grown for 24 h in the 
absence ( - )  or presence (+) 
of 0.5 mM suramin. Cell sur- 
face proteins were iodinated 
and separated by SDS-PAGE 
(Total). Alternatively, nSI-la- 
beled lectin-binding glycopro- 
reins were isolated by lectin 
affinity chromatography and 
separated by SDS-PAGE (Con 
A, Con A-binding glycopro- 
teins; WGA, WGA-binding 
glycoproteins). Exposure of 
BAECs to suramin abrogates 
the expression of the specific 

migration-associated cell surface glycoproteins and induces the ex- 
pression of a 28-kD Con A- and WGA-binding cell surface glyco- 
protein (arrowheads). 

Augustin-Voss and Pauli Phenotype of Migrating Cells 489 



functional assays involving cell surface molecules, e.g., 
adhesion assays. 

Expression of SpeciJic Migration-associated 
Glycoproteins 

Earlier studies by Vlodavsky et al. (1979) revealed a 60-kD 
surface protein (CSP-60) that was expressed in subconfluent 
but not in confluent BAEC monolayers. Although the overall 
pattern of BAEC surface protein expression observed in that 
study was similar to the one reported here, we were unable 
to identify CSP-60 in migrating BAECs, possibly due to the 
use of a nonionic detergent rather than SDS in the lysis 
buffer. Instead, we observed two Con A- and WGA-binding 
glycoproteins of 25 and 48 kD, that were both expressed on 
migrating and subconfluent BAECs. These glycoproteins 
were lost when injured BAEC monolayers were fully 
repaired and assumed a confluent, contact-inhibited mono- 
layer. A potentially interesting link to our detection of spe- 
cific migration-associated glycoproteins comes from the 
characterization of hypoxia-induced stress proteins in cul- 
tured endothelial cells (Zimmerman et al., 1991; Ogawa et 
al., 1991). These stress proteins have molecular masses of 
34, 36, 47, and 56 kD (Zimmerman et al., 1991) and are thus 
in a similar molecular weight range as the migration- 
associated glycoproteins on BAECs reported here. Since 
hypoxia has been shown to be a triggering mechanism for an- 
giogenesis, it is intriguing to speculate whether these stress 
proteins are in fact autocrine-regulated activation-associated 
molecules of endothelial cells. Another potentially interest- 
ing endothelial cell-derived molecule is SPARC. This glyco- 
protein is in the same molecular weight range (43 kD) and 
is secreted by subconfluent and tube forming endothelial 
cells but not by confluent endothelial cell monolayers (Iru- 
ela-Arispe et al., 1991). However, SPARC known to bind to 
the leading edges of membranous cell surface extensions if 
added exogenously (Sage et al., 1989) is a secreted protein 
that induces a rounded cell morphology and cell prolif- 
eration. 

Conclusions 
Migrating bovine aortic endothelial cells are characterized 
by a distinct pattern of hyperglycosylation and the expression 
of specific migration-associated cell surface glycoproteins. 
The importance of altered glycosylation patterns in cell 
migration is underscored by the association of distinct carbo- 
hydrate moieties with the development of blood vessels in the 
chorioallantoic membrane (Flynn, E., and D. Ausprunk, 
1991. J. Cell Biol. 115:402a), and by blocking of capillary 
tube formation in vitro with an inhibitor of N-linked oligo- 
saccharide processing (deoxymannojirimycin) (Nguyen, M., 
J. Folkman, and J. Bischoff, 1991. J. Cell Biol. 115:69a). 
The involvement of cell surface glycoconjugates in endo- 
thelial cell migration intriguingly parallels the expression of 
carbohydrate antigens in malignant tumor cells (Miyake and 
Hakomori, 1991). Neoplastic transformation, tumor cell in- 
vasion, and tumor progression have been associated with a 
variety of structural changes of cell surface carbohydrates, 
most notably sialylation and/~-1-6 linked branching of com- 
plex oligosaccharides (Hakomori, 1991; Dennis et al., 1986, 
1989). Preliminary studies in our laboratory also show an up- 
regulation of select lectin binding sites on migratory bovine 

fibroblasts, albeit the profile of such lectin binding sites was 
different between migrating BAECs and fibroblasts (Augustin- 
Voss, manuscript in preparation). Candidate molecules for 
the migrating phenotype of endothelial cells (and possibly 
other cell types) are glycosylated cell-cell and cell-substra- 
tum adhesion molecules. Further studies on the identifica- 
tion of these molecules will therefore not only lead to a better 
molecular understanding of endothelial cell migration dur- 
ing reendothelialization and angiogenesis but might also lead 
to a new strategy to therapeutically target migratory endothe- 
lial cells in situation of pathologic angiogenesis such as tumor 
neovascularization and diabetic retinopathy (Clarke and 
West, 1991; McCarthy et al., 1991; Hagemeier et al., 1986). 
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