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Mathematical modeling studies are increasingly recognised as an important

tool for evidence synthesis and to inform clinical and public health decision‐

making, particularly when data from systematic reviews of primary studies

do not adequately answer a research question. However, systematic reviewers

and guideline developers may struggle with using the results of modeling stud-

ies, because, at least in part, of the lack of a common understanding of con-

cepts and terminology between evidence synthesis experts and mathematical

modellers. The use of a common terminology for modeling studies across dif-

ferent clinical and epidemiological research fields that span infectious and

non‐communicable diseases will help systematic reviewers and guideline

developers with the understanding, characterisation, comparison, and use of

mathematical modeling studies. This glossary explains key terms used in math-

ematical modeling studies that are particularly salient to evidence synthesis

and knowledge translation in clinical medicine and public health.
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1 | INTRODUCTION

Mathematical models are increasingly used to aid deci-
sion making in public health and clinical medicine.1,2

The results of mathematical modeling studies can provide
evidence when a systematic review of primary studies
does not identify sufficient studies to draw conclusions
or to support a recommendation in a guideline, or when
the studies that are identified do not apply to the specific
populations of interest or do not provide data on long‐
term follow‐up or on relevant outcomes. For example,
mathematical models have been used to inform guideline
recommendations about tuberculosis (TB) control in
health care facilities,3 blood donor suitability with regard
to human T‐cell leukemia virus type I (HTLV‐I) infec-
tion,4 and cancer screening.5,6 Mathematical modeling
studies are frequently used to synthesize evidence from
multiple data sources to address a clinical or public
health question not directly addressed by a primary study.
For example, a mathematical model was used to synthe-
size evidence obtained from virological, clinical, epidemi-
ological, and behavioral data to help determine optimal
target populations for influenza vaccination programs.7

Other examples are mathematical modeling studies that
aim to predict the real‐world drug effectiveness from ran-
domized controlled trial (RCT) efficacy data (reviewed in
Panayidou et al7).

The development of methods for incorporating math-
ematical modeling studies into evidence syntheses and
clinical and public health guidelines is still at an early
stage. Systematic reviewers and guideline developers
struggle with questions about whether and how to
include the results of mathematical modeling studies into
a body of evidence. The review of mathematical modeling
studies predicting drug‐effectiveness from RCT data iden-
tified 12 studies using four different modeling
approaches.7 Because of the varying use of key terminol-
ogy between studies, and because certain terms can have
different meanings in the literature, it was necessary to
describe in the review each modeling approach in detail
to illustrate the differences between them. This effort
highlights an important reason for the challenges in sum-
marizing the results of mathematical modeling studies.
Researchers who develop and analyze mathematical
models have different theoretical and practical back-
grounds from systematic reviewers, guideline developers,
and policy makers, which can result in a lack of a com-
mon understanding of concepts and terminology. These
communication issues might result either in not using
the findings of mathematical modeling studies in evi-
dence synthesis and to inform decision making, or
accepting these findings without critical assessment.8 A
glossary of commonly used terms in mathematical
modeling studies that are relevant to evidence synthesis
and to clinical and public health guideline development
could improve the use of such studies.

A mathematical model is a “mathematical framework
representing variables and their interrelationships to
describe observed phenomena or predict future events.”9

We define a mathematical modeling study as a study that
uses mathematical modeling to address specific research
questions, for example, the impact of interventions in
health care facilities to reduce nosocomial transmission
of TB.10 For the modeling studies that are most relevant
to evidence synthesis and clinical and public health
decision‐making, the framework of the mathematical
model represents interrelationships among exposure
risks, interventions, health outcomes, and health costs
(all of these are variables) where their interrelationships
are typically described by the parameters of interest.
Mathematical modelers can use different methods to
specify these parameters; they can use theoretical values,
values reported in the scientific literature, or estimate the
parameters from data using methods from statistical
modeling. There is some overlap between the terms
“mathematical model” and “statistical model” and their
uses. Contemporary mathematical modeling studies
increasingly include one or more statistical modeling
parts. In this glossary, we will consider statistical models
as a class of mathematical models that are often inte-
grated into complex mathematical modeling studies to
relate the model output to data through a statistical
framework.

The goal of this glossary is to provide a common ter-
minology for public health specialists who would like to
incorporate the results of mathematical modeling studies
in systematic reviews and in the development of guide-
lines. To identify the terms included in this glossary, we
first made an exhaustive list of terms related to mathe-
matical models. Terms were then selected based on dis-
cussions among experts attending the World Health
Organization's (WHO) consultation on the development
of guidance on how to incorporate the results of modeling
in WHO guidelines (Geneva, Switzerland, 26 April 2016).
Experts included epidemiologists, statisticians, mathe-
matical modelers, and public health specialists. The glos-
sary is divided into three sections. In Section 2, we define
some key terms that can be used to characterize the scope
of and approach to mathematical models, using examples
from the field of infectious disease modeling. In Section 3,
we present a list of terms that are commonly used across
different research fields in epidemiology to describe more
detailed technical properties and aspects of mathematical
models. In Section 4, we first discuss how knowledge of
the terms can help to assess whether a mathematical
modeling study is appropriate for providing evidence for
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a specific question. We then use the example of the World
Health Organization (WHO) guidelines for TB control in
health care facilities3 to show how mathematical model-
ing studies can inform recommendations. For more spe-
cific definitions of terms that are primarily used in
infectious disease modeling, we refer to the glossary by
Mishra et al.11 Terms appearing in italics are defined in
other entries of the glossary.
2 | TERMS USED TO DEFINE THE
SCOPE OF, AND APPROACHES TO
MATHEMATICAL MODELS

Before one starts to assess and compare the results of dif-
ferent mathematical modeling studies with each other, it
can be helpful to fit them into a larger picture. Experts in
systematic reviews and guideline developers need to be
able to sort out which modeling studies are likely to help
them draw a conclusion, formulate a recommendation,
interpret the findings of another study, or understand
the clinical or pathological background to a problem.
Mathematical modeling studies can be characterized
using several dichotomies that help to describe broad
aspects, such as the scope and approach. Table 1 provides
a list of some important model dichotomies, together
with a brief definition, an example, and their relevance
to systematic reviews and guideline development.

A fundamental distinction can be made between
mechanistic and phenomenological models. Mechanistic
models use mathematical terms to describe the real‐world
interactions among different model variables. The param-
eters governing these models typically have a physical,
biological or behavioral interpretation. Infectious disease
models, for example, can describe the movement of indi-
viduals within hospital wards, and how infections are
transmitted upon physical contact between a susceptible
and an infected person.10 These models have the advan-
tage that specific interventions, such as infection preven-
tion through quarantine or isolation, can be explicitly
implemented. Phenomenological models, on the other
hand, describe the relationships among different model
variables, consistent with fundamental theory, but not
derived from first principles. Hence, this type of model
does not attempt to describe or explain why and how cer-
tain model variables interact, but instead, focuses on the
functional relationship that best describes an observed
phenomenon. Statistical models, such as regression
models, are typically phenomenological and describe the
statistical relationship or association between different
model variables.

A predictive model can forecast future events, such as
the course of an epidemic in a given population under
different scenarios, whereas a descriptive model describes
and/or explains previously observed phenomena, such
as the effectiveness of past interventions. Quantitative
models provide a numerical estimation of an intervention
effect on model variables, and therefore depend on high‐
quality data to inform the model parameters. Qualitative
models are usually relatively simple models that only pro-
vide insights into the direction of an effect, but not its
precise magnitude. Nevertheless, they can be used to
thoroughly investigate the interrelationships between
model variables and the influence of specific parameters
on health outcomes (also see Analytic solution). Qualita-
tive models can also be useful to explore the potential
for unintended consequences of interventions beyond
the direct intended effects that might have been observed
in RCTs. Finally, an important model dichotomy distin-
guishes between what drives the results of mathematical
modeling studies. Most mathematical models incorporate
a combination of some underlying theory, model assump-
tions, and data. The results of a theory‐driven model are
primarily based on a priori knowledge or assumptions
about specific interrelationships, such as the effectiveness
of a particular intervention, and are not directly inferred
from data. Data‐driven models infer their results primarily
from data, and are not driven by theory or assumptions
that are not well supported.
3 | TERMS RELATED TO
TECHNICAL PROPERTIES AND
ASPECTS OF MATHEMATICAL
MODELS

3.1 | Technical terms related to model
development and structure

Once the mathematical modeling studies have been
broadly characterized, and their purpose has been deter-
mined, it is important to gain a better understanding about
some of the terms used to describe the technical aspects of
the model used in a study. For example, has heterogeneity
among different individuals been incorporated, or what
simulationmethods were used to obtain themodel results?
The following list includes some of the most frequently
used terms in mathematical modeling studies in various
fields of epidemiology. The terms in Section 3.1 will help
in assessing the technical aspects that relate to model
development and structure. The terms in Section 3.2 are
related to model calibration and validation.
3.1.1 | Agent‐based model

See Individual‐based model.



TABLE 1 Model dichotomies describing the scope of, and approaches to, mathematical models in infectious disease epidemiology

Model Dichotomya Brief Definition Example

Potential Relevance or Use
for Systematic Review
or Guideline Development

Mechanistic vs. Uses mathematical terms to
explicitly describe the
mechanisms of infection
transmission, pathogenesis
and control measures.

Compartmental model that describes
the transmission of influenza and
the effects of vaccination in
England and Wales.12

Allows implementation and
modeling of different vaccination
scenarios, such as targeting
children or elderly.

Phenomenological Uses mathematical terms to
describe the
interrelationships between
risks and outcomes without
making assumptions about
the underlying mechanisms.

Estimation and Projection Package
(EPP) that fits a simple epidemic
curve to HIV surveillance data.13

Cannot be used to describe
intervention effects in detail, so
it is less likely to investigate
hypothetical scenarios or
interventions.

Predictive vs. Forecasts future events. Impact projections of malaria vaccine
for timeframes longer than previously
conducted trials.14

To investigate the expected future
impact of implementing or
changing interventions, and to
set new targets.

Descriptive Describes and/or explains
previously observed
henomena.

Quantifying the effect of malaria disease
control efforts in Africa between 2000
and 2015.12,15

To assess the effectiveness of past
interventions or explain previous
events and learn from them.

Quantitative vs. Provides a precise numerical
estimation or the expected
range of an effect.

HIV prevalence after expanding access to
antiretroviral therapy.16

To obtain estimates of an effect
that can be incorporated into
economic (cost‐effectiveness)
analyses.

Qualitative Describes the direction or
general size of an effect.

Increasing herpes zoster incidence after
mass childhood vaccination against
varicella.17

Could indicate how and under
what conditions an intervention
could cause a specific
epidemiological outcome. Might
influence conditions of a
recommendation.

Theory‐driven vs. Results are driven by theory/
assumptions

Investigating the theoretical strategy of
universal testing and immediate
treatment for HIV.18

Can provide a rationale for
considering a particular
intervention. In the absence of
data, results need to be critically
evaluated in light of modeling
assumptions.

Data‐driven Results are inferred from data Influenza transmission model to estimate
the effectiveness of historical vaccination
programmes.12

Can be used to assess effectiveness
of interventions where randomised
controlled trials are not possible.
Evidence primarily relies on the
quality of the primary data.

aSome of these dichotomies are adapted from Bolker, 2008.19

128 PORGO ET AL.
3.1.2 | Analytic solution

Relates the health outcomes directly to the model
parameters using mathematical formulae. Models that
can be solved analytically are usually simple models,
while more complex models typically require a computa-
tional (numerical) solution.
3.1.3 | Assumption

In mathematical modeling studies, assumptions typically
relate to the structure of the model and the supposed
interrelationships of model variables. An important
assumption in infectious disease models concerns the
way in which individuals have contacts with each other.
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This could either be at random or involve some form of
heterogeneity. In order to relate the model output to data
via a statistical framework, one has to make additional
assumptions about the way the data has been gathered
and the expected random error.
3.1.4 | Compartmental model

This model type stratifies the population into different
compartments, such as different health states. Compart-
ments are assumed to represent homogeneous subpopu-
lations within which the entities being modeled–such as
individuals or patients–have the same characteristics, for
example the same sex, age, risk of infection, or death.
The model can account for the transition of entities
between compartments (see State‐transition model).
3.1.5 | Computational (numerical)
solution

This describes the approach of solving a mathematical
model using either deterministic or stochastic (see Monte
Carlo methods) simulation techniques to iteratively calcu-
late the model variables, which are often time‐dependent,
for a specific set of parameters. Iteratively calculating the
model variables means updating the population character-
istics at each time point based on the simulated population
characteristics at previous time points. Computational
solutions are used when the model is too complicated for
deriving an analytic solution.
3.1.6 | Continuous‐time model

This is a dynamic model where time is treated as a con-
tinuous variable (in contrast to a discrete‐time model),
meaning that the state or value of all other variables
(or health outcomes) can be calculated for any time
point of interest.
3.1.7 | Cycle length

In a discrete‐time model, cycle length represents the inter-
val from one time point to the next, for example a specific
number of days, weeks, months, or years.7
3.1.8 | Decision analytic model

This term refers to mathematical models that synthesize
available evidence to estimate health outcomes and guide
decision making. The term is typically used in health eco-
nomic analyses.
3.1.9 | Deterministic model

This model type typically describes the average behavior
of a system (eg, populations or subpopulations) without
taking into account stochastic processes or chance events
in single entities (eg, individuals). Hence, such models
are typically applied to situations with a large number
of individuals where stochastic variation becomes less
important and heterogeneity can be accounted for using
various subpopulations. The parameters of a determinis-
tic model are typically fixed, and a simulation always pro-
duces the same result. Deterministic models are typically
easier to calibrate to data than stochastic models.11,20
3.1.10 | Discrete‐time model

This type of dynamic model treats time as a discrete var-
iable (in contrast to a continuous‐time model) and other
variables (or health outcomes) can only change at specific
time points.7
3.1.11 | Dynamic model

A dynamic model contains at least one time‐dependent
variable.11 This type of model is used to describe and pre-
dict the course of health outcomes (eg, infection inci-
dence) over time when, for example, the exposure risk
(eg, infection prevalence) also changes over time.
3.1.12 | Heterogeneity

In mathematical modeling studies, this typically describes
the differences among individuals, or the variability across
parameter values for a specific group of individuals,
because of their demographic, biological, or behavioral
characteristics.
3.1.13 | Individual‐based model

This is a stochastic model representing individuals as dis-
crete entities with unique characteristics. An individual‐
based model can be useful to accommodate heterogeneity
in a given population. Individual‐based models are also
often referred to as agent‐based or micro‐simulation
models. While individual‐based models can provide more
realistic representations of a system, they can be difficult
to parameterize because they require much more detailed
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knowledge, or assumptions, of how variables interact.
The stochastic nature of these models makes them com-
putationally intensive and challenging to calibrate.
3.1.14 | Markov model

A Markov model assumes that the future state of variables
depends only on the current state, but not the previous
states, of variables. For example, in a discrete‐time Mar-
kov model, the number of new infected individuals is cal-
culated based on the total number of infected individuals
at the previous time step.
3.1.15 | Micro‐simulation model

See Individual‐based model.
3.1.16 | Monte Carlo methods

These are a class of computational methods that are
based on random sampling. Monte Carlo methods are
typically used to simulate stochastic models and are com-
putationally intensive.
3.1.17 | Ordinary differential equations

Equations that describe the change of a dependent vari-
able, with respect to an independent variable, based on
differential calculus. For example, ordinary differential
equations can be used to describe the increase and
decrease of infected individuals in continuous time
resulting from acquisition or clearance of infection. Ordi-
nary differential equations are typically used for deter-
ministic and compartmental models.
3.1.18 | Parameter

A parameter is a quantity used to describe the interrela-
tionships between model variables. For example, parame-
ters can describe how long different individuals reside in
different health states, or how likely they are to transmit
a disease to another person. There are different methods
to specify the value of parameters. Mathematical mod-
elers can either choose theoretical values based on spe-
cific assumptions, or set the values based on literature
reviews or model calibration.
3.1.19 | Parsimonious model

In a parsimonious model, descriptive or predictive, the
number of assumptions, parameters and variables is min-
imized. Parsimonious models are often relatively simple,
but they can also become more complex if they achieve
the right balance between complexity and explanatory
power.
3.1.20 | Population‐based model

A type of deterministic or stochastic model where individ-
uals that share the same characteristics, on average, are
being grouped into a single population or several subpop-
ulations. In contrast, an individual‐based model treats
every individual as a single entity that can have unique
characteristics.
3.1.21 | State‐transition model

State‐transition models assume that individuals can be in
different (health) states and move (transition) between
them.21 They are typically described using the framework
of either Markov models or individual‐based models.
3.1.22 | Static model

In a static model, all variables are independent of time
and constant. A static model typically describes the equi-
librium of a system, and relates the model variables for a
particular time point only. In contrast to dynamic models,
this type of model cannot take into account time‐
dependent changes of exposure risks or health outcomes.
Decision‐tree models are static models.
3.1.23 | Stochastic model

A type of model where the parameters, variables, and/or
the change in variables can be described by probability
distributions. This type of model can account for process
variability by taking into account the random nature of
variable interactions, or can accommodate parameter
uncertainty, and so may predict a distribution of possible
health outcomes. Considering process variability can be
particularly important when populations are small or cer-
tain events are very rare. Stochastic models are often sim-
ulated using Monte Carlo methods.
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3.1.24 | Time horizon

A time horizon denotes a chosen time at which point the
effect of an intervention will be evaluated. The time hori-
zon should reflect the health outcomes and the relevant
intermediate and long‐term effects of an intervention.1

3.1.25 | Variable

Variables describe model elements such as exposure risks,
interventions, or health outcomes that can vary between
settings or over time. The value of a dependent variable
(eg, number of infected individuals) changes in relation
to an independent variable (eg, time).

3.2 | Technical terms related to model
calibration and validation

3.2.1 | Calibration

Calibration is the process of adjusting model parameters,
such that the model output is in agreement with the data
that are used for model development.22 The aim of cali-
bration is to reduce parameter uncertainty in order to
achieve high model credibility.

3.2.2 | Credibility

The credibility of a model refers to judgments about the
degree to which the model provides trustworthy results.
Several dimensions of credibility have been described,
including validity, design, data analysis, reporting, inter-
pretation, and conflicts of interest.16
3.2.3 | Sensitivity analysis

A range of techniques used to test the impact of the
assumptions made about the parameters. The analysis
can be done by changing one parameter (one‐way, univar-
iate), or simultaneously changing several parameters
(multi‐way, multivariate). The parameters selected for sen-
sitivity analyses are thought to have an impact on the out-
come of interest. In a deterministic sensitivity analysis, a
parameter is assigned a limited number of values, while
in a probabilistic sensitivity analysis, each parameter is
assigned a probability distribution, and parameter values
are randomly sampled from these distributions.1,11
3.2.4 | Uncertainty analysis

A range of techniques to determine the reliability of model
results or predictions, accounting for uncertainty in model
structure, input parameters, and/or methods used for data
analysis.11 Structural uncertainty relates to the extent to
which the structure of the model captures the key features
of the system23-25 and can be analyzed by comparing the
results of models with different structures. Parameter
uncertainty stems from the model parameters that are
used, but whose true values are not known because of
measurement error or an absence of evidence.23,25 This
uncertainty can be analyzed by examining model outputs
for a range of values of the parameter. Methodological
uncertainty arises when there are different methods for
analyzing or expressing model outputs. This term is used
mostly in health economic modeling.
3.2.5 | Validation

A term describing processes for assessing how well a
model performs and how applicable the results are to a
particular situation.26 There are five main types of valida-
tion: face validation (subjective expert judgment about
how well the model represents the problem it addresses);
internal validation (internal consistency, verification, and
addresses whether or not the model behaves as intended
and has been implemented correctly); cross validation
(convergent validity, model results are confirmed by other
models); external validation (model results predict out-
comes obtained in a real world setting or in a data set dif-
ferent from the one used for model development);
predictive validation (model‐predicted events are later cor-
roborated by real‐world observations).7,27
4 | MATHEMATICAL MODELING
STUDIES IN GUIDELINE
DEVELOPMENT

In addition to providing a useful common terminology for
public health specialists and mathematical modelers, the
description of different model types and other terms
defined in the glossary facilitate interpretation of the
results of mathematical modeling studies and inform their
incorporation into the guideline development process. As a
first step, one needs to identify whether a particular
research question, eg, the evaluation of public health pro-
grams, long‐term effectiveness or comparative effective-
ness, can be investigated using a model. Next, it will be
necessary to assess whether existing mathematical model-
ing studies are appropriate to inform or support a research
question or recommendation. We identified four compre-
hensive frameworks of good modeling practice.28 These
frameworks cover items such as relevance, conceptualiza-
tion of the problem, or model structure. Questions such
as whether the model population is relevant, the variables
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represent the desired health outcomes, the necessary het-
erogeneity is taken into consideration, the time horizon
is appropriate, or the assumptions justified can help in
the assessment of mathematical modeling studies. Other
items concern validity or consistency, ie, the performance
of the model according to its specifications. The model
should also consider uncertainty with regard to the struc-
ture, parameters, and methods. Finally, credibility, which
takes a number of these items into account, can then be
used as the central concept for guideline developers to
address the appropriateness of a mathematical modeling
study for providing evidence for a specific question,29 as
illustrated in the following example.

Prevention of TB transmission in hospitals, and partic-
ularly of multidrug‐resistant TB, is essential in all coun-
tries and requires a combination of strategies. Predicting
the spread of TB in a hospital and the surrounding commu-
nity, and how alternative methods of control might limit
the emergence of resistance, are complex nonlinear pro-
cesses. It is, however, ethically and logistically impossible
to conduct RCTs to examine the efficacy of these strategies.
Mathematical modeling studies that use observational evi-
dence can therefore play an important role in deciding
which strategies are likely to be the most effective. The
WHO guideline development group for TB infection con-
trol in health care facilities, congregate settings and house-
holds assessed systematic reviews of the evidence, which
included mathematical modeling studies.3

One mathematical modeling study that the guideline
committee considered, investigated the effects of several
different control measures on the spread of extensively
drug resistant (XDR) TB in a community in South Africa.10

The model described the transmission of TB in a complex
system that included variables representing or contribut-
ing to: both the hospital and the surrounding community;
different TB health states such as susceptible, latent, infec-
tious, and recovered; drug resistance; HIV infection; and
the effects of different control interventions alone and in
combination. Hence, the study considered the transmis-
sion setting that was of relevance to the guideline, and
the model structure included the desired health outcomes
and variables. The authors used a mechanistic approach
to make explicit the way in which stages in the transmis-
sion and natural history of TB are related. A deterministic,
compartmental model, using ordinary differential equa-
tions to describe the transitions between different health
states in a dynamic way was appropriate because it allowed
the right balance between complexity and tractability. Key
parameters that described the natural history, such as rate
of natural clearance and rate of relapse, were based on the
literature, and their influence was assessed in an uncer-
tainty analysis. Parameters such as the transmissibility
coefficient were calibrated using longitudinal data of
individuals in a South African community, where data on
TB were collected. The model outputs provided quantita-
tive predictions about the percentage reduction in XDR‐
TB cases over a reasonable time horizon. External valida-
tion of the model was performed using cross‐sectional data
with information on the prevalence of TB and of drug resis-
tance and the proportion of resistance cases in people with
HIV infection. In summary, the mathematical modeling
study covered many of the critical items, and we would
conclude that the study has a high credibility.

Compared with natural ventilation, the authors found
that mechanical ventilation alone would reduce XDR‐TB
cases by 12% (range 10%‐25%). The use of respiratory
masks by health workers would prevent 2% of all TB
cases, but nearly two‐thirds of XDR cases in hospital staff.
The guideline development group considered this study,
together with other observational and modeling studies
identified through the systematic review. Even though
the summarized evidence for the use of ventilation sys-
tems and particulate respirators was weak, indirect, and
of low quality, the studies suggested that these interven-
tions are favorable for TB infection control.
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