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Symptoms associated with lung cancer mainly consist of cancer-associated pain, cough,
fatigue, and dyspnea. However, underlying mechanisms of lung cancer symptom clusters
remain unclear. There remains a paucity of effective treatment to ameliorate debilitating
symptoms and improve the quality of life of lung cancer survivors. Recently, extracellular
ATP and its receptors have attracted increasing attention among researchers in the field of
oncology. Extracellular ATP in the tumor microenvironment is associated with tumor cell
metabolism, proliferation, and metastasis by driving inflammation and neurotransmission
via P2 purinergic signaling. Accordingly, ATP gated P2X receptors expressed on tumor
cells, immune cells, and neurons play a vital role in modulating tumor development,
invasion, progression, and related symptoms. P2 purinergic signaling is involved in the
development of different lung cancer-related symptoms. In this review, we summarize
recent findings to illustrate the role of P2X receptors in tumor proliferation, progression,
metastasis, and lung cancer- related symptoms, providing an outline of potential anti-
neoplastic activity of P2X receptor antagonists. Furthermore, compared with opioids, P2X
receptor antagonists appear to be innovative therapeutic interventions for managing
cancer symptom clusters with fewer side effects.

Keywords: ATP, P2X receptors, antagonist, cancer-related symptoms, tumor microenvironment
Abbreviation: ATP, adenosine triphosphate; BDNF, brain-derived neurotrophic factor; Ca2+, calcium; CNS, central nervous
system; CRF, Cancer-related fatigue; CRP, C-reactive protein; HPA, hypothalamic-pituitary-adrenal; NSCLC, non-small cell
lung cancer; IL, interleukin; KO, knockout; LPS, lipopolysaccharide; SP, substance P; TNF, tumor necrosis factor; TME, tumor
microenvironment; VNUT, vesicular nucleotide transporter.
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INTRODUCTION

Lung cancer is one of the most common types of cancer, annually
causing about 1.8 million deaths worldwide (1). The early
detection of lung cancer and improvements in treatment have
increased the survival of patients (2). The number of lung cancer
survivors is anticipated to increase to 673,000 by 2026 (3).
Cancer survivors experience a complex profile of diverse
symptomatology, adversely affecting their quality of life.
Consequently, patients complain of a wide variety of
symptoms that are mainly categorized as physical and
psychological symptoms. Dodd et al. defined the cancer-related
symptoms as “symptom clusters” (4). Specifically, in lung cancer
patients, respiratory clusters are identified as pain, cough, fatigue,
and dyspnea (5, 6). However, cancer patients present multiple
symptoms, and lung cancer studies illustrate the complex
correlations between different clusters of symptoms. Clinically,
opiate-derivative treatment is the mainstay of the drug
management of cancer-related symptoms, such as pain, fatigue,
cough, and dyspnea (7–9), but benefits relatively few cancer
patients. Currently, physicians prescribe opioid therapy without
high-quality evidence, which might heighten the potential risk of
opioid-induced side effects in patients with cancer, such as
sedation, respiratory depression, tolerance development, and
gastrointestinal dysmotility (10, 11). Therefore, an in-depth
longitudinal exploration of lung cancer related-symptoms is
essential to developing a targeted intervention to improve the
quality of life of cancer survivors.

Accumulated adenosine triphosphatez (ATP) and other
extracellular nucleotides shape tumor microenvironment
(TME), significantly influencing cancer proliferation,
progression, tumor/immune-cell cross-talk, and related
symptoms (12, 13). Accordingly, receptors for extracellular
ATP (G-coupled P2Y and P2X ion channels) are involved in
driving several functions during tumor initiation and
development. To note, the ATP-gated P2X purine family
consists of seven subtypes (P2X1–7 receptors) (14), with some
being demonstrated to directly or indirectly regulate tumor
proliferation, angiogenesis, and dissemination. For example,
P2X4, P2X5, and P2X7 receptors exist on the membrane of
multiple tumor cells, such as non-small cell lung cancer,
colorectal cancer, bladder cancer, renal cancer, as well as
haematological malignancies, to promote the proliferation and
metastatic potential of the tumor (15–20). In particular, the P2X7
receptor is the subtype associated with cancer proliferation (21),
and its activation promotes VEGF-dependent angiogenesis and
extracellular matrix degradation via protease releasing and
cytoskeletal remodeling, playing a prometastatic role in cancer
(22–25). A study analyzing P2X7 mRNA expressions in patients
with non-small cell lung cancer (NSCLC) revealed an
upregulated P2X7 expression in bronchoalveolar lavage fluid of
tumor with distant metastases (20). To understand its
proliferative and prometastatic roles in tumor, the potential
interaction of P2X7R splice variants and cancer cell
determination should be discussed. Evidence which appeared
on non-pore functional P2X7R (nfP2X7) and P2X7B isoforms in
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a wide range of tumors suggested that lacking the pore-forming
cytotoxic activity enables them to retain a distinct pro-survival
trophic property and promote oncologic progression (26, 27).
Collectively, the purinergic/adenosinergic system regulates the
growth, metastasis, and invasion of cancer, thus rendering P2X
purine receptors as potential targets for tumor therapy (13).

More data demonstrated that ATP, its hydrolyzation
products, ectonucleotidases, (degrading enzymes, like CD39),
and purinergic receptors play a significant role in the modulation
of the TME immune component. Extracellular nucleotides and
P2 purinergic signaling drive the recruitment of inflammatory
cells (such as macrophages, neutrophils, DCs, and microglia) and
adjust immunomodulation on tumor sites (12). The purinergic/
adenosinergic system modulates cytokine gene expression within
the nervous and immune systems and also regulates the secretion
of pro-inflammatory cytokines, such as interleukin (IL)-1b, IL-6,
and tumor necrosis factor (TNF)-a (28–30). With the
collaboration between anti-CD39 and P2X7 activation in the
TME, immune cells can bring an antitumor response by P2X7-
mediated NLRP3 inflammasome activation and IL-18 release
from myeloid cells (31, 32). The relationship of receptor
polymorphism and inflammatory responses (including NLRP3
inflammasome activation and IL-1b and IL-8 release) was
reported by Hu and colleagues (33). Besides purinergic
receptors’ involvement, sensory nerves are also found to be
involved in the stimulation of cancer progression, indicating
the existence of tumor-nerve interactions. Reportedly, the
denervation of vagus nerves and ablation of sensory neurons
inhibit tumor initiation and progression in mouse models with
cancer (34, 35). Herein, we hypothesize that ATP acts as a pivotal
transmitter to convey sensory stimuli from peripheral nerves to
the CNS, to activate P2X purine receptors (P2X2, P2X3, P2X4,
and P2X7 receptors) expressed on sensory nerve fibers and
microglia, to enhance peripheral neural information
transmission, as well as to sensitize the CNS (36). A study
reinforced this hypothesis that ATP is transported into
secretory vesicles in primary afferents and spinal cord by
vesicular nucleotide transporter (VNUT) to stimulate related
purinergic receptors (i.e. P2X4R), which has been proved in
genetic knockout or VNUT inhibitors to relieve neuropathic and
inflammatory pain sensation (37). Marked upregulation of P2X4
receptors was detected in C6 glioma tissue; these receptors also
activate microglia in the central nervous system (CNS) and
tumor-associated macrophages in the peripheral system to
mediate inflammatory reactions (38). Taken together, those
evidence highlighted the crosstalk between nervous and
immune systems via P2X pathways. Thus, dissecting the
neuro-immune pathways via P2X receptors may provide new
therapeutic strategies in cancer treatment.

Intriguingly, a high concentration of extracellular ATP in the
tumor milieu is able to regulate cancer cell death by exploiting
ATP-dependent cytotoxicity (39). Purinergic receptors’ cytotoxic
functions are shown under the condition of persistent over-
stimulation of high levels of ATP. Prolonged stimulation of P2X7
receptor via high dosage ATP leads to the opening of a larger
conductance membrane pore, which in turn induces tumor cell
June 2021 | Volume 11 | Article 691956
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death and inhibits tumor growth (15). Sustained opening of the
P2X7R macropore stimulated by high extracellular ATP
concentration in the TME triggers caspase-3 cleavage and then
leads to membrane progression and ultimate cell death via
different pathways (15, 40). Therefore, it makes sense that the
application of P2X receptor agonists, such as ATP and P2X
receptor activators, restrains tumor growth. Preclinical cancer
models revealed the efficacy of administration of ATP at a high
dosage to suppress tumor growth (41, 42). Clinical trials in
treating advanced NSCLC patients with intravenous infusion of
ATP showed a significant improvement in quality of life and
cachexia effects (43). A recent study demonstrated the pro-
apoptotic mechanism of P2X7R stimulation, showing that
combined with an aPD-1 immune checkpoint inhibitor,
HEI3090, as a P2X7R agonist, activates tumor regression in
80% of Lewis lung carcinoma tumor-bearing mice. During
tumor inhibition, P2X7R’s cytotoxic activities were described
in immune cells, especially dendritic cells, to release pro-
inflammatory cytokines (IL-1b and IL-18) via an NLRP3-
dependent pathway (44). Despite the promising efficacy of
P2XR agonist therapy being displayed, side effects should be
noticed. In intravenous ATP infusions, dyspnea emerged as the
most common side effects, followed by chest tightness, urge to
take a deep breath, and cardiac disorders (45). We speculated
that ATP agonists activate various P2X receptors, especially
P2X3R, P2X4R, and P2X7R, in other tissues or organs to
induce a series of symptoms. Their predominant roles are also
reported in mediating immune responses and the nervous
system (see below). Based on the aforementioned side effects, it
is tempting to hypothesize that compared with P2X antagonists/
inhibitors, therapies based on P2X agonists would get patients
more exposed to more risks of discomforts (i.e. pain sensations,
dyspnea, immune system disorders). Whether P2X agonists or
antagonists should be adopted depends on multiple factors,
including genetic differences (46, 47), different cancer types
and onset sites, P2X receptor tumor expression (48), and
cancer-associated symptoms (pain, dyspnea, fatigue, etc.).
More studies are required to elucidate further use of P2X
receptors-targeted therapies in cancer patients in the future.

A large number of studies have highlighted the role of ATP
and P2X purine receptors on the development and progression
of cancer. Thus, it could be speculated that a putative P2X-
dependent mechanism affects cancer-related symptoms,
including pain, fatigue, cough, and dyspnea. Herein, we
summarize the related findings on the potential correlation
between different types of cancer symptom clusters and P2X
purine signaling, providing an outline for the potential treatment
of distressing cancer-related symptoms using P2X receptor
antagonists (Figure 1).
CANCER-RELATED PAIN

Half of the cancer patients may experience different levels of
pain, especially those with the middle and advanced stages of
cancer (49). The growth, proliferation, migration, and invasion
Frontiers in Oncology | www.frontiersin.org 3
of tumors compress and damage peripheral nerves, and then
sensitize peripheral sensors and transmit the sensation of pain
(50). Bone cancer pain may be an applicable example, which
results from primary bone cancer and the metastasis of other
common cancers, such as lung cancer, breast cancer, and
prostate cancer. Tumor infiltration in the bone compresses and
damages sensory nerve fibers, which in turn aggravates the pain.
Furthermore, immune cells (such as lymphocytes and
macrophages) play a critical role in the tumorigenic site by
releasing inflammatory cytokines (such as TNF-a, IL-1, IL-6,
and substance P (SP) (51). Based on these perspectives, cancer
pain is related to nociceptive pain, neuropathic pain, and
inflammatory pain.

In the tumor microenvironment, ATP and P2X receptors
were detected in patients with cancer pain (52). Increased
extracellular ATP triggers pain via activation of different P2X
receptors involved in nociceptive, neuropathic, and
inflammatory pain. Specifically, ATP-gated P2X3 and P2X2/3
receptors selectively expressed in primary afferent nerves (vagal
C fibers and Ad-fibers) and afferent sensory neurons (i.e. dorsal
root ganglia, trigeminal nerve, inferior ganglion of the vagus
nerve, and glossopharyngeal nerve) (53, 54) participate in the
development and transmission of pain signals with respect to
chronic inflammatory pain, neuropathic pain, and cancer pain
(55, 56). Several studies have shown upregulation of P2X3
receptors in the dorsal root ganglion of animals that
experienced bone cancer pain (57–59). Data also support that
homomeric P2X3 and heteromeric P2X2/3 receptors are
involved in the generation of bone cancer pain perception (60,
61). A-317491, a P2X3 receptor antagonist, could efficiently
relieve cancer-induced bone pain related to early-stage tumors.
However, it had limited effects on inhibiting the progression of
the tumor from an early to an advanced stage (62). Similarly,
suramin, a broad spectrum P2 receptor antagonist, reduced
prostate-specific antigen levels, pain, and disease progression
but the mechanism of pain reduction remains unknown.
Another selective P2X3 and P2X2/3 receptor antagonist, AF-
353, had an efficacious pain-easing function but could not
prevent cancer-induced bone destruction. With the application
of in vivo electrophysiology, AF-353 administration on the spinal
cord of animals with bone cancer reduced the neuronal
hyperexcitability to mechanical and chemical stimuli,
suggesting that the central nervous system was involved in the
cancer pain (59).

Furthermore, P2X4 expressed on microglial cells within the
CNS and P2X7 expressed on nerve cells as well as macrophages
in the periphery participate in the etiology of cancer pain. The
upregulation of P2X4 receptors in spinal microglia induces the
release of brain-derived neurotrophic factor (BDNF), a short-
term promoter of neuropathic pain (63). P2X7 receptors
expressed in spinal microglia participated in the development
of advanced cancer pain by modulating ATP release and pro-
inflammatory cytokine production (64, 65). C57BL/6J P2X7
receptor knockout (KO) mice had absent responsiveness to
thermal and mechanical stimuli, and their macrophages did
not secrete cytokines (for example, IL-1b) under the
June 2021 | Volume 11 | Article 691956
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stimulation of lipopolysaccharide (LPS), indicating that P2X7
receptors enhance nociceptive transmission by elevating the
secretion of cytokines via macrophages (66). Conversely,
BALB/cJ P2X7R KO mice had pain-related behaviors after
bone cancer induction. Compared with wild-type counterparts,
they presented an earlier onset for pain-related behaviors and a
significantly severe pain phenotype (67). Different genetic
backgrounds of mice strains might account for discrepant
results. C57BL/6 and BalbcJ P2X7R deficient mice might
express different P2X7 polymorphisms that would cause
Frontiers in Oncology | www.frontiersin.org 4
variability in phenotypes and presentations (e.g. pain-related
behaviours, bone remodeling) in comparison of WT type
littermates (47, 68–71). Besides animal models, two human
chronic pain cohort (one with pain after mastectomy and the
other with osteoarthritis), revealed a genetic association between
intensive chronic pain and the hyperfunctional variant of His
270 (rs7958311) allele of P2X7R, suggesting that selective
blockade aiming at P2X7R pore formation also seems to be an
innovative and personal therapeutic strategy for individual
chronic pain (47).
FIGURE 1 | The anatomical and molecular mediators of lung cancer symptom cluster. Ca2+, calcium; ATP, adenosine triphosphate; BDNF, brain-derived
neurotrophic factor.
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The knockdown of P2X7 receptors with the utilization of
selective or specific antagonists (A-438079, A-740003, and A-
839977) benefits cancer pain by reducing the release of cytokine,
such as Il-1b (66, 72, 73). Another study reported that acute
treatment with A-438079 failed to reduce pain-related behaviors
in a mouse model of bone cancer pain (67). Current evidence
suggests that the P2X4 receptor expressed on microglia induces
spinal inflammatory pain and neuropathic pain and releases
cytokines (74, 75). However, only a few studies have reported the
role of P2X4 receptors in the treatment of cancer pain. A recent
study has shown that RS-504393, a selective antagonist of the
chemokines C-C motif receptor 2 (CCR2), reduced the
expression of P2X4R in the spinal cord and relieved bone
cancer pain, rendering P2X4R a potential target for cancer
pain therapy (76).

Kyushu University and Nippon Chemiphar Co. Ltd initiated a
Phase 1 clinical trial of NC-2600 in 2016 to elucidate its efficacy in
chronic neuropathic pain (to date, there is no information on the
structure or preclinical data). Although P2X7 antagonists, such as
AZD9056 and CE-224,535 were well tolerated in Phase 1 clinical
Frontiers in Oncology | www.frontiersin.org 5
studies, they showed insignificant efficacy in treating rheumatoid
arthritis in Phase 2 clinical trials. Another P2X7 antagonist,
AZD9056, has the therapeutic potential to decrease Crohn’s
disease activity index along with improvement in chronic
abdominal pain, as shown in a Phase 2a clinical study of Crohn’s
disease (Table 1). However, only a few randomized, double-blind,
placebo-controlled clinical studies have demonstrated the efficacy
and safety of P2X receptors in treating cancer pain. Collectively, the
usage of P2X antagonists might present a promising therapeutic
strategy for cancer-associated pain compared to the current,
commonly-used agents, such as opioids (53).
CANCER-RELATED COUGH

A persistent cough is a common symptom affecting over 50% of
patients with lung cancer with a considerably adverse impact on
quality of life (77). Cough can be evoked by activation of vagal
afferent nerves innervating the airways and lungs—C-fibers
(chemically) and Ad-fibers (mechanically) (78, 79). In lung
TABLE 1 | Clinical Studies of P2X Receptor Antagonists.

Targets Compound Trial Identifier Responsible Party Development Indications Estimated Completion

P2X4R NC-2600 Pharmaceuticals and Medical
Devices Agency (PMDA)

Kyushu University, Nippon
Chemiphar Co., Ltd

Phase 1 Neuropathic pain Completed (no results posted),
www.chemiphar.co.jp

P2X3R AF-219/MK-
7264/
Gefapixant

NCT03449134 (COUGH-1) Merck Sharp and Dohme
Corp.

Phase 3 Chronic cough Completed (published in an abstract
form)

NCT03449147 (COUGH-2) Merck Sharp and Dohme
Corp.

Phase 3 Chronic cough Completed (published in an abstract
form)

NCT02477709 Afferent Pharmaceuticals,
Inc.

Phase 2 Idiopathic Pulmonary
Fibrosis (IPF)

Completed (results posted online)

NCT02502097 Afferent Pharmaceuticals,
Inc.

Phase 2 IPF-associated cough Completed (results posted online)

BAY
1817080

NCT04562155 Bayer Phase 1/2 Chronic cough Primary Completion: Jun, 2021
Study Completion: Jul, 2021

NCT03310645 Bayer Phase 1/2 Chronic cough Completed (no results posted)
NCT04614246 Bayer Phase 2 Pain related to

endometriosis
Recruiting
Primary Completion: Aug. 2022
Study Completion: Sep. 2023

NCT04641273 Bayer Phase 2 Diabetic neuropathic
pain

Recruiting
Primary Completion: Jun.2023
Study Completion: Jul.2023

BLU-5937 NCT03979638 (RELIEF) Bellus Health Inc. Phase 2 Chronic cough Terminated early because of the
impact of COVID-19 on the trial
activities (no results posted)

BAY1902607 NCT03535168 Bayer Phase 1/2 Chronic cough Completed (no results posted)
S-600918 NCT04110054 Shionogi Inc. Phase 2b Chronic cough Completed (no results posted)

P2X7R AZD9056 Eudra-CT Number: 2005-
002319-26, Sponsor Protocol
Number: D8830C00002

AstraZeneca AB Phase 2a Chronic abdominal
pain related to
Crohn’s disease (CD)

Completed (results posted online)

NCT00520572 AstraZeneca AB Phase 2 Rheumatoid Arthritis Completed (results posted online)
CE-224,535 NCT00628095 Pfizer Inc. Phase 2/3 Rheumatoid Arthritis Completed (no results posted)

NCT00418782 Pfizer Inc. Phase 2 Osteoarthritis pain Completed (no results posted)
GSK1482160 NCT00849134 GlaxoSmithKline Phase 1 Inflammatory pain Completed (no results posted)
JNJ-
54175446

NCT04116606 CCTU-Core,
Cambridgeshire and
Peterborough NHS
Founation Trust

Phase 2 Major depression
disorder, inflammation

Recruiting
Primary Completion: May, 2021
Study Completion: Dec. 2021

NCT02902601 Janssen Research and
Development, LLC.

Phase 1 Major depression
disorder

Completed (no results posted)
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cancer, coughing is often provoked by the tumor (especially
endobronchial neoplasms)-stimulating bronchial receptors and/
or by the inflammatory responses of the tumor activating afferent
nerve fibers in the airways (80). In one study, lung cancer related-
cough remained refractory while other cancer symptoms were
managed adequately in clinical practice (81). Moreover, chronic
dry cough is present in about 25–50% of patients after
undergoing lung cancer surgery (82, 83). Despite such high
prevalence, current practice on treating cancer-related cough is
empirical without high-quality evidence. Oral opioids are widely
used in managing patients with cancer but with significant side
effects (81).

ATP-gated P2X3 receptors are localized on the terminals of
vagalCfibers innervating the lungs andairways and are activatedby
ATP released into the airway in guinea pigs (84, 85). In addition, the
terminals of Ad-fibers express P2X3 receptors (53). In the airways
and lungs,ATPacts as a trigger of the cough reflexvia stimulationof
P2X3 andP2X2/3 receptors expressed on the vagal sensory neurons
central to the cough reflex (86, 87). Kamei et al. observed that when
exposed to tussive stimuli, such as ATP and histamine aerosols,
cough reflex sensitivity was enhanced via P2X receptor signals in
guinea pigs. This effect could be attenuated by pretreatment with
TNP-ATP,apotentP2X3antagonist, inguineapigs (88, 89).Morice
et al. reported the ability of the P2X3 receptor antagonist gefapixant
(formerly named AF-219 and MK-7264) in alleviating cough
induced by ATP and ultrasonically-nebulized distilled-water, but
not capsaicin and citric acid (90). Bonvini et al. identified that
TRPV4-ATP-P2X3 interaction was involved in cough
hypersensitivity in guinea pig conscious cough models (91).
These findings suggest that the P2X3 pathway might underlie
cough hypersensitivity in chronic refractory cough, supporting a
potential therapeutic role in the treatment of lung cancer-induced
chronic cough.

In the tumor microenvironment, elevated levels of ATP and
adenosine due to degradation of extracellular ATP were observed
during cancer development, which might subsequently activate
purinergic receptors that are fed to the central nervous system (12).
Recent studies have demonstrated the efficacy of P2X receptor
antagonists in the management of chronic cough and showed an
association between ATP and cough via purinergic signaling.
Gefapixant, a first-in-class selective antagonist of the P2X3 and
P2X2/3 receptors, significantly inhibited ATP-evoked cough in
patients with chronic cough (90). Furthermore, gefapixant
showed a significant reduction in cough frequency, as assessed by
randomized, double-blind, placebo-controlled Phase 2 trials (92,
93).Recently, twoPhase 3 randomizedcontrolled trials (COUGH-1
and COUGH-2) of gefapixant in refractory chronic cough and
unexplained chronic cough, evaluating more than 2000 patients,
have been completed (94). Compared to placebo, treatment with 45
mg gefapixant demonstrated a significant reduction in 24-h cough
frequency in patients (95).However, the loss of taste was an adverse
event accompanied by incremental doses of gefapixant (92, 93).
Reportedly, the adverse events with gefapixant 45 mg were mostly
related to altered taste (95).

Another P2X3-receptor antagonist, BLU-5937 demonstrated
safety and tolerability in the Phase 1 clinical trial (96), while the
Frontiers in Oncology | www.frontiersin.org 6
Phase 2 clinical trial was delayed due to the COVID 19
pandemic. According to the current data released by the
sponsor, this trial failed to meet the primary endpoints for any
doses, although BLU-5937 was well-tolerated and its efficacy in
reducing awake cough frequency was also found in a subgroup of
patients with high cough counts at baseline. Two other P2X3-
selective antagonists, BAY 1817080 and S-600918, have shown
antitussive effects in completed Phase 2 trials (97, 98).
BAY1902607 underwent a Phase I/II proof-of-concept clinical
trial. Although it has been announced as complete, the results
have not yet been posted (Table 1).

In light of published and ongoing promising data with at
least four clinical programs involving P2X3 receptor-antagonists
in treating chronic refractory cough (90–98), and with
extracellular ATP and its receptors having been shown to
modulate tumor development, invasion progression, and
tumor microenvironment, P2X receptor antagonists may be
expected also to exert an antitussive effect in lung cancer-
related cough. Further studies in this area are eagerly awaited.
CANCER-RELATED FATIGUE

Cancer-related fatigue (CRF) is one of the cancer cluster symptoms
that affects up to 90% of patients with lung cancer (99). This
distressing, persistent, and subjective sense of tiredness or
exhaustion might be a manifestation of cancer or the side effects
of its treatment. Central and peripheral mechanisms could be
involved in the development of CRF. The central hypotheses
consist of pro-inflammatory cytokine signaling dysregulation,
hypothalamic-pituitary-adrenal (HPA) axis disruption, circadian
rhythm disorder, serotonin dysregulation, and vagal afferent
activation, while, peripheral mechanisms may include ATP
dysregulation, muscle metabolism, and effects on contractile
properties (100).

Accumulating evidence suggests that inflammation is a
common link between CRF and cancer pain. Bone cancer pain
enhances the levels of inflammatory factors (TNF-a, IL- 1b, and IL-
6) via activation of glial cells and central sensitization in the spinal
cord (101). Similarly, compared to non-fatigued survivors or
healthy controls, fatigued cancer patients had significantly higher
levels of pro-inflammatory cytokines, such as C-reactive protein
(CRP), IL-1b, IL-6, and TNF-a (102, 103) in the tumor
microenvironment (104, 105) or from anti-tumor treatment
(radiation therapy or chemotherapy) (106, 107). Enhanced
cytokine activity in the periphery might be conveyed to the brain,
which in turnwould induce central fatigue by altering the serotonin
pathway in the brain, influencing the HPA axis, dysregulating
circadian rhythms, and inducing vagal afferent activation (108,
109). Symptoms such as fatigue, depression, and loss of appetite,
may be the result of peripheral inflammation, mediated by pro-
inflammatory cytokines (110). These cytokines also underlie the
developmentof anemia (111), cachexia (112), anddepression (113),
which may contribute to CRF. Pain and fatigue share similar
inflammatory mechanisms. Thus, fatigue management might
utilize P2X antagonists, such as P2X7 selective or specific
June 2021 | Volume 11 | Article 691956
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antagonists which have been demonstrated to ameliorate pain and
inhibit cytokine release (66, 72, 73).

In terms of a peripheral hypothesis, limited evidence is
available on cancer-related fatigue. However, most patients
with cancer suffer from weight loss and/or loss of appetite,
which might alter muscle protein metabolism. Peripheral
fatigue might be manifested by the inability of muscle, with
altered muscle protein metabolism, ATP dysregulation, and
contractile properties, to respond to central stimulation (114,
115). The combined products of muscle contraction (ATP,
proton, and lactate) activate the sensory neurons innervating
skeletal muscle, which might project to the central nervous
system via sensory neurons and evoke a sensation of fatigue.
Moreover, in an animal model, ATP released from fatigued
muscle activates muscle macrophages, which subsequently
release IL-1b to produce hyperalgesia. The blockade of P2X4
receptors in muscle inhibits the development of such
hyperalgesia (116).

Pilot data suggest that P2X receptors may act as valid
pharmacological targets. To date, the correlation between P2X
receptors and cancer-related fatigue has been minimally
investigated, and hence, further study of the efficacy of P2X
antagonists in treating cancer-related fatigue is needed.
CANCER-RELATED DYSPNEA

Moderate or severe dyspnea is reported in 20–80% of cancer
patients. Dyspnea is a common symptom in patients with
advanced cancer, accompanied by cough due to primary lung
cancer in the airway or metastasis of other cancers to the
bronchus. Especially, intraluminal tumor in the trachea or a
mainstem bronchus activates cough receptors and mechanically
obstructs airflow to elicit the sensation of dyspnea (117).
Dyspnea is a multifactorial sensation associated with central,
peripheral, and chemoreceptor modulation (118). Notably, vagal
nerves innervating both the airways and lungs and transmitting
to the sensorimotor cortex are capable of inducing dyspnea
(119). Several studies have indicated that vagal C-fibers are of
dyspneic origin and can be triggered by ATP and adenosine.
Furthermore, some Ad stretch fibers can be directly stimulated
by ATP similar to C-fibers (53, 120, 121). In clinical trials,
dyspnea could be evoked by the direct C-fiber activators ATP
and adenosine during bronchial challenge testing (122). Inhaling
ATP and adenosine induced dyspnea in subjects with asthma
(123) and COPD (124). Additionally, intravenous injection of
adenosine induced distressing symptoms such as dyspnea,
hyperventilation, urge for deep breathing, and chest tightness
in healthy volunteers (125), and pre-terminal cancer patients (45,
126). Taken together, extracellular ATP is likely to give rise to
dyspnea, and thus may be a potential target for the treatment
of dyspnea.

Hypoxemia may be one of the factors stimulating ventilation
and producing dyspnea in lung cancer patients (127).
Furthermore, central cardiovascular and respiratory neuronal
networks are intertwined during and post-hypoxia (128). In
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knockout P2X2 mice, the activation of the chemoreceptor of
the carotid sinus nerve transmits information about arterial pO2

to the respiratory centers of the brain to mediate ventilatory
responses to hypoxia. The P2X2 receptor antagonist PPADS was
shown to block neural discharge evoked by hypoxia (129).
Furthermore, Zhang et al. reported that suramin, a P2X
receptor antagonist, combined with a nicotinic Ach receptor
antagonist, blocked the hypoxia-induced increase in
chemoreceptor afferent neuronal discharge (130).

Collectively, these studies suggest that the inhibition of
specific ATP signal transduction pathways, such as with P2X3
receptor antagonists in the lungs, constitutes an attractive target
for the development of new therapies to ameliorate dyspnea.
However, additional randomized, double-blinded, placebo-
controlled clinical studies are required to confirm whether P2X
antagonists are able to eliminate or improve cancer-
induced dyspnea.
CONCLUSIONS

Cancer-related symptoms may significantly and adversely affect
patients with lung cancer, causing a marked diminution in the
quality of life. Hence, the potential therapeutic roles of P2X
receptors in cancer as well as cancer-related symptoms need to
be further elucidated. Intratumoral ATP, ATP-P2X receptors,
and the vagus nerve are involved in the neuro-immune
interactions in cancer. Increased extracellular ATP and its
associated compounds activate P2X receptors expressed on
bronchopulmonary nerves to evoke unpleasant sensations
(such as the urge to cough, dyspnea, chest tightness, fatigue,
and pain) and stimulate/modulate reflexes (such as cough,
bronchoconstriction, respiratory rate, and inspiratory
drive). Various cancer-related symptoms may share similar
pathogenic mechanisms. To date, a significant clinical
investigation has established a role for P2X receptor
antagonists in the treatment of chronic cough and cancer-
related pain. Thus, a basis has been formed for the further
evaluation of potential therapeutic roles for P2X antagonists in
the treatment of other cancer-induced symptoms.
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