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Abstract
Raspberry ketone is a widely used flavor compound in food and cosmetic industry. Several processes for its biocatalytic
production have already been described, but either with the use of genetically modified organisms (GMOs) or incomplete
conversion of the variety of precursors that are available in nature. Such natural precursors are rhododendrol glycosides with
different proportions of (R)- and (S)-rhododendrol depending on the origin. After hydrolysis of these rhododendrol glycosides,
the formed rhododendrol enantiomers have to be oxidized to obtain the final product raspberry ketone. To be able to achieve a
high conversion with different starting material, we assembled an alcohol dehydrogenase toolbox that can be accessed depending
on the optical purity of the intermediate rhododendrol. This is demonstrated by converting racemic rhododendrol using a
combination of (R)- and (S)-selective alcohol dehydrogenases together with a universal cofactor recycling system.
Furthermore, we conducted a biocatalytic cascade reaction starting from naturally derived rhododendrol glycosides by the use
of a glucosidase and an alcohol dehydrogenase to produce raspberry ketone in high yield.

Key points
• LB-ADH, LK-ADH and LS-ADH oxidize (R)-rhododendrol
• RR-ADH and ADH1E oxidize (S)-rhododendrol
• Raspberry ketone production via glucosidase and alcohol dehydrogenases from a toolbox
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Introduction

Raspberry ketone (4-(4-hydroxyphenyl)-butan-2-one) is of
high economical relevance (Wang et al. 2019) due to its char-
acteristic scent and low odor threshold (Larsen and Poll 1990).
The aroma compound is widely applied as flavoring agent in
food industry for products like sweets, yoghurts, or soft drinks
(Deifel 1989; Beekwilder et al. 2007; Wang et al. 2019; Milke
et al. 2020). In addition, raspberry ketone is utilized as an
attractant in insect baits (Perez 1983; Metcalf et al. 1983;

Deifel 1989) and as a component in perfumes (Dumont et al.
1996; Farwick et al. 2019), whereas further applications in
cosmetic industry, e.g., as skin whitening or hair growth in-
ducing agent, remain controversial (Harada et al. 2008; Kim
et al. 2016). Other publications promote dose-dependent
health benefits with regard to an anti-obese effect (Morimoto
et al. 2005; Park 2015; Tsai et al. 2017; Zhao et al. 2019; Mir
et al. 2019) or suggest medical applications due to its anti-
oxidant and anti-inflammatory potential (Parmar and
Tripathi 1991; Khan et al. 2018; Fouad et al. 2019;
Mohamed et al. 2020; Hamdy et al. 2020).

So far, the chemical-synthetic production of raspberry ke-
tone is dominating the market. However, increasing consumer
awareness is demanding for a naturally derived product, espe-
cially in food and cosmetic industry (Milke et al. 2020; Malik
and Rawat 2021). Natural production methods do not only
include the direct isolation from natural sources, but also the
enzymatic or microbial bioconversion of natural precursors,
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according to EU regulations (Kosjek et al. 2003; European
Parliament 2008; Schloesser and Lambert 2018; Milke et al.
2020).

As its natural occurrence in raspberries and other fruits like
peaches or grapes is very low—only 1–4 mg/kg raspberries
(Larsen et al. 1991; Wang et al. 2019; Malik and Rawat
2021)—a direct isolation proves to be economically ineffi-
cient (Beekwilder et al. 2007; Wang et al. 2019). However,
raspberry ketone precursors can be found in vegetables like
rhubarb (Deifel 1989) or in the bark of plants like birch
(Betula spp. (Santamour and Vettel 1978; Santamour and
Lundgren 1997; Liimatainen et al. 2012)), rhododendron
(Rhododendron spp. (Thieme et al. 1969; Parmar and
Tripathi 1991)), or yews (Taxus spp. (Parmar and Tripathi
1991; Fronza et al. 1999)) in significantly larger quantities,
e.g., 24.5 g/kg in dried inner bark of Betula pendula
(Liimatainen et al. 2012). The most abundant natural raspber-
ry ketone precursor is the corresponding alcohol rhododendrol
(4-(4-hydroxyphenyl)-butan-2-ol). Rhododendrol occurs as
aglycone moiety of different glycosides with varying
rhododendrol stereoisomers such as (epi)rhododendrin,
apiosyl(epi)rhododendrin, or arabinosyl(epi)rhododendrin
(Šmite et al. 1993; Santamour and Lundgren 1997). Even
among the same genus, the contents of (R)- and (S)-
rhododendrol can vary significantly: for example, in Betula
nana, the (R)-enantiomer dominates with 97 %, whereas in
Betula fruticosa, both enantiomers occur in nearly equal
amounts, and in Betula saposhnikovii, glycosides with the
(S)-enantiomer can be found predominantly (Falconnier
et al. 1999).

In literature, different routes for the natural production of
raspberry ketone are stated: on the one hand, this can be
achieved by heterologous pathways in microorganisms incor-
porated via metabolic engineering. Approaches with
engineered microorganisms like E. coli, S. cerevisiae, or
C. glutamicum yielded product titers between 5 and 9.89 g/l
raspberry ketone either starting from expensive p-coumaric
acid (Beekwilder et al. 2007; Lee et al. 2016; Wang et al.
2019; Milke et al. 2020; Paulino 2021), lower-priced tyrosine
(Farwick et al. 2019), 4-hydroxybenzylidene acetone (Yang
et al. 2021), or fatty acids as alternative low-cost feedstock
(Chang and Liu 2021). Furthermore, the de novo production
of raspberry ketone was achieved by genetically modified
E. coli or C. glutamicum strains that produce tyrosine by
themselves yielding 19 mg/l (Cankar et al. 2019) or even up
to 780 mg/l raspberry ketone (Schloesser and Lambert 2018).
A drawback of these previously described methods is that
“foods that […] contain ingredients produced from GMOs”
have to be labeled as, e.g., “genetically modified” according to
EU law (European Parliament 2003; Deckers et al. 2020),
which might be deterrent to consumers.

On the other hand, strategies utilizing precursors like
rhododendrol glycosides isolated from Betulaceae or other

plants as starting material are described. The conversion of
rhododendrol glycosides isolated from B. alba was attained
by a commercial β-glucosidase and Candida boidinii cells
providing alcohol dehydrogenase (ADH) activity with a max-
imum yield of 44.5 % (Dumont et al. 1996). A similar ap-
proach with yeast cells comprising both β-glucosidase and
ADH activity resulted in 82.1 % raspberry ketone
(Falconnier et al. 1999). Additionally, the kinetic resolution
of racemic rhododendrol was demonstrated by using lyophi-
lized cells of Rhodococcus spp. resulting in a conversion of 52
% (Kosjek et al. 2003). These procedures have in common
that only one of the rhododendrol enantiomers is converted
leaving space for improvement depending on the composition
of the starting material.

With this work, we overcame the limitations of existing
strategies starting from rhododendrol glycosides by providing
an ADH toolbox implemented in a biocatalytic cascade (Fig.
1). This toolbox contains ADHs with different selectivities for
(R)- or (S)-rhododendrol and, additionally, a universal cofac-
tor regeneration system, thus, enabling the conversion of both
rhododendrol enantiomers from various starting materials iso-
lated from natural resources to achieve a higher conversion.

Materials and methods

Material

The substrate (1:1 rhododendrol glycoside mixture of
arabinosyl- and apiosylrhododendrin derived from Betula
pendula) and intermediate (racemic rhododendrol, NP-
000438) were provided by AnalytiCon Discovery GmbH
(Potsdam, DE). Raspberry ketone standard (68524) and com-
mercial β-glucosidase from almonds (49290, 7.3 U/mg) were
purchased from Sigma-Aldrich (St. Louis, USA). Chemically
competent E. coli BL21(DE3) were obtained from New
England Biolabs GmbH (Frankfurt am Main, DE) and
E. coli C43(DE3) from Sigma-Aldrich (St. Louis, USA).
ADH from Equus caballus (ADH1E, 142±27 U/l) codon-
optimized and subcloned in pET-28a (GenBank:
MW808988) and Streptococcus mutans NAD(P)H oxidase
variant 193R194H (SmNOX, 28.8 U/ml) by Petschacher
et al. 2014 codon-optimized and subcloned in pET-28a
(GenBank: MW808989) were ordered at BioCat GmbH
(Heidelberg, DE). Moreover, the following ADHs were used
in this study: ADH from Lactobacillus brevis (LB-ADH, 17.2
±0.1 U/ml, GenBank: MW808993) subcloned in pEG180
(originally provided by Prof. W. Kroutil, University of Graz,
Austria), Lactobacillus kefir (LK-ADH, 30.1±2.8 U/ml,
GenBank: MW808990) subcloned in pET-22b (originally
provided by Prof. W. Hummel, University of Düsseldorf,
Germany), Leifsonia sp. (LS-ADH, 90.3±5.7 U/l, GenBank:
MW808992) subcloned in pEG50 (originally provided by
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Prof. W. Kroutil, University of Graz, Austria), and
Rhodococcus ruber (RR-ADH, 20.1±1.5 U/ml, GenBank:
MW808991) subcloned in pKA1.

Expression and determination of activity of the
alcohol dehydrogenases

All ADHs were expressed in E. coli C43(DE3) (LB-ADH
(Sattler et al. 2014)) or E. coli BL21(DE3) (all other ADHs).
In brief, 50 ml (or 300 ml) terrific broth (TB) medium supple-
mented with 100 μg/ml ampicillin (LB-, LK-, LS-ADH) or
100μg/ml chloramphenicol (RR-ADH) was inoculated with 1
% (v/v) of the overnight culture, grown at 37 °C and 180 rpm
until an OD600 of 0.8 (LB-ADH), 0.5 (LK-ADH), 0.6 (LS-
ADH), or 0.3 (RR-ADH). Additionally, the media was sup-
plemented with 1 mM MgCl2 (LB-ADH and LK-ADH) or
1 mM ZnCl2 (RR-ADH). Protein expression was induced by
addition of 0.4 μM anhydrotetracycline (LB-ADH), 1 mM
IPTG (LK-ADH), 0.4 mM IPTG (LS-ADH), or 40 μM
IPTG (RR-ADH). The cells were grown for 22 h at 20 °C
(LB-, LK-, and RR-ADH) or 37 °C (LS-ADH). ADH1E
was expressed in 50 ml TB auto-induction medium supple-
mented with 50 μg/ml kanamycin, 2 mMMgSO4, 0.2 x trace
elements, and inoculated with 1 % overnight culture. Cells
were grown at 37 °C and 180 rpm for 17 h.

The cells were harvested by centrifugation (10,000×g, 3
min, 4 °C), washed with 10 ml of 25 mM sodium phosphate
buffer pH 8, and disrupted via sonication (50% power, 6x 30 s
with 30 s breaks) with the SONOPULS HD 2070
(BANDELIN electronic GmbH & Co. KG, Berlin, DE). The
crude lysate, received after centrifugation at 10,000×g and 4
°C for 30 min, was used for further experiments.

Activity of the crude enzyme lysate was determined spec-
trophotometrically via a NAD(P)H assay at 25 °C. For this
purpose, 20 μl enzyme lysate was mixed with 0.5 mM
NAD(P)+, 39 mM buffer, and 1 mM racemic rhododendrol
in acetonitrile (MeCN, 2.5 % v/v) in a total volume of 200 μl.
NADH formation was quantified at 340 nm using the Infinite

M200 PRO microplate reader (Tecan Group, Männedorf,
CH). One unit of activity was defined as the amount of en-
zyme forming 1 μmol NAD(P)H per minute under assay
conditions.

Expression and determination of activity of the
cofactor-recycling enzyme SmNOX

SmNOXwas expressed in E. coli BL21 (DE3). Fifty milliliter
TB auto-induction medium supplemented with 50 μg/ml
kanamycin was inoculated with 1 % overnight culture, grown
for 6 h at 37 °C and 180 rpm, and, finally, cooled down to 20
°C for further growth overnight. Cells were harvested by cen-
trifugation (10,000×g, 3 min, 4 °C), washed with 10 ml
50 mM CHES buffer pH 9 and disrupted via sonication (50
% power, 4x 1 min with 1 min breaks) with the SONOPULS
HD 2070 (BANDELIN electronic GmbH & Co. KG, Berlin,
DE). The crude lysate, received after centrifugation at
10,000×g and 4 °C for 30 min, was used for further
experiments.

Activity was determined spectrophotometrically via a
NADH assay at 25 °C. For this purpose, 20 μl enzyme lysate
was mixed with 45 mM CHES buffer pH 9 and 1 mMNADH
in a total volume of 200 μl. NADH consumption was quanti-
fied at 340 nm during 5 min using the Infinite M200 PRO
microplate reader (Tecan Group, Männedorf, CH). One unit
of activity was defined as the amount of enzyme consuming
1 μmol NADH per minute under assay conditions.

Oxidation of rhododendrol by the alcohol
dehydrogenases

One millimolar racemic rhododendrol (added from a stock
solution prepared in MeCN, leading to a final concentration
of 1 % MeCN in the reaction mixture) was oxidized in a
buffered system by the addition of 200 μl recombinantly
expressed ADH lysate (RR-ADH, ADH1E, LB-ADH, LK-
ADH, or LS-ADH) in a total reaction volume of 500 μl in

Fig. 1 Reaction scheme for the
natural production of raspberry
ketone starting from naturally
occurring rhododendrol
glycosides. Rhododendrol
glycosides are hydrolyzed by a
glucosidase followed by the
oxidation of the intermediates
(R)- and (S)-rhododendrol to
raspberry ketone by an ADH
toolbox and a universal cofactor-
regenerating oxidase SmNOX
(Petschacher et al. 2014)
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glass vials. One hundred micromolars of NAD(P)+ were
added and recycled by 0.6 U/ml SmNOX. The reactions were
performed in triplicates either in 28 mM CHES buffer pH 9 at
25 °C (RR-ADH and LB-ADH), 28 mMCHES buffer pH 9 at
40 °C (LK-ADH), or 28 mM glycine-NaOH buffer pH 10 at
40 °C (ADH1E and LS-ADH) at 1000 rpm in a ThermoMixer
C (Eppendorf AG, Hamburg, DE).

Conversion of both rhododendrol enantiomers was
achieved by applying 100 μl enzyme lysate of ADH1E and
LK-ADH each. The reaction with 1 mM racemic
rhododendrol in MeCN (1 %), 50 μM NAD+, 50 μM
NADP+, and 0.6 U/ml SmNOX was conducted in triplicates
in 28 mM glycine-NaOH buffer pH 10 at 40 °C and 1000 rpm
in a ThermoMixer C (Eppendorf AG, Hamburg, DE).

Enzymatic hydrolysis of rhododendrol glycosides

One to 10 mg/ml rhododendrol glycosides were hydrolyzed
by 0.1 to 1 mg/ml ALM in glass vials and a reaction volume of
500μl. The reaction took place in triplicates in 25mM sodium
acetate buffer pH 5.5 shaking at 40 °C and 1200 rpm in a
ThermoMixer C (Eppendorf AG, Hamburg, DE).

Two-step biocatalytic cascade for raspberry ketone
production

One hundred fifty milligrams of the rhododendrol glycoside
mix (21.7 mM) and 15 mg ALM (7.4 μM) were stirred in
15 ml 25 mM sodium acetate buffer pH 5.5 in a round-
bottom flask at 40 °C for 24 h. The reaction was cooled down
to 25 °C and diluted by a factor of 10 to a final volume of
150 ml by adding the following reactants: 50 ml LB-ADH
lysate (5.7 U/ml), 100 μM NADP+, 0.6 U/ml SmNOX, and
55 mM CHES buffer pH 9. After 24 h, the reaction mixture
was extracted six times with 50 ml ethyl acetate. The com-
bined organic phases were evaporated to dryness and analyzed
via GC and NMR.

Analytics

MS measurements were performed using an expressionL

Compact Mass Spectrometer with ESI ionization source
(Advion, Ithaca, USA). The 1H NMR spectrum was recorded
using a 400 MHz Avance Bruker spectrometer (Bruker
Corporation, Billerica, USA). GC-FID analysis was conduct-
ed using a GC2010 (Shimadzu, Kyoto, JP) with a SolGel-
WAX column (30 m × 0.25 mm × 0.25 μm; SGE Analytical
Science, Melbourne, AU). One microliter sample was injected
at 240 °C with the following column temperature program:
125 °C/4.5 min–10 °C/min–175 °C/0 min–25 °C/min–250
°C/9.5 min. Raspberry ketone: Tret=16.4 min, rhododendrol:
Tret=17.2 min.

For HPLC analysis, 50 μl samples were extracted twice
with 100 μl ethyl acetate. Combined organic phases were
evaporated to dryness and resuspended in the corresponding
HPLC solvent. Thereupon, samples were either analyzed by
normal-phase HPLC (for separation of rhododendrol enantio-
mers) or reverse-phase HPLC (for analysis of rhododendrol
glycosides). Normal-phase HPLC was performed on a VWR
Hitachi LaChrom Elite system (VWR International, Radnor,
USA) equipped with a Lux® 5 μmCellulose-1 column (250 ×
4.6 mm; Phenomenex Inc., Torrance, USA). Ten microliter
injected sample were separated at 30 °C in n-hexane/i-PrOH
(9:1, v/v) at 0.8 ml/min isocratic flow and detected via UV at
220 nm. Reverse-phase HPLC was performed on a VWR
Hitachi Chromaster system (VWR International, Radnor,
USA) equipped with a Hypersil ODS 5 μm (250 ×4.6 mm)
column (Agilent Technologies, Santa Clara, US).
Ten microliter injected sample were separated at 40 °C in
MeCN/ddH2O with 0.1 % formic acid (15:85, v/v) at 1 ml/
min isocratic flow and detected via UV at 200 nm.

Results

Investigation of different alcohol dehydrogenases for
the oxidation of rhododendrol

In view of the various starting material with different
rhododendrol enantiomers available in nature, different
recombinantly expressed alcohol dehydrogenases
(ADHs) were investigated for the oxidation of a racemic
mixture of (R)- and (S)-rhododendrol to raspberry ke-
tone. Out of the five investigated ADHs, enzymes
converting either of the enantiomers of racemic
rhododendrol could be identified (Table 1): the ADHs
from Rhodococcus ruber (RR-ADH) and Equus caballus
(ADH1E) both oxidized (S)-rhododendrol (Fig. 2a, b, S9
and S10), whereas ADHs from Lactobacillus brevis
(LB-ADH), Lactobacil lus kefir (LK-ADH), and
Leifsonia sp. (LS-ADH) showed (R)-selectivity (Fig.
2c–e and Figure S11–13). The respective rhododendrol
enantiomer was fully converted within two hours by
ADH1E (Figure 2b), LB-ADH (Figure 2c) and LK-
ADH (Figure 2d). With the same volume of LS-ADH
lysate the oxidation proceeded considerably slower, full
conversion of (R)-rhododendrol was only accomplished
after 24 h. After 8 h reaction time with the RR-ADH
9.3±0.4 %, (S)-rhododendrol remained unconverted.

By combining an (S)- and an (R)-selective ADH, such as
ADH1E and LK-ADH, high conversion of both rhododendrol
enantiomers was attained within 24 h resulting in 71.8±2.1 %
raspberry ketone (Fig. 2f and Figure S14). During all these
experiments, a cofactor recycling was successfully achieved
by an engineered NAD(P)H oxidase from Streptococcus
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mutans (SmNOX) that oxidizes both NADH and NADPH
with similar efficiency (Petschacher et al. 2014).

Two-step biocatalytic cascade for raspberry ketone
production

Following, these rhododendrol converting ADHs were aimed
to be applied as a second step in a biocatalytic cascade with
rhododendrol glycosides as startingmaterial (Figs. 1 and 3). In
this case, a 1:1 mixture of mainly arabinosyl- and
apiosylrhododendrin originating from Betula pendula was
used.

The first reaction step, the hydrolysis of the glycosidic
bond of the rhododendrol glycosides to release the raspberry
ketone precursor rhododendrol, was accomplished by a com-
mercial β-glucosidase from almonds (ALM) showing highest
activity at pH 5.5 and at least 40 °C (Becker et al. 2020). The
influence of the substrate load was investigated in

concentrations up to 10 mg/ml (~21.7 mM) resulting in a
conversion of 80±1% within only 2 h using 1 mg/ml (~7.4
μM) ALM in small-scale reactions (Figures S15-S17). The
formed rhododendrol predominantly showed (R)-configura-
tion (99.1 % HPLC peak area; Figure S18).

After these optimizations of the first reaction step, a two-
step biocatalytic cascade with 150 mg of the rhododendrol
glycoside mixture was conducted (Fig. 3). The hydrolysis of
the rhododendrol glycosides (10 mg/ml) by ALM (1 mg/ml)
showed 82±4% conversion after 24 h (Fig. 3 and Figure S19).
As the hydrolysis of the rhododendrol glycosides predomi-
nantly resulted in (R)-rhododendrol, the (R)-specific LB-
ADH (5.7 U/ml) was applied in the second reaction step of
the cascade together with the cofactor-recycling enzyme
SmNOX. After 24 h, 94±1% of the rhododendrol was con-
vertedwhile, additionally, remaining rhododendrol glycosides
from the first reaction step were even further hydrolyzed dur-
ing this second reaction step (Figure S20). In total, 55 mg

Table 1 Cofactor-dependency,
enantioselectivity towards
rhododendrol and conversion to
raspberry ketone by the
investigated ADHs in a certain
reaction time (a maximum of 50
% conversion is theoretically
possible)

ADH Cofactor Enantioselectivity Conversion [%] Reaction time [h]

RR-ADH (Rhodococcus ruber) NAD+ (S) 38.4±1.4 8

ADH1E (Equus caballus) NAD+ (S) 43.8±1.0 2

LB-ADH (Lactobacillus brevis) NADP+ (R) 51.4±1.3 2

LK-ADH (Lactobacillus kefir) NADP+ (R) 43.7±0.9 2

LS-ADH (Leifsonia sp.) NAD+ (R) 39.0±0.4 24
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Fig. 2 Time course of the
oxidation of racemic
rhododendrol (1 mM) to
raspberry ketone catalyzed by a
RR-ADH (8.0 U/ml), b ADH1E
(57 U/l), c LB-ADH (6.9 U/ml), d
LK-ADH (3.0 U/ml), e LS-ADH
(36.1 U/l), and f a combination of
ADH1E (28.5 U/l) and LK-ADH
(6 U/ml)
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raspberry ketone (m/z 163 [M-H]-) were isolated by extraction
in a purity of approximately 90 % (determined via NMR anal-
ysis, Figures S1 and S2, Table S1; 91 % purity according to
GC analysis, Figure S23) starting from 150 mg raw material.
This corresponds to an isolated yield of approximately 93 %.

Discussion

Investigation of different alcohol dehydrogenases for
the oxidation of rhododendrol

Five ADHs that convert either (R)- or (S)-rhododendrol are
presented in this study. These ADHs showed the same selec-
tivities concerning rhododendrol as described in literature for
similar substrates (Kosjek et al. 2004; Inoue et al. 2005a;
Weckbecker and Hummel 2006; Leuchs and Greiner 2011;
Quaglia et al. 2012). All ADHs are compatible in terms of pH
range (Figure S24) being preferably used between pH 9 and
10 for oxidation reactions (Kosjek et al. 2004; Inoue et al.
2005a; Quaglia et al. 2012). Moreover, reactions are ideally
conducted between 25 and 40 °C.

Depending on the optical purity of the intermediate
rhododendrol, one or two suitable ADHs can be chosen from
the herein presented toolbox. We demonstrated this with a
racemic mixture of rhododendrol that was converted to 71.8
±2.1 % raspberry ketone by the combinatorial use of an (R)-
and an (S)-selective ADH (LK-ADH and ADH1E). This con-
version attained by using these two ADHs with contrary se-
lectivity clearly outperforms the process presented in literature
where only one enantiomer of racemic rhododendrol was con-
verted yielding 52 % raspberry ketone (Kosjek et al. 2003).

The challenge concerning the recycling of expensive co-
factors was elegantly solved by applying the engineered
water-forming oxidase SmNOX that is capable of oxidizing
both NADH andNADPHwith similar efficiency (Petschacher
et al. 2014). This proved to be particularly beneficial as the
enzymes used in this study are dependent on different cofac-
tors: (R)-selective LK- and LB-ADH use NADP+, whereas the
remaining ADHs require NAD+ for catalysis (Table 1).

Two-step biocatalytic cascade for raspberry ketone
production

A 1:1 mixture of arabinosyl- and apiosylrhododendrin origi-
nally derived from Betula pendula was utilized as a starting
material. The commercially available glucosidase ALM
showed efficient conversion of this rhododendrol glycoside
mixture to predominantly (R)-rhododendrol. Compared to lit-
erature this finding confirms that the (R)-enantiomer of
rhododendrol dominates in rhododendrol glycoside material
originating from Betula pendula (Šmite et al. 1993;
Liimatainen et al. 2008; Liimatainen et al. 2012).

Hence, for the two-step biocatalytic cascade in a preparative
scale using 150 mg rhododendrol glycosides, the (R)-selective
LB-ADH was chosen from the toolbox for the second reaction
step in view of the optical purity of the starting material. The
enzymes LK-ADH and LS-ADH would have been suitable as
well. This cascade reaction with the glucosidase ALM and the
alcohol dehydrogenase LB-ADH yielded approximately 93 %
isolated raspberry ketone which slightly surpasses the result
achieved by Falconnier et al. 1999 who used a Pichia strain
showing only activity towards (R)-rhododendrol. However, as
they started from rhododendrol glycosides from B. alba where
the (R)-rhododendrol dominates as well with 95 % (Falconnier
et al. 1999), they could report a similar high conversion to 82.1%
raspberry ketone. In contrast to this, with our ADH toolbox in-
cluding SmNOX for easy cofactor regeneration, we are able to
convert a variety of starting materials with high yields as we can
not only use rhododendrol glycosides with high proportions of
(R)-rhododendrol but also (S)-rhododendrol by selecting differ-
ent ADHs from our toolbox. Even the conversion of amixture of
starting materials from different natural sources without prior
analysis of the optical purity would be possible by utilizing the
ADH toolbox.

With this study, we lay a solid foundation for future process
optimization studies where parameters like substrate load, the
ratios of the applied ADHs, mass transfer, or downstream
processing may be optimized to achieve an economically ef-
ficient scale-up procedure. It may also be considered to ex-
pand the toolbox with non-stereoselective ADHs, e.g., by
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protein engineering (Musa et al. 2015). Besides, the ADH
toolbox along with the universal cofactor-recycling enzyme
SmNOX might potentially also be used for the conversion of
similar enantiomeric substrates, especially in view of the
broad substrate spectra of the ADHs (Inoue et al. 2005b;
Weckbecker and Hummel 2006; Leuchs and Greiner 2011;
Hollmann et al. 2012; Rodríguez et al. 2014; Itoh 2014).
Finally, this strategy benefits from being GMO-free compared
to known raspberry production pathways in engineeredmicro-
organisms (e.g., Schloesser and Lambert 2018) resulting in a
higher acceptance at the food market.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00253-021-11332-9.
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