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Abstract: Reliability and safety are the most important indicators in the electric system. When a
ground fault occurs, the electrical equipment and personnel will be greatly threatened. Due to the
zero-sequence voltage/current sensor networks applied in the system, the fault identification and
diagnosis technology are developing rapidly, including the application of ground fault suppression.
A flexible grounding system (FGS) is a new technology applied to arc extinguishing in medium and
high voltage electric distribution networks. Its characteristic is that when the single-phase ground
fault occurs, the power-electronic-based device is put into the electric system to compensate and
suppress the ground point current to be close to zero in a very short time. In order to implement the
above process, the corresponding faulty feeder identification method needs to meet the requirements
of rapidity and accuracy. In this article, based on the real-time sampled data from the zero-sequence
current/voltage sensors, an improved faulty feeder identification method combining wavelet packet
transform (WPT) and grey T-type correlation degree is proposed, which features both accuracy
and rapidity. The former is used to reconstruct the transient characteristic signal, and the latter is
responsible for calculating and comparing the similarity of relative variation trend. Simulation results
verify the rationality and effectiveness of the proposed method and analysis.

Keywords: faulty feeder identification; data analysis; similarity comparison; flexible grounding
system; grey T-type correlation degree; wavelet packet transform; electric distribution networks

1. Introduction

As an important part of the electric system, the medium and high voltage electric
distribution networks are closely related to all industrial and residential users. Its safety
and reliability have always been a research hotspot that has been widely discussed. Among
many fault types of distribution networks, the single-phase ground fault is more frequent in
practice. When a ground fault occurs in the system, the safety of electrical equipment and
personnel will be greatly threatened. For example, fires potentially caused by ground faults
have occurred in many countries, as shown in Figure 1. Therefore, the implementation of
reliable and effective grounding is an important premise to ensure the safety of distribution
networks. In recent years, with the continuous development of the distribution network
topology and the increasing number of cable lines, the resonant grounding method (arc
suppression coil (ASC) or Peterson coil) has been difficult to meet the requirement of rapid
arc extinction. In order to solve this problem, the power-electronics-devices-based flexible
grounding system (FGS) has been proposed in recent years [1–6]. Flexible grounding
means that on the basis of traditional resonant grounding, when a single-phase ground
fault occurs, power-electronic-based devices will be put into the distribution network, and
the fault current at the ground point is suppressed to be close to zero in a very short period
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of time. In addition, the fault arc will be completely extinguished. The existing flexible
grounding schemes include open-loop and closed-loop compensation schemes [7,8]. For
the former, it is estimated to obtain the compensation current, and the active inverter is
equivalent to the current source. The working principle of the inverter in this scheme is
similar to an active power filter (APF). For the latter, it feeds back the voltage at the fault
point, and the active inverter is equivalent to the voltage source. The output voltage forces
the fault point voltage to be equal to zero or below the safety threshold. However, no matter
which kind of flexible grounding scheme is adopted, higher requirements are put forward
for the faulty feeder selection technology: (1) Accuracy: The faulty feeder identification
results determine the parameter values calculation in the compensation process, which will
directly affect the reliability of FGS. Especially, when a high-resistance ground fault occurs,
smaller fault characteristics will make the feeder identification process more difficult; (2)
rapidity: FGS needs to realize arc extinguishing in a very short time (usually several power
frequency cycles), which makes the feeder identification process need to be completed in a
very short time. In addition to the faulty feeder identification, fault detection and location
are also very important in the electric system, which are not the focus of this paper. Some
effective methods have been proposed [9–13].
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At present, the faulty feeder identification methods for the grounding system can
be roughly divided into four categories [14–23], and they are all based on the transient
signals analysis: (1) First half-wave method; (2) energy method; (3) time-frequency domain
analysis method; (4) similarity comparison method. The first half-wave method compares
the initial polarity of the bus transient zero-sequence voltage of the bus and the polarity of
the transient zero-sequence current of each feeder. The line with the opposite polarity of
the transient zero-sequence voltage of the bus is the faulty feeder [24,25]. However, this
method needs to collect the waveform of the first half period after the fault, which requires
high speed and data synchronization, and its reliability is poor. The energy method uses
the transient zero-sequence voltage and current of the non-faulty/faulty feeder first to
obtain the energy of the transient process and then realizes the fault line selection by
comparing the difference in energy magnitude and direction [26]. However, this method
ignores large amounts of high-frequency signals, which can easily lead to false selection.
The time-frequency domain analysis method mainly includes the wavelet transform (WT)
and wavelet packet transform (WPT) [27]. In addition, there are some other time-frequency
domain analysis methods that are utilized to extract the transient feature, such as the Fourier
transform (The time-domain signal is transformed into the frequency-domain signal) [28],
short-time Fourier transform (STFT, and the window function is added) [29], empirical
mode decomposition (EMD) [30], Hilbert–Huang Transform (HHT) [31,32], Wigner–Ville
distribution (WVD) [33], and so on. WPT improves high-frequency resolution on the basis
of WT, thus it is more conducive to fault signal processing [34–36]. It first decomposes
the fault transient signal in each frequency band, then determines the frequency band
that can reflect the fault characteristics most obviously, and finally uses the amplitude,
polarity and phase, entropy value, and other characteristic quantities of the signal in the
band to select the fault line. The WPT method has strong signal extraction ability and
can realize the transient signals processing in a short time. However, the accuracy of
the method is affected by the sampling frequency and the complexity of the distribution
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network. Compared with the Fourier transform, the signal with WPT can be processed
within one or two fundamental current cycles, which means the signal processing has a
better real-time performance. Besides that, WPT is more suitable for time domain and
frequency domain analysis at the same time. In addition, for the Fourier transform, as the
basis functions are sine or cosine functions, it is more suitable for the analysis of stationary
signals. To solve this, the window function is added to the Fourier transform (STFT).
However, the selection of the window function will seriously affect the time-frequency
resolution of signal analysis. The other methods, such as EMD, HHT, and Wigner–Ville
distribution, are more widely used in mechanical fault diagnosis, power quality assessment,
and other fields. The similarity comparison method determines the similarity between the
zero-sequence current waveforms of the feeder by finding the correlation coefficient or
grey correlation degree and finds the feeder with the most different from other lines as the
fault feeder [37–43]. This method has higher line selection accuracy than other methods
mentioned above but requires a longer period of the waveform to extract the transient
components contained in the fault waveform. In [40], in order to extract the transient
characteristic quantity, the zero-sequence current waveform after 10 cycles is subtracted
from the zero-sequence current when the fault occurs. Hence, its dynamic performance
will be affected. In summary, none of the above four methods can meet the requirements
of accuracy and rapidity at the same time, and, therefore, it is not suitable for a flexible
grounding scheme. An improved faulty feeder identification method for FGS is required.

Due to the large number of zero-sequence voltage and current sensors in the electric
distribution network, the accurate and rapid fault identification result can be achieved.
In addition, the key to faulty feeder identification is to separate fault information from a
large number of real-time sampled data. Figures 2 and 3 show the schematic diagrams of
FGS and its neutral-point voltage compensation strategy. The hardware mainly includes
an active inverter, impedance grounding system (ASC or low-resistance), and sensor
networks. When a ground fault occurs, the fault-point voltage exceeds the safety threshold,
and the fault arc is thus formed. Since the sum of the fault-phase voltage (UA, UB, UC)
and neutral-point voltage (UNO) is equal to the fault-point voltage, in order to suppress
the fault-point voltage and make it below the safety threshold, the active inverter can be
used to compensate the neutral-point voltage, which can offset the fault-phase voltage.
U′NAset, U′NBset and U′NCset are the compensated neutral-point voltages. In Figure 3, the
blue areas represent the safe range of the fault-phase voltage value. That is, when the fault-
phase voltage is offset to this range, the fault point can not arcing, and the ground fault
is effectively suppressed. Additionally, according to different application scenarios, the
topology structure of the active inverter can be single-phase H-bridge, cascaded H-bridge,
modular multilevel converter (MMC), and multi-material devices [44–53]. In order to
achieve the high voltage output of the active inverter, the multilevel topology or cascaded
H-bridge can be adopted [44–49]. If the output voltage level of the active inverter is lower,
an isolation booster transformer is necessary. In addition, in order to achieve the tradeoff
of power density, performance, and cost, multi-material devices can be applied [50–53].
The whole software process includes fault diagnosis, fault feeder identification (mainly
discussed in this article), and suppression. Firstly, the controller of the flexible grounding
system samples the signal data of zero-sequence voltage and current transformer, then
performs necessary data processing and analysis, and finally sends driving signals to power
electronic devices, thus that the voltage or current at fault point will be suppressed to a
safe range.
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In this article, combining the advantages of wavelet packet transform and the simi-
larity comparison method based on grey T-type correlation degree, a new faulty feeder
identification method with both excellent accuracy and speed is proposed. The wavelet
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packet transform is applied to locate the fault moment and extract the transient characteris-
tic quantity in the fault waveform quickly and accurately. In addition, the grey correlation
degree is applied to analyze the similarity of the relative change trend of each feeder wave-
form to achieve faulty feeder identification. The zero-sequence voltage and current sensor
networks provide necessary real-time data support for algorithm implementation. Suffi-
cient simulation results based on MATLAB/Simulink verify the validity and rationality of
the proposed method.

This paper is organized as follows. The description of wavelet packet transformation
is given in Section 2, including the principle and extraction of zero-sequence current tran-
sient characteristics. Additionally, in this section, the processing of transient waveforms
using WPT is introduced. In Section 3, the similarity comparison method based on grey
T-type correlation degree is presented. Especially, the flow chart of the proposed method
combining WPT and grey T-type correlation degree are given. Taking into account sev-
eral typical ground fault cases, the data analysis and simulation results are presented in
Section 4. Finally, Section 5 summarizes the whole work.

2. Wavelet Packet Transformation for FGS
2.1. Principle of Wavelet Packet Transform

Wavelet packet transform is a method of time-frequency domain analysis. Compared
with the Fourier transform, the signal with WPT can be processed within one or two
fundamental current cycles. Compared with wavelet transform, the frequency band can
be divided into multiple layers with WPT, and the high-frequency part of the signal is
further decomposed, thus as to ensure that the signal features are complete and has good
time-frequency resolution. WPT performs high-frequency and low-frequency filtering on
the signal over a period of time. Each transformation separates the low-frequency overview
and high-frequency details of the signal. After decomposing n layers, according to the
above steps, the wavelet packet coefficients in 2n frequency bands are obtained. Figure 4 is
a schematic diagram of the three-layer wavelet packet decomposition example. The time
and frequency domains are equally divided into eight segments. At a certain period of
time, such as t = 2, the signal characteristics in eight frequency bands can be represented by
wavelet packet coefficients, which reflect the projection value of the signal on each base
component. It is related to the wavelet base, signal sampling frequency, and the number of
decomposition layers. After the wavelet packet coefficients are obtained, the signal can be
reconstructed in each frequency band according to the proportion of each component in
the signal to obtain the waveform of the signal in each frequency band.
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2.2. Extraction of Zero-Sequence Current Transient Characteristic

In the normal operating state, since the flexible compensation device is not put into
use, it is the same as the transient equivalent circuit of the single-phase ground fault
in the traditional resonant grounding system. The transient current id at the ground
point [37,40] is:

id = iL + iC = (ICm − ILm) cos(ωt + ϕ) + ILm cos ϕe−
t

τL

+ ICm(
ω f
ω sin ϕ sin ω f t− cos ϕ sin ω f t)e−

t
τC

(1)

where ICm and ILm are the amplitude of the transient capacitor current and inductor

current; ω is the angular frequency of the power grid; ϕ is the initial phase angle of the
phase voltage at the time of fault; ωf is the resonance frequency of the loop; τL and τC are
the time constant of the inductive loop and the capacitive loop.

This article applies the wavelet packet transform to the processing of transient wave-
forms, which mainly includes two steps:

(1) Determine the actual fault time—the system continuously collects the bus zero-
sequence voltage and feeder zero-sequence current during normal operation and
saves at least two cycles of data. In order to distinguish between ground fault and
voltage unbalance, the zero-sequence voltage threshold Uset is set to 15% of the maxi-
mum phase voltage, thus as to identify 0–2 kΩ ground fault. When the instantaneous
value of the zero-sequence voltage exceeds the threshold, it is judged that a fault has
occurred. However, sometimes it is affected by the grounding resistance or other
conditions, and the instantaneous value of the zero-sequence voltage does not imme-
diately cross the boundary. That is to say, the fault time t1 obtained according to the
above method often lags the actual fault time t0. In this article, the Coiflet5 wavelet
is used to transform the zero-sequence voltage using the wavelet packet singularity
principle to determine the maximum point. At this point, the signal mutation is the
most obvious, corresponding to the actual fault time t0.

(2) Transient characteristic waveform extraction—under typical conditions, such as the
broken wire-to-ground fault, the ground medium is the cement floor, weeds and so on.
The transition resistance is usually hundreds to thousands of ohms. Therefore, when
this kind of fault occurs, the fault current is mainly composed of the fundamental
current. In addition, due to the existence of nonlinear load, the fault current will also
contain some low-frequency harmonic current components. Thus, in the fault current,
1st, 3rd, and 5th signal amplitude are the largest, and their characteristics are most
obvious when the fault occurs. Using this as the reference waveform for line selection
can reduce the interference of high frequencies and other uncontrollable factors. Select
the sampling frequency as 10 kHz, consider the boundary effect, and take the feeder
zero-sequence current signals of 1/4 and 3/4 cycles before and after the fault time to
perform four-layer wavelet packet decomposition, and the schematic diagram of the
four-layer wavelet packet tree is shown in Figure 5. According to Shannon’s sampling
theorem, the effective frequency bandwidth represented by each node on the fourth
layer = 10,000/2/16 = 312.5 Hz. Therefore, the reconstructed signal at node (4, 0) can
accurately extract the signal of 0–312.5 Hz through only one period of sampling signal.
The principle of this method is equivalent to low-pass filtering without time delay.
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3. Feeder Identification Method Based on Grey T-Type Correlation Degree
3.1. Characteristic Analysis of Transient Zero-Sequence Current

When the ground fault occurs, the zero-sequence current of non-faulty feeder p can be
expressed as:

iop = Cp
du0

dt
, p = 1, 2, . . . , m, p 6= q (2)

where U0 is the system zero-sequence voltage; Cp is the capacitance to ground of the
feeder p.

It can be found from (2) that iop is obtained by multiplying the 2 parts, and its value
depends on its own capacitance to the ground and the change rate of the zero-sequence
voltage. Different feeders have different capacitances to ground, which resulted in different
zero-sequence current amplitudes, but different feeder zero-sequence currents contained
the same zero-sequence voltage change rate. Therefore, the dynamic change trend was
consistent, which provides a theoretical basis for extracting feature quantities and judging
the similarity between non-faulty feeders.

The zero-sequence current of the faulty feeder q can be expressed as:

ioq = −
m

∑
p=1,p 6=q

Cp
du0

dt
+ iR + iL (3)

where iR and iL are the resistive and inductive components of ioq.
It can be found from (3) that if iR and iL are not considered, ioq and the sum of the

zero-sequence current at the outlet of the non-faulty feeder is equal in magnitude, and the
direction of change is opposite. Although iR and iL will affect the amplitude and phase of
ioq to a certain extent, it can be found that there is a significant difference in the amplitude
and dynamic change trend between the faulty feeder and the non-faulty feeder.

3.2. Principle of Faulty Feeder Identification Using Grey T-Type Correlation Degree

In order to express the similarity of the two curves, the traditional method of feeder
identification based on similarity compares the static shapes of the two curves [39]. How-
ever, because the actual distribution network contains overhead lines and cables, and the
capacitance to ground of the cables is much larger than the transmission lines, it leads to
a large difference in the amplitude of the zero-sequence current. If the static correlation
coefficient continues to be used, it will lead to misjudgment. In order to solve this problem,
this article will use the grey T-type correlation degree. Based on the changing trend of the
fault waveform, it can accurately indicate the similarity of the dynamic change trend of the
non-faulted overhead line and cable, and no misjudgment of the line will be made.
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Assuming that the transient signal sequence Sk of the kth feeder contains n data points
in the sampling period, written as a row vector in the form Sk = (Sk1, Sk2, . . . , Skn), then the
transient signal composed of m feeders the matrix S is as follows:

S =


S1
S2
. . .
Sm

 =


S11 S12 . . . S1n
S21 S22 . . . S2n
. . . . . . . . . . . .
Sm1 Sm2 . . . Smn

 (4)

The increment of the sequence Si at the tth
0 sampling point can be expressed as

∆Sit0 = Si(t0+1) − Si t0 , t0 = 1, 2, . . . , n− 1 (5)

The average value of the absolute value of the increment of the sequence in the
sampling interval is:

di =
∑n−1

t=1

∣∣∆Sit0

∣∣
n− 1

(6)

The average value of the increment of the sequence Si at the tth
0 sampling point is:

Zit0 =
∆Sit0

di
(7)

The grey T-type correlation coefficient ρij[Sit, Sjt] of any two signal sequences Si and
Sj at the tth

0 sampling point is defined as:

ρij
[
Sit0 , Sjt0

]
=

sgn(Zit0 , Zjt0)

1 + 0.5
∣∣∣∣Zit0

∣∣− ∣∣Zjt0

∣∣∣∣ (8)

sgn(Zit0 , Zjt0) =

{
1, Zit0 Zjt0 ≥ 0
−1, Zit0 Zjt0 < 0

(9)

Then the grey T-type correlation coefficient ρij of Si and Sj in the sampling period can
be expressed as:

ρij =
1

n− 1

n−1

∑
t0=1

ρij
[
Sit0 , Sjt0

]
(10)

where ρij∈ [−1,1], the more similar the dynamic trends of Si and Sj are, the closer ρij is to 1,
otherwise it is closer to −1.

3.3. Identification Criterion Based on Grey T-Type Correlation Degree

According to the above method, the grey T-type correlation coefficient matrix ρ can
be obtained:

ρ =


1 ρ12 . . . ρ1m

ρ21 1 . . . ρ2m
. . . . . . . . . . . .
ρm1 ρm2 . . . 1

 (11)

The integrated grey T-type correlation coefficient of feeder k and other feeders can be
defined as:

µk =
1

m− 1

m

∑
j=1,j 6=i

ρkj (12)

According to the above analysis, the line selection criteria can be determined as follows:

µk = min[µ1, µ2, . . . , µm] ≤ µset, the kth feeder fault
µk = min[µ1, µ2, . . . , µm] > µset, the bus fault

(13)
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where µset is equal to 0.2 here.
Figure 6 is the flow chart of the proposed faulty feeder identification method com-

bining wavelet packet and grey T-type correlation degree. Especially, in order to avoid
misjudgment and distinguish bus faults (point of common connection of all feeders) from
feeder faults, that is, to determine the bus fault as a feeder fault or the opposite condition,
the threshold setting is necessary. A large number of simulation results show that the
line selection accuracy is high when µset is set as 0.2. The threshold setting with too high
or too low value will lead to confusion between feeder faults and bus faults. The steps
can be described as follows: Firstly, by sampling the zero-sequence voltage/current and
comparing them with thresholds, the ground fault is diagnosed; then, through wavelet
packet transformation, the transient characteristic waveform is extracted, and the matrix
S is obtained; after that the grey T-type correlation coefficient is calculated; finally, by
analyzing µset, the faulty feeder can be identified.
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4. Verification Results and Discussion

As mentioned above, both the flexible grounding system and traditional resonant
grounding system involve fault line selection. Due to its high controllability and excellent
compensation performance, the former is attracting more and more attention. However,
the flexible grounding system needs both fast and accurate line selection process. In
order to verify the proposed faulty feeder identification method, the MATLAB/Simulink-
based model is established, as shown in Figure 7. Especially, limited by the experimental
conditions, and from the perspective of safety, it is a better choice to verify the proposed
method by sufficient simulations. The electric distribution network model contains five
feeders including two main types of lines: L1 is 25 km overhead line, L2 is 10 km overhead
line, L3 is a hybrid line of 5 km overhead line and 10 km cable, L4 is 20 km cable, and L5
is 8 km Cable. The system voltage level is 110 kV, the rated voltage of the transformer is
110/10.5 kV, and the rated capacity is 50 MVA. The no-load current is 1%, the no-load loss
is 35 kW, the short-circuit loss is 250 kW, and the short-circuit voltage ratio is 10%. The
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ground resistance is Rd. The active load of each feeder is 4 × 106 W, and the reactive load
is 3 × 106 Var. The line uses a distributed parameter model, and the parameter values are
shown in Table 1. According to the mentioned parameters, the total ground capacity of
the system ΣC = 1.26 × 10−5 F can be calculated and obtained. If the over-compensation
degree of the arc suppression coil is 5%, the inductivity value of the arc suppression coil
can be obtained:

L =
1

1.05
∗ 1

3ω2ΣC
= 0.243H (14)

The internal resistance RL of the arc suppression coil is 10% of the inductive reactance,
and RL = 8 Ω.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 16 
 

 

model is established, as shown in Figure 7. Especially, limited by the experimental condi-
tions, and from the perspective of safety, it is a better choice to verify the proposed method 
by sufficient simulations. The electric distribution network model contains five feeders 
including two main types of lines: L1 is 25 km overhead line, L2 is 10 km overhead line, 
L3 is a hybrid line of 5 km overhead line and 10 km cable, L4 is 20 km cable, and L5 is 8 
km Cable. The system voltage level is 110 kV, the rated voltage of the transformer is 
110/10.5 kV, and the rated capacity is 50 MVA. The no-load current is 1%, the no-load loss 
is 35 kW, the short-circuit loss is 250 kW, and the short-circuit voltage ratio is 10%. The 
ground resistance is Rd. The active load of each feeder is 4 × 106 W, and the reactive load 
is 3 × 106 Var. The line uses a distributed parameter model, and the parameter values are 
shown in Table 1. According to the mentioned parameters, the total ground capacity of 
the system ΣC = 1.26 × 10−5 F can be calculated and obtained. If the over-compensation 
degree of the arc suppression coil is 5%, the inductivity value of the arc suppression coil 
can be obtained: 

2

1 1= =0.243H
1.05 3

L
Cω

∗
Σ

 (14)

The internal resistance RL of the arc suppression coil is 10% of the inductive reactance, 
and RL = 8 Ω. 

Grid

110/10kV transformer

A
SC

L1

L2

L3

L4

L5

25km
Overhead line

10km
Overhead line

5km
Overhead line

20km
Cable

8km
Cable

10km
Cable

 
Figure 7. Schematic diagram of the simulation model: Two types of lines are considered. 

Table 1. Line parameters. 

Types Phase Sequence R0 (Ω/km) L0 (mH/km) C0 (nF/km) 

Overhead Lines 
Positive sequence 0.132 1.258 9.780 

Zero sequence 0.389 4.126 7.758 

Cable 
Positive sequence 0.270 0.255 339 

Zero sequence 2.700 1.019 280 

4.1. Characteristics of Transient Zero-Sequence Current 
Figure 8 is the waveform diagram of the transient zero-sequence current during sin-

gle-phase ground fault. It can be found that: (1) When the fault occurs on the feeder, no 
matter what time the fault occurs, the variation trend and amplitude of zero sequence 
current of the faulty feeder and normal feeder are very different; (2) the zero-sequence 
current of the normal feeders have a large difference in amplitude and a small difference 
in variation trend; (3) when the fault occurs on the bus, all the feeders can be regarded as 
normal feeders, the zero-sequence currents of all the feeders have a similar variation 
trend, and have a large difference in amplitude. 

Figure 7. Schematic diagram of the simulation model: Two types of lines are considered.

Table 1. Line parameters.

Types Phase Sequence R0 (Ω/km) L0 (mH/km) C0 (nF/km)

Overhead Lines
Positive sequence 0.132 1.258 9.780

Zero sequence 0.389 4.126 7.758

Cable
Positive sequence 0.270 0.255 339

Zero sequence 2.700 1.019 280

4.1. Characteristics of Transient Zero-Sequence Current

Figure 8 is the waveform diagram of the transient zero-sequence current during single-
phase ground fault. It can be found that: (1) When the fault occurs on the feeder, no matter
what time the fault occurs, the variation trend and amplitude of zero sequence current of
the faulty feeder and normal feeder are very different; (2) the zero-sequence current of the
normal feeders have a large difference in amplitude and a small difference in variation
trend; (3) when the fault occurs on the bus, all the feeders can be regarded as normal
feeders, the zero-sequence currents of all the feeders have a similar variation trend, and
have a large difference in amplitude.
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4.2. Faulty Feeder Identification under Typical Situations

The fault waveform is affected by the voltage phase angle ϕ, the grounding resistance
Rd, the fault location, and the type of fault line when the fault occurs. To verify the validity
and rationality of the above line selection method under different influencing factors, three
typical situations are considered in this article.

Figures 9 and 10 are the transient waveform of the zero-sequence current and the
reconstructed waveform (Rd = 0 Ω) at (4, 0) after extraction when the feeder fault occurs,
respectively. The feeder faults and bus fault can be found in Figure 9a–d, respectively. In
Figure 10, the x-axis represents the data points of the transient signal within the sampling
period. It can be found that, compared with the original transient waveform, the extracted
waveforms are filtered out of high-frequency interference. It smooths the waveform curve,
strengthens the similarity between non-faulty feeders and the difference between faulty
feeders and non-faulty feeders, and enhances the calculation accuracy of the grey T-type
correlation selection coefficient.
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The steps of judgment can be described as follows: Using the waveform after wavelet
packet processing as the original waveform of the line selection; changing the fault oc-
currence line and location, respectively; calculating [µ1, µ2, µ3, µ4, µ5] according to the
grey T-type correlation degree; and determining the faulty feeder according to (13), finally.
Table 2 shows the results of line selection when Rd = 0 Ω and ϕ = π/2. In this case, the
transient process of the fault waveform is the largest, the characteristic quantity is the
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most obvious, and it is most conducive to the judgment of line selection; Table 3 shows
the results of line selection when Rd = 20 Ω and ϕ = π/4. In this case, the characteristic
quantity is more obvious, which can represent the general resistance of low-resistance
grounding of ϕ∈(0, π/2); Table 4 shows the results of line selection when Rd = 2000 Ω and
ϕ = 0. In this case, the high-resistance ground fault occurs. The fault transient process is
the smallest, the feature quantity is the least obvious, the line selection is the most difficult,
and the line selection accuracy is greatly disturbed. The accuracy of line selection under
high-resistance ground fault is an important reference to evaluate the effectiveness of the
line selection method.

Table 2. The results of feeder identification when Rd = 0 Ω and ϕ = π/2.

Fault Line Fault Location/km [µ1, µ2, µ3, µ4, µ5] Min[µ1, µ2, µ3, µ4, µ5] Line Selection Result

L1
10 [ −0.5644 , 0.5122, 0.4800, 0.4486, 0.5095] −0.5644 L1

25 [ −0.5193 , 0.4256, 0.4584, 0.4149, 0.4736] −0.5193 L1

L2

5 [0.4241, −0.6755 , 0.4115, 0.4367, 0.4846] −0.6755 L2

10 [0.5238, −0.5423 , 0.5134, 0.4282, 0.5119] −0.5423 L2

L3
5 [0.5963, 0.5845, −0.4122 , 0.4638, 0.5735] −0.4122 L3

15 [0.6203, 0.6316, −0.2158 , 0.5369, 0.6135] −0.2158 L3

L4

10 [0.4839, 0.3656, 0.5552, 0.1218 , 0.5569] 0.1218 L4

20 [0.5763, 0.5554, 0.6210, −0.0796 , 0.6216] −0.0796 L4

L5
4 [0.5087, 0.4212, 0.5307, 0.4979, −0.0084 ] −0.0084 L5

8 [0.4731, 0.5204, 0.5399, 0.5347, −0.0585 ] −0.0585 L5

Bus 0 [0.6351, 0.5808, 0.7460, 0.7594, 0.7642] 0.5808 Bus

Table 3. The results of feeder identification when Rd = 20 Ω and ϕ = π/4.

Fault Line Fault Location/km [µ1, µ2, µ3, µ4, µ5] Min[µ1, µ2, µ3, µ4, µ5] Line Selection Result

L1

10 [ −0.2235 , 0.6375, 0.6312, 0.6296, 0.6438] −0.2235 L1

25 [ −0.0702 , 0.6839, 0.6558, 0.6459, 0.6381] −0.0702 L1

L2

5 [0.6328, −0.0473 , 0.6381, 0.6258, 0.6479] −0.0473 L2

10 [0.6996, −0.0059 , 0.6036, 0.6184, 0.6328] −0.0059 L2

L3
5 [0.6287, 0.6661, −0.0399 , 0.5736, 0.6509] −0.0399 L3

15 [0.6689, 0.6586, −0.0403 , 0.6254, 0.6564] −0.0403 L3

L4

10 [0.6167, 0.5677, 0.6366, 0.0679 , 0.6477] 0.0679 L4

20 [0.5834, 0.5537, 0.6446, 0.0116 , 0.6469] 0.0116 L4

L5
4 [0.5618, 0.5766, 0.5865, 0.6022, 0.0343 ] 0.0343 L5

8 [0.5031, 0.5198, 0.5856, 0.5614, −0.0017 ] −0.0017 L5

Bus 0 [0.7468, 0.7651, 0.8005, 0.8204, 0.8322] 0.7468 Bus

Table 4. The results of feeder identification when Rd = 2000 Ω and ϕ = 0.

Fault Line Fault Location/km [µ1, µ2, µ3, µ4, µ5] Min[µ1, µ2, µ3, µ4, µ5] Line Selection Result

L1

10 [ −0.6703 , 0.4789, 0.4503, 0.4188, 0.4996] −0.6703 L1

25 [ −0.7266 , 0.4576, 0.4569, 0.4250, 0.4563] −0.7266 L1

L2

5 [0.4239, −0.6702 , 0.4241, 0.4264, 0.4461] −0.6702 L2

10 [0.2697, −0.6931 , 0.3334, 0.3589, 0.3202] −0.6931 L2

L3
5 [0.4817, 0.4935, −0.6572 , 0.4517, 0.5066] −0.6572 L3

15 [0.5092, 0.4963, −0.6208 , 0.4759, 0.5183] −0.6208 L3

L4

10 [0.5100, 0.4516, 0.5161, −0.6454 , 0.5204] −0.6454 L4

20 [0.5347, 0.5119, 0.5245, −0.6338 , 0.5429] −0.6338 L4

L5
4 [0.4646, 0.4326, 0.4692, 0.4588, −0.6833 ] −0.6833 L5

8 [0.4890, 0.4209, 0.4931, 0.4783, −0.6873 ] −0.6873 L5

Bus 0 [0.7385, 0.8162, 0.7997, 0.7989, 0.7197] 0.7197 Bus
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Analyzing and comparing the above three typical situations, the following conclusions
can be obtained: (1) No matter what type of fault, the correct rate of feeder identification is
high, especially when a high resistance ground fault occurs; (2) In the non-faulty feeder,
the correlation coefficient of the overhead line is not much different from that of the cable.
It proves that the grey T-type correlation degree for feeder identification can effectively
reflect the correlation of the dynamic change trend of overhead lines and cables, thereby
reducing the misjudgment caused by the difference in the capacitance to ground between
the cables and overhead lines; (3) the correlation coefficients between the faulty feeder and
the non-faulty feeder are obviously different, and their change trend of the zero-sequence
current is in the opposite direction; (4) bus fault can be regarded as a special case where
all feeders are non-faulty feeders. In this case, the comprehensive grey T-type correlation
coefficient of the zero-sequence current of each feeder is not much different.

5. Conclusions

In this article, based on the zero-sequence voltage/current sensor networks, a new
faulty feeder identification method for the flexible grounding system combining grey T-type
correlation degree and wavelet packet transform is proposed, which features both accuracy
and rapidity. Different from the traditional method, this proposed method first extracts
the transient characteristic waveform of the zero-sequence current of each feeder through
the wavelet packet. In essence, it uses the timeliness of the wavelet packet to perform fast
low-pass filtering on the signal to remove high-frequency interference and amplify the
signal characteristics, which will promote accurate line selection. Then, through defining a
comprehensive grey T-type correlation coefficient to represent the similarity between the
dynamic change trends of the feeder, it can effectively reflect the correlation between the
dynamic change trend of the overhead line and the cable, thereby reducing misjudgment
due to the difference capacitance-to-ground value between the cable and overhead line.
The proposed method can be applied in a flexible grounding system, which can meet
the requirements of fast and accurate faulty feeder selection. Sufficient MATLAB-based
simulation results verify the effectiveness and rationality of the proposed method and
analysis.

Additionally, from the flow chart of the proposed method, it can be found that date
sampling and calculation are the keys to the fault feeder identification. In the simulation
model, the influence from the sampling time, missing data, and computation time can be
ignored. However, when the proposed method is applied in practice, the above factors
will affect the performance of faulty feeder identification to a certain extent. For example,
the digital signal processor will determine the upper limit of the sampling frequency and
the computation time. Besides that, due to the irrationality of the software program, the
sampling data or processing data of intermediate links may be lost, which will influence the
fault identification performance. In addition, when the saturation of the current transformer
occurs, the current sampling error will become very large, which will affect the algorithm
processing. These engineering problems need to be focused on in the future experimental
stage.
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