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Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective

immunotherapy against hematopoietic malignancies. The infused donor

lymphocytes attack malignant cells and normal tissues, termed a graft-verse-

leukemia (GVL) effect and graft-verse-host (GVH) response or disease (GVHD),

respectively. Although engineering techniques toward donor graft selection

have made HCT more specific and effective, primary tumor relapse and GVHD

are still major concerns post allo-HCT. High-dose systemic steroids remain to

be the first line of GVHD treatment, whichmay lead to steroid-refractory GVHD

with a dismal outcome. Therefore, identifying novel therapeutic strategies that

prevent GVHD while preserving GVL activity is highly warranted. Sphingolipid

metabolism and metabolites play pivotal roles in regulating T-cell homeostasis

and biological functions. In this review, we summarized the recent research

progress in this evolving field of sphingolipids with a focus on alloreactive T-cell

responses in the context of allo-HCT. We discussed how sphingolipid

metabolism regulates T-cell mediated GVH and GVL responses in allo-HCT

and presented the rationale and means to target sphingolipid metabolism for

the control of GVHD and leukemia relapse.

KEYWORDS

sphingolipid metabolism, graft versus host disease, graft versus leukemia response,
allogeneic hematopoietic cell transplantation, T cell
Introduction

Pioneered by E. Donnell Thomas and colleagues in the early 1960s (1, 2),

hematopoietic cell transplantation (HCT) is performed on approximately 50,000

patients annually worldwide as a treatment for hematological malignancies (e.g.,

myeloma, lymphoma, leukemia, and myeloproliferative neoplasms) and nonmalignant
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conditions (e.g., sickle cell disease, inherited bone marrow failure

syndromes, transfusion-dependent thalassemia, inherited

immune deficiency syndromes, and certain metabolic

disorders) (2, 3). In recent years, the HCT treatment is being

increasingly personalized and the donor selection process

follows strict rules that aim to weight the need for limiting

disease relapse versus toxicity, which requires a careful choice

between bone marrow and growth factor-mobilized peripheral

blood from HLA match, unrelated, haploidentical or

infrequently umbilical cord blood donors (4). Conditional

regimens (irradiation or chemotherapy) and hematopoietic cell

products obtained from donors exhibit graft-versus-tumor

(GVT) response. While the donor alloimmunity towards

recipient malignant cells limits or prevents relapse, it also

attacks normal tissues and gives rise to graft-versus-host

disease (GVHD) (5).

More than one million hematopoietic cell transplants have

been performed to date, 40% of which were allogeneic (3, 6). The

most common life-threatening complication associated with

allogeneic-HCT (allo-HCT) is GVHD. GVHD develops in two

forms: acute and chronic with distinct etiology, pathophysiology,

and response to therapeutic regimens. Although patients who

undergo allo-HCT can benefit from graft-versus-leukemia

(GVL) effects, GVHD, which is closely linked to GVL

response, is a significant cause of morbidity and mortality after

transplantation. Clinically severe GVHD often leads to organ

injury, poor quality of life, secondary malignancies, or

opportunistic infections. The high incidence of morbidity and

mortality suggests that GVHD remains an “unsolvable”

complication in many post-transplant patients (7, 8).

As a leading cause of mortality after allo-HCT, latent

bacterial, viral, and fungal infections are frequent (9). To

some extent, prophylactic and preemptive pharmacotherapies

are limited by the toxicity and the lack of efficacy in

breakthrough infections. The reconstitution of infused donor

T cells plays a vital role in effective infection control following

allo-HCT (10). Although donor T cells contribute to

engraftment and to protection of patients from opportunistic

infections and residual diseases, they can also induce severe

GVHD. The HCT donors are selected from bone marrow or

growth factor-mobilized peripheral blood from HLA-matched,

haploidentical or infrequently umbilical cord blood donors. T

cells are sometimes depleted from donor grafts to attenuate the

risk of T cell-driven GVHD (11). As a result, it takes many

months to reach functional recovery of donor-derived T cells

(12), increasing the risk of fatal infection (13). However,

without T-cell completed depletion in allografts, donor-

derived T cells can engage antigen-processing cells (APCs)

from either the host or the donor, promoting their activation

and proliferation. Donor-activated CD4+ T cells differentiate

into T helper (T) cells Th1, Th2, Th9, Th17, Th22, or

regulatory T cells (Tregs), while CD8+ T cells differentiate
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into cytotoxic T cells. These differentiated T cells migrate to

target organs and mediate both GVH and GVL responses (14,

15). Targeted regulation of alloreactive donor T-cell activation,

cytokine production, and cell migration are a few promising

strategies that can impede GVHD pathogenesis. The optimal

therapeutic approach would be to control GVHD development

while maintaining, or even augmenting, GVL effects upon

allo-HCT.

Sphingosine and its relatives compose the backbone of

eukaryotic lipids. Sphingolipids, including ceramide,

sphingomyelin, and different glycosphingolipids, are

profoundly important to cell function and pathology (16). The

sphingolipid metabolites ceramide, ceramide-1-phosphate

(C1P), and sphingosine-1-phosphate (S1P) are crucial

signaling molecules that control immune cell trafficking and

fate, which have implications for immune-related diseases and

antitumor immunity, including GVHD (17). In this review, we

summarize recent discoveries in the evolving field of

sphingolipid metabolism as it relates to T-cell responses in the

context of allo-HCT. We also discuss how these findings can

help us reevaluate our current understanding of immune

response in allo-HCT, which can help shaping novel

immunotherapeutic strategies that promote long-term

tolerance in transplant recipients while controlling GVHD and

leukemia relapse.
Overview of the sphingolipid
signaling pathway

Ceramides, composed of fatty acids and sphingosines, are

structural members of the cell membrane. Three major pathways

are thought to supply the cell with ceramides, including de novo

generation, sphingomyelin hydrolysis, and the salvage pathway

(Figure 1). In the endoplasmic reticulum (ER), serine

palmitoyltransferase (SPT) facilitates the condensation of

palmitoyl coenzyme A (CoA) and serine to form 3-

ketosphinganine, the rate-limiting step of this de novo pathway

(18). By 3-ketosphinganine reductase, 3-ketosphinganine

rapidly converts into dihydrosphingosine, which is then N-

acylated by ceramide synthases (CerS1–CerS6) to generate

dihydroceramide, using saturated or monounsaturated fatty

acids containing 14 to 26 carbons. Dihydroceramides are

subsequent ly dehydrogenated in to ce ramides v ia

dihydroceramide desaturases (19). Ceramides are also supplied

through the sphingomyelin hydrolysis pathway, mainly through

the activation of sphingomyelinases (SMases) in the Golgi (20).

Ceramide kinase phosphorylates ceramides to form ceramide-1-

phosphate (C1P), which are then deacylated by ceramidase to

generate sphingosine (21). By catalyzing with glucosylceramide

synthase and galactosylceramide synthase, ceramide can be
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g

https://doi.org/10.3389/fimmu.2022.904823
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tian et al. 10.3389/fimmu.2022.904823
assembled into glucosylceramide and galactosylceramide.

Sphingolipid metabolism exhibits rapid turnover, and the

balance between sphingolipids and their metabolites are

controlled by synthesis and degradation reactions across

multiple compartments (22). In the salvage pathway, ceramide

synthase acylates a significant amount of sphingosine molecules

to generate ceramide, which helps maintain sphingolipid

homeostasis within the cell (22, 23). Moreover, ceramide can

also be recyc led from C1P through phosphatase ,

glucosylceramide by glucosylceramidase, or galactosylceramide

via galactosylceramidase.

Sphingosines are phosphorylated by two isoforms of

sphingosine kinase, SphK1 and SphK2, to generate

sphingosine-1-phosphate (S1P) (24). S1P produced by Sphk2

localizes in the cell nucleus and, to a lesser extent, the

mitochondria (25, 26). In contrast, S1P generated by Sphk1 is

primarily confined to the cytoplasm or secreted into the

extracellular matrix (27). S1P can either be dephosphorylated

by S1P-specific phosphatases, SPP1 and SPP2, or irreversibly

degraded by S1P lyase (SPL) to phosphoethanolamine (28)

(Figure 1). Various stimuli, such as pathogens, oxidative stress,

etc. influence cell sphingolipid metabolism via de novo

generation, sphingomyelin hydrolysis, and the salvage

pathways spatially and temporally, leading to the production

of specific bioactive metabolites (22). Better understanding the

action of sphingolipid metabolism and its metabolites on T-cell
Frontiers in Immunology 03
response may provide rationale and novel strategies that

separate GVH and GVL responses.
Ceramide metabolism

De novo generation

De novo ceramide biosynthesis, which occurs in the ER and

mitochondrion, is critical for producing ceramides within the

cell. CerS1-CerS6 introduce various acyl-CoA side chains to the

sphingosine backbone in a length-specific manner (29). CerS1

isoform primarily synthesizes C18-ceramide (30), CerS4

generates C18-/C20-ceramide (31), CerS5 and CerS6 share an

overlapping specificity for C14-/C16-ceramide (31, 32), CerS2

utilizes very-long acyl chain CoAs to produce C22-/C24-

ceramide (33), and CerS3 yields C26-ceramide and above (29).

Interestingly, the biological functions of these ceramides with

different fatty acyl chain lengths are also very distinct, dependent

on the cellular context, subcellular localization, and their

downstream target proteins.

In the murine study, CD4+ T cells increase the transcription

of CerS2, CerS4, CerS5 and CerS6 when stimulated with anti-

CD3/CD28 antibodies while CD4+ T cells from CerS2 null mice

show lower levels of these CerSs than WT cells (34). CerS2

deficiency enhances TCR signal strength as compared to WT
FIGURE 1

Overview of sphingolipid metabolism. The three different pathways that produce the sphingolipids in T cells are described, including de novo
generation, salvage, and sphingomyelinase hydrolysis pathways. In the current review, the roles of galactosyl ceramide, ceramide and S1P are
primarily discussed in the regulation of T cell-mediated GVH and GVL responses after allo-HCT. Serine Palmitoyl Transferase (SPT), 3-
Ketosphinganine Reductase (3-K Reductase), Ceramide Synthase (CerS), Dihydroceramide Desaturase (Dihydro Desaturase), Ceramidase
(CDase), Sphingosine Phosphate Phosphatase (SPPase), Sphingosine kinase (Sphk), S1P Lyase (SPL), Galactosyl ceramidase (Galase),
Galactosylceramide synthase (GalS), Phosphatase (Pase), Ceramide Kinase (CerK), Glucosyl ceramidase (GCase), Glucosylceramide synthase
(GCS), Sphingomyelinase (SMase), Sphingomyelin synthase (SMS).
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control in activated CD4+ T cells, which is reflected by increased

phosphorylation of extracellular-regulated kinase (ERK) and

AKT. The increased TCR signal induced by CerS2 deficiency

further promotes the differentiation of CD4+ T cells towards

Th17, but away from Th2 (34). Different from the

proinflammatory responses of CerS2 knockout in CD4+ T

cells, transfer of CerS6-deficient CD4+ T cells induced less

colitis compared to WT cells (35). However, C14/C16-

ceramides generated by CerS6 in the mitochondria lead to

mitophagy dysfunction in activated T cells, inducing aging-

dependent metabolic disorders that decreased T-cell central

memory phenotype and reduced antitumor immunity in aged

mice (36). Germline loss of CerS5 or CerS6 exacerbates

inflammation in a dextran sulfate sodium (DSS)-induced

colitis mouse model (37, 38). These findings demonstrate that

CerS isoenzymes play different roles in modulating T-cell

biological functions.

Post transplantation, C16-ceramides generated by CerS6

promote donor T-cell expansion, migration, and differentiation

into Th1/Tc1, but away from Treg, further inciting GVHD in

both major histocompatibility complex (MHC) mismatched and

haploidentical bone marrow transplantation (BMT) mouse

models (39). In contrast, CerS4 had a minimal effect on T-cell

alloresponse and pathogenicity in on GVHD (39). Mechanistic

studies revealed that CerS6/C16-ceramide is vital for optimal T

cell receptor (TCR) signal transduction via Zap-70, triggering

tyrosine phosphorylation and colocalization of CD3 and protein

kinase q (PKCq) in CD4+ T cells. However, CerS6/C16-ceramide

is largely dispensable for Zap-70 mediated TCR signal

transduction on CD8+ T cells. Further, treatment with a

CerS4/S6 inhibitor ST1072 at 2mg/kg or less significantly

reduced GVHD while presenting little or no toxicity and

preserving the GVL activity (40, 41). Both genetic deletion and

pharmacological inhibition of CerS6 preferentially impair the

alloreactivity of CD4+ T cells over CD8+ T cells. For translational

purpose, the xenograft models with or without Raji lymphoma

infusion are employed to validate the efficiency of ST1072,

wherein HLA-A2– human PBMCs are transplanted into

irradiated NSG-A2+ mice. Consistent with the results from

murine allogenic and haploidentical BMT models, the

recipient NSG-A2+ mice treated with ST1072 markedly

decrease GVHD development and tumor relapse (41). These

findings provide a strong rationale for targeting CerS6 to control

GVHD while preserving the GVL activity.

Only scarce reports can be found in studying the role of CerS

in human T cells. CD4+ Jurkat cells enhance the transcription of

all the CerSs except for CerS4 when stimulated with anti-CD3

antibody and IL-2, while silencing CerS5 by shRNA prohibits the

upregulation of CerS1, CerS3 and CerS6 and significantly

decreases CerS4 transcription upon stimulation (38). CerS5

deficiency in human CD4+ Jurkat cells impairs NF-kB
dependent T-cell signal and proper T-cell activation (38).

After HCT, pharmacological inhibition of CerS6 with ST1072
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reduces the numbers of IFN-g-producing and total human T

cells in secondary lymphoid and GVHD target organs in a xeno-

GVHD model (41). The concentration of C16-ceramide

obviously increases in the serum of patients with GVHD than

those without GVHD post HCT (41). Since CerS5 and CerS6

have overlapping specificity in producing Cer14- and Cer16-

ceramides, distinct or redundant roles of these two isoforms in T

cells remain to be studied. We interpret that inhibition of CerS6

with ST1072 might indirectly affect the level of CerS5, which

may in turn impact T-cell response and GVHD pathogenicity.

The combined blockades of CerS5 and CerS6 may be more

effective in the prevention of GVHD development.

Taken together, pre-clinical studies so far demonstrate that

CerS6 is a potential therapeutic target for the prevention or

treatment of GVHD after allo-HCT. Given abundant expression

of the other CerS isoenzymes in T cells upon activation, their

roles in T-cell response deserve further investigation. To

translate pre-clinical findings to clinical application, the role of

individual CerSs in human T cells and GVHD development

should be further investigated; the development of low toxic and

more specific inhibitors of CerS will be required.
Sphingomyelinase hydrolysis generation

In addition to de novo biosynthesis, the sphingomyelinase

hydrolysis generation pathway produces ceramide from

sphingomyelin through acid or neutral sphingomyelinase

(ASMase or NSMase, respectively). This pathway can produce

ceramides rapidly when required. In human T cells, ceramides

generated from sphingomyelins can upregulate TCR and impact

TCR recycling dynamics in a concentration- and time-dependent

manner, thus influencing T cell responsiveness (42). Mouse T cells

treated with either exogenous sphingomyelinase or a ceramide

analog (C6-ceramide) imitate CD28 signaling, promoting both T

cell proliferation and IL-2 gene transcription (43). In both human

and murine T cells, the enhancement of sphingomyelinase

hydrolysis generation pathway arguments T-cell responses.

Genetic deletion of ASMase in mice causes an increase in

Tregs among CD4+ T cells and limited IL-17 production (44).

Reducing ceramide generation by depleting ASMase does not

impact IL-2 or IL-2 receptor expression but decreases IL-2

secretion. The reduction of IL-2 generation further impairs T-

cell proliferation induced by anti-CD3/anti-CD28 or

concanavalin A (con A) (45). Similar observations are made in

human CD4+ T cells: pharmacological inhibition of ASMase

significantly attenuates proliferation of human CD4+ T cells

induced by anti-CD3/anti-CD28 stimuli (46). Although cytolytic

granules of ASMase knockout and wild-type CD8+ T cells are

equally loaded with granzymes and perforin, deficiency for

ASMase in CD8+ T cells markedly impairs the contraction of

secretory granules (47). Ligation of Fas on activated T cells
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stimulates ASMase activity, leading to ceramide production and,

consequently, induces cell death (48, 49).

In an MHC mismatched murine model where allogeneic

bone marrow and splenic T cells are transplanted into ASMase+/

+ and ASMase-/- recipients, host ASMase is required for full-

blown acute GVHD. Specifically, loss of ASMase reduces acute

inflammation, cytokine storm, CD8+ T-cell alloreactivity,

diminishes GVHD target organs injury (liver, intestinal, and

skin), and improves recipient morbidity and mortality after allo-

HCT (50).

Ceramides generated by the de novo and sphingomyelinase

hydrolysis pathways contribute to cytokines production,

activation, or proliferation of human or murine T cells.

Deficiency of either CerS6/C16 ceramide in donor T cells (39)

or ASMase/ceramide (50) in recipients prevents GVHD

development. Genetic deletion and pharmacological inhibition

of CerS6 have negligible effect on donor CD8+ T cells, thus

maintaining GVL response post HCT. However, the deficiency

for ASMase in CD8+ T cells attenuates the contraction of

secretory granules and alloresponse after allo-HCT, which

indicate a possible impairment of CTL activity. Therefore, the

impact of ASMase/ceramide on GVL response remains to be

determined (Table 1).
Glycosphingolipid metabolism

The glycosphingolipid, galactosylceramide has been

regarded as a ligand of invariant natural killer T (iNKT) cells

and is responsible for host defense. Unlike conventional T cells,

which can recognize peptides presented by MHC, iNKT cells are

defined as unconventional T cells and restricted by

monomorphic MHCs. This subset of T cells expresses semi-

invariant TCRs, limiting the antigen recognition range

analogously to innate immune receptors (64). As a unique

subset of abT cells, iNKT cells play a pivotal role in

modulating GVH and GVL response (51, 65). In human

studies, the recovery of donor derived iNKT cells early post-

transplantation presents the association with the reduced non-

relapse mortality (66). The ratio of iNKT/T cells and CD4-

iNKT-cell dose in donor bone marrow and peripheral blood

stem cell grafts appear as independent predictors of the
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occurrence and risk of aGVHD post HCT (66–68). iNKT cells

can significantly attenuate the expansion capacity of T cells and a

higher dose of iNKT cells in allografts correlates with an

improved GVHD- and progression-free survival after allo-

HCT (69).

a-galactosyl ceramide, a prototypical iNKT cell ligand, was

first extracted from the marine sponge Agelas Mauritians (70).

In the mouse model of MHC-mismatched BMT, a-galactosyl
ceramide promotes iNKT cell activation in a CD1d-restricted

manner, shifts Th1 cytokine production into the Th2 cell type,

and attenuated GVHD (51). Moreover, the recipient mice

administered with the a-galactosyl ceramide derivative RGI-

2001 at transplantation improves GVHD by expanding donor-

derived CD4+ Foxp3+ Tregs in the bone marrow and secondary

lymphoid organs in a dose-dependent manner (52). Similar

outcomes are observed in a recent clinical trial designed to

evaluate the safety, tolerability, and pharmacological profile of

RGI-2001 when added to standard of care GVHD prophylaxis in

patients underwent allo-HCT (53). A subset of patients treated

with RGI-2000 exhibit an increase in the number of Ki-67+

Helios+ Foxp3+ cells, suggesting that a-galactosyl ceramide can

expand natural Tregs in allo-HCT patients (53). In a

haploidentical HCT mouse model, administration with a

reduced dose of cyclophosphamide (PTC) followed by a-
galactosyl ceramide induces an NKT2 rather than NKT1

phenotype and early recovery of CD4+ Foxp3+ Tregs, which

prevents GVHD while maintaining GVL effects (54). However,

administration of KRN7000, another a-galactosyl ceramide

derivative promotes dendritic cell (DC)–dependent NK and

conv en t i on a l T - c e l l a c t i v a t i on and unexp e c t e d

proinflammation cytokines IFN-g/TNF-a production that

leads to hyperacute GVHD in multiple murine HCT models

(55). The factors accounted for such a difference are unknown. It

is possible that a-galactosyl ceramide and a-galactosyl ceramide

derivative KRN7000 have different structure and activity.

Alternatively, administration in combination with PTC might

impact the effect of a-galactosyl ceramide.

These studies demonstrate that a-galactosyl ceramide, as a

ligand of iNKT cells, provides a reciprocal balance between GVH

and GVL responses (Table 1). Furthermore, a-galactosyl
ceramide and a-galactosyl ceramide derivatives contribute to

Treg recovery after allo-HCT, which facilitates to GVHD
TABLE 1 The impacts of targeting sphingolipids in GVH and GVL responses after allo-HCT.

Intervention GVH GVL References

No intervention +++ +++ N/A

Inhibition of CerS6 + ++ (39, 41)

Inhibition of ASMase + ? (50)

Administration of a-galactosyl ceramide + ++ (51–55)

Inhibition of S1P/S1PRs + + (41, 56–63)
fr
+ weak, ++ moderate, +++ strong, ? unknown.
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prevention. The murine studies and clinical trial provide the

rationale for clinical translation. However, a better

understanding of how various a-galactosyl ceramide

derivatives impinge upon associated mechanisms will be

necessary to select the most appropriate molecules as

therapeutic targets.
S1P metabolism

S1P gradient and S1PRs

Hematopoietic and vascular endothelial cells are the primary

sources of blood S1P, while lymph S1P is mainly produced by

lymphatic endothelial cells (71). Due to the high activity of the

S1P-degrading enzyme in tissues, S1P concentrations remain

high in blood and lymph and low in tissues. S1P can be exported

out of endothelial cells by sphingolipid transporter Spns2 (72),

which creates an S1P gradient is important for immune cell

trafficking and homeostasis. Vertebrates possess five S1P

receptors (S1PR1–5) that respond to extracellular S1P in the

hematopoietic system and multiple organs (73). In the mouse

thymus, mature single-positive thymocytes upregulate S1PR1

expression and internalization (74). S1PR1 deficiency reduces

the emigration of mature thymocytes out of the thymus and

results in the accumulation of T and B cells in the second

lymphoid organs (74). Cell-autonomous S1PR1 maintains

mitochondrial contents by increasing PINK1 levels and

inhibiting apoptosis in naïve T cells (75). In human and

murine immune systems, S1PR2 can regulate lymphatic

endothelial cell (LEC) layer structure and permeability and

increase junction molecules expression through the ERK

pathway. S1PR1 and S1PR4 separately mediate T-cell motility

and vascular cell adhesion molecule-1 (VCAM-1) binding. The

incorporation of S1PR1 and S1PR4 on CD4+ T cells with S1PR2

on LECs facilitates CD4+ T-cell recruitment to LEC migration

sites and advanced transcellular migration (76). S1P causes the

opposite effects on human naïve and memory T-cell migratory

responses. In an S1PR2-dependent manner, S1P can inhibit

spontaneous or chemokine-induced migration of memory T

cells, which is more pronounced in CD4+ than CD8+ T cells (77).

The interaction of S1P gradient and S1PRs plays a vital role in

mediating T-cell trafficking and homeostasis.

Furthermore, S1P signaling can switch T cell differentiation

under specific contexts. IL-6/JAK (Janus Kinase)/STAT3 signal

transduction, a crucial signaling pathway that is aberrantly

hyperactivated in cancer cells or under chronic inflammation

conditions, can be directly activated by S1PR1 and feedback onto

S1PR1 to prevent its phosphorylation in CD4+ T cells, leading to

enhanced Th17 polarization (78, 79). The Akt-mTOR kinase

pathway, which acts downstream of IL-2 and restrains iTreg

generation, can be selectively activated by S1PR1 to further

attenuate differentiation of thymic Treg precursors and
Frontiers in Immunology 06
function of mature Tregs and impact Treg-mediated

immunosuppressive ability (80). Smad3 is a crucial signal

transducer that modulates TGF-b effects on iTreg generation.

S1PR1 signaling controls T-cell lineage specification through

mTOR and antagonizes TGF-b mainly by impeding Smad3

activity. These events inhibit the generation of extrathymic

and natural Tregs while driving Th1 development in a

reciprocal manner (81). The studies reveal that S1P/S1PR1

engagement significantly promotes T-cell differentiation into

Th1/Th17 while reducing into Treg phenotype.

Since the multiple regulations of S1P/S1PRs on T-cell

biofunctions and responses, the blockade of S1P/S1PRs signals

is regarded as a promising strategy for GVHD treatment.

FTY720, derived from a metabolite of the fungus Isaria

sinclairii , can be phosphorated by Sphk2, and the

phosphorated component is defined as the functional

antagonist of S1PR1 (74, 82). In the MHC-mismatched BMT

mouse models, FTY720 does not impair initial donor T-cell

activation and induces a rapid contraction donor T-cell pool by

enhancing caspase-dependent apoptosis that ameliorated acute

GVHD (56). FTY720 decreases the frequency of effector T cells

by attenuating T-cell migration into the ileums and colons, not

livers and lungs, and dose not trap effector T cells in secondary

lymphoid organs (57). Skin is one of the major targets in both

acute and chronic GVHD; sclerodermatous and skin fibrosis

often occur during GVHD development after allo-HCT.

Consistent with the results in acute GVHD, treatment with

FTY720 early after allo-HCT restores PTEN expression and

normalization of Smad3 phosphorylation and diminishes

immune cell infiltration into skin, improving sclerodermatous

during chronic GVHD (58). Another study also supports these

findings, demonstrating that FTY720 treatment impairs CD4+ T

cells differentiation into Th1, Th2, and Th17 and further

ameliorates skin fibrosis (59). Moreover, FTY720 treatment

increases IL-10 production in a subset of B cells via S1PR1

(57) and decreases splenic dendritic cells (CD11c+) by 50%,

contributing to chronic GVHD control (58).

Additionally, the administration of FTY720 inhibits

leukemia growth independent of S1P/S1PR signals. After

CD98 in te rna l i za t ion , FTY720 can induce rap id

phosphatidylserine externalization and death of human acute

myeloid leukemia (AML) cells via noncanonical cell death

signaling (83). In chronic myelogenous leukemia (CML),

protein phosphatase 2a (PP2a) activator FTY720 has been

shown to process anti-leukemia activity, where synergistically

genetic inhibition of BID and BIM could reverse the apoptosis

induced by FTY720 (84). Moreover, FTY720 promoted toxic

effects in different B-cell malignancies and B-cell from chronic

lymphocytic leukemia (CLL) patients through activating PP2a

and dephosphorylating of ERK1/2 (85).

Treatment involving a different S1PR1 selective agonist,

CYM-5442, does not affect the proliferation and survival of

donor immune cells in an MHC mismatched BMT murine
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model (60). However, it downregulates CCL2 and CCL7

expression in endothelial cells, reducing the migration of

monocytes/macrophages into GVHD target organs and

GVHD development (60) . In the rat smal l bowel

transplantation model, administration of the S1P receptor

agonist W-061 significantly prevents GVHD pathogenicity in

recipients by promoting donor T cells to home into the

secondary lymphoid organs rather than the target organs and

allografts (61).

Although FTY720 has been regarded as a promising agent

for GVHD treatment, there are concerns that must be

addressed. 1) In murine allo-HCT models, FTY720 treatment

improves GVHD through reducing migrat ion and

inflammation and inducing apoptosis of donor T cells.

FTY720 is a high-affinity agonist for all known S1PRs expect

for S1PR2 while with the highest affinity for S1PR1 (82, 86).

Therefore, the mice with unique S1PR conditional knockout on

T cells or specific inhibitors of each S1PR should be employed

to evaluate the role of individual receptor among the S1PRs in

GVHD development. 2) Since a broad impact of FTY720 in

S1PR signaling may cause unknown side effects, its specificity

and safety need to be further determined in clinic. 3) When

used at a GVHD-inhibitory dose, FTY720 does not prevent

marrow engraftment and antitumor effect against T lymphoma

(EL-4 cell line) in a haploidentical BMT mouse model (62), but

impairs GVL effects against myeloid leukemia (C1489 cell line)

in a MHC-mismatched BMT murine model (57). Thus, the

GVL activity can be limited or potentially eliminated by

FTY720 administration depending on tumor type post

transplantation in MHC-mismatched or haploidentical

mouse models (41). In human study, multiple sclerosis (MS)

patients treated with FTY720 exhibit a defect in CD8+ T cells

and subsequent anti-viral immunity, which is reflected by less

IFN-g, granzyme B production, and infiltration (87). The result

would predict a negative impact of FTY720 on the GVL activity

following allo-HCT in humans, although further investigation

is required for validation. 4). FTY720 treatment in canine

leukocyte antigen-nonidentical unrelated models does not

abrogate GVHD or significantly increase survival (63). Thus,

clinical translation of FTY720 after allo-HCT requires

further delineation.

Furthermore, a recent study revealed that HDL infusions can

significantly ameliorate the severity of GVHD through

worsening immune cell infiltration and consequently

attenuating both systemic and local inflammation. The authors

speculated that the improved GVHD by HDL infusions may

relate to S1P activity (88). Moreover, ApoM-bound S1P and

HDL-bound S1P are crucial for maintaining the barrier function

of epithelial cells and limiting epithelial inflammation by

delivering S1P to S1PR1 (89–91). Taken together, we interpret

that the S1P gradients play a dominant role in regulating both

innate and adaptive immunity, which may impact the

development of GVHD after allo-HCT.
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Intracellular S1P, which can be generated by Sphk1 or

Sphk2, plays a dominant role in T-cell regulation. In mouse

CD8+ T cells, intracellular S1P produced by Sphk1 interacts

with PPAR-g to regulate lipolysis. The lack of Sphk1 can

main ta in cen t ra l memory phenotype and h igher

mitochondrial respiration of CD8+ T cells while decreasing

Treg differentiation. Pharmacological inhibition of Sphk1

using PF543 has been previously shown to promote

antitumor immunity of CD8+ T cells (92). Transient

expression of Sphk2 in T cell hybridoma augments IL-12-

induced STAT4-mediated transcriptional activation (93).

Mouse Sphk2-/- CD4+ T cells exhibit a hyperactivated

phenotype with significantly enhanced proliferation and

cytokine secretion in response to IL-2 and reduced sensitivity

to Treg-mediated suppression in vitro (94). In the murine

collagen-induced arthritis model, Sphk2 knockdown increases

Th1 type cytokine production and inflammation (95).

Following lymphocytic choriomeningitis virus (LCMV)

infection, Sphk2-/- CD4+ T cells displays increased activity

and proliferation and promotes LCMV-specific CD8+ T cell

responses (96). These studies demonstrate that deficiency for

Sphks and intracellular S1P can induce the hyperactivated

phenotypes in both CD4+ and CD8+ T cells, which may

promote the occurrence and development of GVHD

following allo-HCT.

In considering these comprehensive reports, we interpret

that the S1P gradients in circulation would be more crucial in

regulating GVHD development than the intracellular S1P under

allo-HCT, the strategies specifically targeting secreted or

intracellular S1P should be further determined. FTY720 was

identified as a promising agent for GVHD control, even though

it compromises GVL response that limits its clinical utility

(Table 1). Therefore, a better understanding of the S1P/S1PR

signaling pathway and developing specific inhibitors would

provide the rationale and means to target the S1P/S1PR-

signaling pathway for the benefit of patients with

hematological malignancies upon allo-HCT.

There were few reports on the regulation of sphingolipid

and its metabolites in the opportunistic infection post allo-

HCT. Previous research showed that FTY720 treatment can

prevent the homing of effector T cells to the lesions in

peripheral organs while not reducing the effective priming of

T- and B-cell responses in a lymphocytic choriomeningitis

virus (LCMV) infected murine model (97). Therefore, we

interpret that the blockade of S1P signal would not decrease

the anti-infection immunity after allo-HCT. However, the

impact of sphingolipid metabolism on anti-infection

response after allo-HCT remains unclear. Additionally, we

speculate that the administration of FTY720 other

pharmacological modulators of sphingolipid metabolism may
frontiersin.org

https://doi.org/10.3389/fimmu.2022.904823
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tian et al. 10.3389/fimmu.2022.904823
help diminishing cytokine storm and subsequently ameliorate

the target organ damages caused by the breakthrough infection

after allo-HCT.
Concluding remarks

Administration of high-dose systemic steroids is still the

primary treatment against GVHD, whereas steroid-refractory

(SR) GVHD causes severe organ injury and significant non-

relapse mortality in recipients after allo-HCT (98). A recent

phase III clinical trial indicated that ruxolitinib treatment, a

selective Janus kinase (JAK1 and JAK2) inhibitor, significantly

improved glucocorticoid refractory acute GVHD (99). Thus,

Ruxolitinib has been approved by the FDA and the European

Medicines Agency for acute GvHD. Opportunistic infections

and primary tumor relapse also limit wider use of HCT in the

clinic. It is possible that pharmacological inhibition of

sphingolipid metabolism could negatively impact immune

response against infection in the patients after allo-HCT.

Sphingolipid metabolism and metabolites are significantly

associated with T-cell survival and function, including

migratory response, differentiation and homeostasis in

concert with tolerance to allografts. This review summarized

published findings and discussed the regulation of sphingolipid

metabolism and metabolites with respect to T-cell response.

We also presented therapeutic strategies that target

sphingolipid metabolism and help reduce GVHD while

preserving GVL activity. Further investigation regarding how

sphingolipids impact T-cell alloreactivity and anti-leukemia

immunity and development of specific pharmacological

inhibitors are highly warranted avenues of future work in the

field as these would improve clinical immunotherapy and

eventually benefit patients with hematologic malignancies.
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T, et al. Early posttransplantation donor-derived invariant natural killer T-cell
recovery predicts the occurrence of acute graft-Versus-Host disease and
overall survival. Blood (2012) 120(10):2144–54. doi: 10.1182/blood-2012-01-
404673

67. Chaidos A, Patterson S, Szydlo R, Chaudhry MS, Dazzi F, Kanfer E, et al.
Graft invariant natural killer T-cell dose predicts risk of acute graft-Versus-Host
disease in allogeneic hematopoietic stem cell transplantation. Blood (2012) 119
(21):5030–6. doi: 10.1182/blood-2011-11-389304
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