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The WAVE complex-1, a complex of WAVE, Abi1, NAP1, PIR121,

HSPC300, RacGTP and Arp2/3 proteins, and WASP complex-1, a com-

plex of WASP, Cdc42, PIP2, and Arp2/3 proteins, are involved in lamel-

lipodia and filopodia formation, respectively. It is known that the two

complexes have opposite dynamics. Furthermore, Rac has two guanine

nucleotide exchange factors, Vav and Sos, whose role in activating Rac is

not well understood. In this work, by the construction of signaling net-

work, analysis, and mathematical modeling, I show that Sos generates a

pulse of WAVE complex-1, decreasing the response time of WAVE com-

plex-1 formation upon the stimulation of platelets by fibrinogen. Further-

more, I also show that the dynamics of WAVE and WASP complexes

depends on PI3K–SYK interaction. In the absence of this interaction, the

WAVE complex-1 does not form and the WASP complex-1 remains at the

initial, sustained level. Thus, I show the significance of the two protein/pro-

tein complexes: Sos and PI3K–SYK interaction, in fibrinogen-induced

lamellipodia and filopodia formation in platelets.

Platelets adhere to blood vessel walls during normal

hemostasis or pathological occlusion of atherosclerotic

arteries [1]. Their activation and adhesion on the vas-

cular surface are multistep processes involving cell sur-

face molecules such as vWF receptor GPIb/V/IX,

collagen receptor GPVI, and fibrinogen receptor

a2bb3 [2]. The deficiencies of fibrinogen and vWF

cause bleeding disorders and, thus, these are the sub-

strates of great physiological importance [1]. Fibrino-

gen can cause both cell-substrate adhesion and

platelet–platelet aggregation by binding to integrin

a2bb3 [1]. While the vWF receptor’s main function is

to mediate high shear cell rolling on the surface, the

primary function of the GPVI is to induce integrin

a2bb3or a2b1 inside-out signaling through its FcRc
chain [2]. This signaling causes the firm adhesion of

platelets on to the injured wall, resulting in the forma-

tion of a cell monolayer [2]. The adhesion is

accomplished through the formation of adhesive pro-

trusions, filopodia and lamellipodia. These are actin-

based structures involved in adhesion, cell migration,

wound healing, chemotaxis, phagocytosis, cell signal-

ing, and various other functions. The leading edges of

a migrating or spreading cell, which contain actin pro-

trusions that are parallel to substrate, are called lamel-

lipodia. Lamellipodia have multiple important roles

including adhesion to the substrate, macropinocytosis,

and phagocytosis [3]. On the other hand, filopodia are

finger-like protrusions from the cell surface and are

composed of parallel bundles of actin polymer. The

protrusions are extended as a result of the dynamics

or threadmilling created by the barbed end actin poly-

merization and retrograde actin retraction. Arp2/3

complex has emerged as an important player that

initiates actin polymerization in these structures.

Besides Arp2/3, there are a number of signaling
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molecules, for example, WASP, WAVE, Rac, Cdc42,

PIP2, PIP3, PI3K, etc. (Fig. 1A–E), that are involved

in sensing and transmitting the requirement of these

protrusions. Members of the rho family of GTPases,

Rac and Cdc42, have been shown to regulate signal

transduction pathways that link the formation of

lamellipodium and filopodium to extracellular environ-

ment. Furthermore, these GTPases play a wider role

in the response of the cell to various stimuli. For

example, they regulate transcription factors through

the activation of JNK and p38 pathways and affect

stress and inflammation [4]. Owing to a plethora of

pathways these GTPases are involved, a large number

of their guanine nucleotide exchange factors (GEF)

and GTPase-activating proteins (GAP) have been iden-

tified [4]. Besides, the known GEFs and GAPs of Rac

and Cdc42, phospholipids (PIP2, PIP3) and regulatory

domain of PI3K also affect their nucleotide carrying

state and their activity [5–10]. Another important

molecule in fibrinogen/lamellipodia/filopodia signaling

network is Spleen tyrosine kinase (SYK). SYK is

abundantly found in hematopoietic cells and has been

classically known to be involved with immunorecep-

tors in adaptive immune response [11]. Later, many

diverse roles of SYK, for example, in leukocyte func-

tion, integrin signaling, recognition of innate patho-

gens, fungi, bacteria and viruses, tissue damage, bone

metabolism, platelet function, vascular development,

allergy, and autoimmunity have been identified [11].

Specifically, among these functions, SYK has been

found to interact with b3 integrin and this interaction

has been found to be important for SYK activation

and lamellipodia formation in response to fibrinogen

[12]. More recently, SYK has also been identified as

an important therapeutic target in rheumatoid arthritis

[13,14], type I diabetes [15], ischemia-reperfusion injury

[16], prostate cancer [17], acute myeloid leukemia [18],

ovarian cancer [19] and chronic graft-versus-host dis-

ease [20]. Interestingly, SYK has been found to have

both pro- and anticancer roles [21,22].

Fig. 1. Fibrinogen induced WAVE and WASP complex formation

network. The protein–protein interactions in fibrinogen/WAVE

complex-1/WASP complex-1 network have been shown. The

network has been divided into modules. *Represents active protein

or active protein complex. (A) SYK activation module has been

shown. The arrows in red color mark the pathway to SYK

activation (B) Sos activation module has been shown. The arrows

in red color mark the pathway to Sos activation (C) Rac activation

module has been shown. The arrows in red color mark the

pathway to Rac activation (D) Lamellipodia formation module has

been shown. The arrows in red color mark the pathway to

lamellipodia formation (E) Filopodia formation module has been

shown. The arrows in red color mark the pathway to filopodia

formation (F) Positive feedback loop between active Sos and active

Rac through RasGRP and Ras.
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It is known that there is coordination between the

formation of the WAVE and WASP complexes in

response to fibrinogen in platelets since both com-

plexes are required as a part of a dynamic process

accomplishing cell-substrate adhesion and platelet–
platelet aggregation. However, the protein or the

protein–protein interaction critical for the above

interplay is not yet known. Furthermore, there are

two GEFs to Rac: Vav and Sos. Their roles in mod-

ulating the lamellipodia formation are also not yet

known. To addresses these questions, I constructed

the fibrinogen signaling network in platelets

(Fig. 1A–E) and using mathematical modeling, pre-

dict the effect of various proteins and protein–pro-
tein interactions on the dynamics of the WAVE and

WASP complexes. The model predicts that SYK

phosphorylation (Fig. 1A), a key signaling event,

and all other downstream steps occur after an initial

delay. I further predict that Sos, a Ras GEF, is

required for the rapid activation of the WAVE com-

plex-1, starting lamellipodia nucleation in response

to fibrinogen. Moreover, the present analysis also

predicts that the dynamics of the WAVE complex-1

and the WASP complex-1 formation is opposite of

each other. In other words, while the WASP com-

plex-1 is present at a sustained level, the WAVE

complex-1 is absent in the absence of fibrinogen. In

the presence of fibrinogen, while the WAVE com-

plex-1 increases to a sustained level, the WASP com-

plex-1 decreases to a very low level. Furthermore, I

identify PI3K–SYK as the critical interaction modu-

lating the dynamics.

Materials and methods

Construction of the signaling network

In resting platelets, Src is constitutively bound to integrin

a2bb3; however, it is inactive due to its phosphorylation

at the inhibitory position Y529 by C-terminal Src kinase,

CSK [23]. Upon fibrinogen binding to the receptor

a2bb3, CSK is released and phosphatase PTP-1B binds

to the receptor complex dephosphorylating Src at Y529

[23,24]. Subsequently, Src gets autophosphorylated at the

Y418 position in the activation loop and becomes active

[23,24]. Following the Src activation, the active receptor

complex phosphorylates SYK at tyrosine residues, leading

to its activation [23,25]. When enzymatically active, SYK

causes tyrosine phosphorylation of p110/p85 subunits of

PI3K, increasing its catalytic activity [26], which converts

PIP2 to PIP3. In contrast, the phosphatase PTEN

through PI3K regulatory domain p85 [27,28] and PIP2

[29] converts PIP3 back to the bisphosphate. Thus, PI3K

plays mutually contrasting roles in maintaining the bal-

ance between the two phospholipids. Since actin polymer-

ization happens near the membrane, this balance has an

interesting role in filopodia and lamellipodia formation.

In another upstream branch of a2bb3 signaling network,

SYK phosphorylates guanine nucleotide exchange factor

Vav at tyrosine residues [30,31], which is recruited by

PIP3 at the membrane to convert RacGDP to RacGTP

[5,6]. Furthermore, SYK tyrosine phosphorylates PKCa
and PKCb1, already autophosphorylated at serine resi-

dues, which makes accessible the binding site of PKCs

for Sos bound Grb2 [32]. Similarly, active Vav through

PIP3 binds to Sos [33]. Furthermore, RacGTP converts

RasGRP, a Ras guanine nucleotide exchange factor, to

active form [34]. RasGRP can also bind to Vav through

PIP3 and is activated in a Rac-dependent manner [33,34].

Since RasGRP increases the activity of Sos by the allos-

teric effect of RasGTP [35], I assume that the Sos bound

to Vav and PKC is converted to an active form by

RasGRP bound to Vav in the presence of the active

Rac. Similarly, I assume that the active RasGRP con-

verts Sos bound to Vav into an active form. Active Sos

through complex with Eps8, Abi1, and PI3K converts

RacGDP into RacGTP and the GEF activity of the

complex is further increased by PIP3 [7,8]. Thus, there

are two Rac GEFs: first, the direct action of Vav and

second, the Sos in complex with PI3K, Eps8, and Abi1.

WAVE proteins have been shown to cause lamellipodia

formation through the Arp2/3 complex in RacGTP-

dependent manner and WASP proteins, although dispens-

able [36], are involved in filopodia formation, which is

dependent on Cdc42GTP [37]. WAVE proteins (WAVE1

and WAVE2) are in a complex (WAVE complex-2) with

four other proteins: Pir121, Nap, HSPC300, and Abi

[38–41]. This complex is autoinhibited and active Rac

causes its activation. The WAVE2 complex-2 also binds

to WRP, which acts as a Rac GAP causing the termina-

tion of RacGTP-mediated actin polymerization reaction

[42].

PIP2 and a regulatory subunit of PI3K, p85, on the

other hand, serve as alternatives to GEF toward

Cdc42GDP, converting it to GTP form [9,10]. Cdc42GTP

makes a complex with Toca-1 while N-WASP makes a

complex with WIP which serves as an in vivo inhibitor of

N-WASP [43]. The inhibitory effect of WIP is relieved by

the interaction of the complex with Toca-1 [43]. Although

it is not very clear how this inhibition is relieved, I assume

that the two complexes, Cdc42GTP-Toca-1 and N-WASP-

WIP, interact with each other releasing N-WASP. N-WASP

can be tyrosine phosphorylated [44], presumably by a

kinase complex containing SYK [45], or it can bind to

Cdc42GTP and/or PIP2 [46]. I postulate that it is the

SYK-PI3K complex that phosphorylates WASP. Phospho-

rylated N-WASP, which is degraded [44], is active and so is

the PIP2-bound WASP. However, WASP alone is inactive
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and with Cdc42GTP is moderately active. PIP2 converts

WASP-Cdc42GTP to fully active form, which binds with

the Arp2/3 complex. Thus, Arp2/3 nucleates actin polymers

at the site of WASP-Cdc42GTP-PIP2 complex [43,46–48],
causing filopodia formation.

Mathematical modeling

The signaling network causing WAVE complex-1 and

WASP complex-1 formation in response to fibrinogen has

been shown in Fig. 1A–E. As previously described [49], all

phosphorylation/dephosphorylation reactions have been

assumed to follow Michaelis–Menten kinetics. All phos-

phatases have been assumed to be in excess. It has been

assumed that WASP is continuously produced with a rate

a (nM�s�1) and degraded with a rate constant b (s�1) so that

its steady-state level, a/b, is maintained in the cell. Further-

more, I have assumed that phosphorylated WASP

(pWASP) is degraded with a rate constant twice of that

with which WASP is degraded. All rate constants have

been assumed and are given in Text S1. There are 74 pro-

teins and protein–protein complexes present in this signal-

ing network. For each of them, I apply mass conservation

as:

dCi

dt
¼

X

j

rij

where, Ci is the intracellular concentration of a particular

protein or protein complex i at time t, and rij is the rate of

formation of the protein/protein complex i in the jth reac-

tion. All reactions have been given in Text S1. The prestim-

ulation protein levels have been assumed to be present in a

wild-type cell and have been given in Text S1. The resulting

set of ODEs has been solved using the ode solver ODE113

of MATLAB R2014a (MathWorks, Natick, MA, USA). I

have assumed that a cell is initially at a steady state. For

all fibrinogen-induced stimulation studies, I have taken the

initial condition the same as the steady-state condition in

the absence of fibrinogen.

Results

The receptor complex causes an initial delay in

start of the signaling

There are multiple reactions (Fig. 1A) at the fibrino-

gen receptor leading to SYK activation, a key phos-

phorylation event, which communicates the

extracellular signal for the formation of lamellipodia

and filopodia. First, I investigate the role of these reac-

tions by examining the predicted time course of SYK

activation and compare it with the time course of for-

mation of fibrinogen-a2bb3-Src-CSK complex at the

receptor. The dynamics shows that although the

receptor complex forms without any delay, following a

convex shape curve, activation of SYK starts with a

delay, following a sigmoid curve (Fig. 2A,B), suggest-

ing that the initial complex formation at the recep-

tor may have an important cellular function.

Interestingly, actin nucleation reaction in a pure

in vitro reaction system has also been found to be slug-

gish [41,47,48].

Fibrinogen modulates Rac, Cdc42 rho family

GTPases, and Ras guanine nucleotide exchange

factor, Sos

Since filopodia and lamellipodia extensions require

actin polymerization, which involves rho family

GTPases, Rac and Cdc42, I predict the dynamics of

these proteins in the presence or absence of fibrinogen.

Sos, which is a Ras family GEF, is not directly

involved in actin polymerization but it, in a complex

with Eps8, Abi1, and PI3K, works as a GEF to Rac.

Thus, it indirectly modulates the actin polymerization

through RacGTP. In the absence of fibrinogen, Rac is

present only in the GDP form and the addition of fib-

rinogen rapidly decreases the RacGDP after an initial

delay (Fig. 3A). However, it does not cause a corre-

sponding increase in the free RacGTP. Instead, the

RacGTP initially increases like a pulse, then settles

down to a low level in the presence of fibrinogen

(Fig. 3A). In contrast, Cdc42 is not present in the

GDP form with or without fibrinogen (Fig. 3B). Inter-

estingly, Cdc42GTP is present at a basal level in the

absence of fibrinogen (Fig. 3B). Addition of fibrinogen

causes an increase in Cdc42GTP to a sustained level

(Fig. 3B) in contrast to the dynamics of RacGTP

(Fig. 3A). Like Rac, Sos is present only in the inactive

form in the absence of fibrinogen and fibrinogen

causes a rapid decrease in inactive Sos concentration

(Fig. 3C). However, following the addition of fibrino-

gen, more active Sos accumulates in complex with

Eps8, Abi1, and PI3K than as free active Sos

(Fig. 3C).

Fibrinogen causes sustained activation of the

lamellipodia-forming complex and a concurrent

decrease in the filopodia-forming complex

The WAVE, Abi1, NAP1, PIR121, HSPC300,

RacGTP, and Arp2/3 complex (WAVE complex-1)

causes the nucleation of actin filaments for lamel-

lipodia while WASP, cdc42GTP, PIP2, and Arp2/3

complex (WASP complex-1) causes nucleation of the

actin filament for filopodia. The dynamics of these

complexes in the presence or absence of fibrinogen
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was studied. Furthermore, the role of two GEFs,

Vav and Sos, in the predicted dynamics of the

WAVE and WASP complexes was investigated. In

the absence of fibrinogen, the WAVE complex-1 is

not present while the WASP complex-1 is present at

a fixed level (Fig. 4A,B). Following the addition of

fibrinogen, WAVE complex-1 increases rapidly after

the initial delay, reaching a sustained level while the

WASP complex-1 decreases to a low level (Fig. 4A,

B). The dynamics of the WAVE complex-1 consists

of a rapid pulse followed by a slow increase phase,

reaching a plateau. Interestingly, in the absence of

Sos, the second GEF to Rac, the dynamics of

WAVE complex lacks the rapid pulse and is slug-

gish, suggesting a role of Sos in generating the pulse

of the WAVE complex-1 and modulating the

response time of the complex formation. On the

other hand, in the absence of Vav, the first GEF to

Rac, the WAVE complex does not form at all,

underlying a major role of Vav in lamellipodia for-

mation. Interestingly, in the absence of Vav, active

Sos also does not form (Fig. 4A), suggesting a role

of Vav in Sos activation and further supporting the

role of Sos in the WAVE complex-1 pulse genera-

tion. In contrast, neither Sos nor Vav has any

significant effect on the dynamics of the WASP com-

plex-1, since these proteins are involved in lamellipo-

dia formation but not in filopodia formation

(Figs 4A,B, and 1C,D vs. 1E).

Decreasing fibrinogen concentration delays the

lamellipodia nucleation

Next, I varied the fibrinogen concentration and exam-

ined the dynamics of lamellipodia- and filopodia-nucle-

ating complexes. I found that decreasing fibrinogen

delays the formation of the WAVE complex-1 both in

the presence and absence of Sos (Fig. 5A). Further-

more, decreasing fibrinogen concentration also delays

the fibrinogen-induced decrease in the WASP complex-

1 (Fig. 5C). The steady state of the WAVE complex-1

is different in the presence and absence of Sos

(Fig. 5B). However, the WAVE complex-1 achieves

the same steady state for all concentrations of fibrino-

gen, which were tested in 100–0.1 nM range (Fig. 5B),

suggesting that in this range, the lamellipodia nucle-

ation is robust. Similarly, the WASP complex-1

achieves the same steady state for all concentrations of

fibrinogen, which were tested in 100–0.1 nM range

(Fig. 5D).

Fig. 2. The receptor complex causes an initial delay in start of the signaling. Receptor complex consists of fibrinogen-a2bb3-Src-CSK.

Initially, the cell has been assumed to be at the steady state in the absence of fibrinogen. (A) At t = 0, the cell has been stimulated by

fibrinogen at a concentration of 100 nM (based on cell volume). (B) At t = 0, the cell has been stimulated with the indicated concentrations

(based on the cell volume) of fibrinogen.
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PI3K–SYK interaction plays a central role in

filopodia and lamellipodia nucleation

Next, I examine the protein–protein interactions

responsible for the fibrinogen-induced dynamics of the

WAVE and WASP complexes and find that abolishing

the interaction between PI3K and SYK abolishes the

fibrinogen-induced decrease in the WASP complex-1

(Fig. 6B). Furthermore, abolishing PI3K–SYK interac-

tion nullifies the fibrinogen-induced increase in the

WAVE complex-1 (Fig. 6A) and the free RacGTP

(Fig. 6C). It also abolishes fibrinogen-induced dynam-

ics of the free Cdc42GTP although Cdc42GTP remains

at the basal level (Fig. 6D). Thus, in the absence of

PI3K and SYK interaction, the fibrinogen does not

cause lamellipodia nucleation neither does it modulate

the filopodia nucleation, signifying a central role of

PI3K–SYK in fibrinogen-platelet signaling.

Discussion

The model predicts that there is a delay in SYK acti-

vation with respect to the time of formation of fibrino-

gen, integrin a2bb3, Src, and CSK complex at the

receptor. At the receptor, multiple reactions (Fig. 1A)

upstream of SYK activation take place. Besides being

part of the signal regulatory mechanism, these reac-

tions may serve to create a time lag before the start of

actin threadmilling process, which is an energy inten-

sive polymerization–depolymerization reaction.

Toward the experimental observation of the delay in

SYK activation, Tohyama et al. [50] studied its tyro-

sine phosphorylation in megakaryoblastic leukemia

cells, a platelet cell line, on both solid phase and sol-

uble fibrinogen. They found that while soluble fibrino-

gen triggers SYK phosphorylation within 1 min, solid

phase fibrinogen causes its significant phosphorylation

as late as 30 min after the adhesion [50], consistent

with our prediction.

Ras GTPase is activated in several growth factor

signaling, which activates Erk1/2 [51,52]. The growth

factors have also been shown to activate JNK through

Rac [53]. The crosstalk between Erk1/2 and JNK sig-

naling has been orchestrated by Sos [54], a guanine

nucleotide exchange factor to Ras, which has also been

identified as a GEF to Rac when in a complex with

three other proteins Eps8, Abi1, and PI3K [7,8]. On

the other hand, Vav is a direct guanine nucleotide

exchange factor to Rac [5,6]. The role of these two

guanine nucleotide exchange factors of Rac in fibrino-

gen/platelet signaling is not well understood. Here, I

predict that Sos through Rac is responsible for the

generation of a rapid pulse of WAVE complex-1,

Fig. 3. Fibrinogen modulates Rac, Cdc42 rho family GTPases and

Ras guanine nucleotide exchange factor, Sos. (A–C) Initially, the cell

has been assumed to be at the steady state in the absence of

fibrinogen. For fibrinogen studies, at t = 0, the cell has been

stimulated with 100 nM of fibrinogen (based on the cell volume). For

‘no fibrinogen’ studies, at t = 0, the cell has not been stimulated.
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which nucleates actin lamellipodia. In the absence of

Sos, WAVE complex-1 formation is devoid of the

pulse and sluggish. Sos has two binding sites [55] for

Ras: (a) the allosteric site and (b) the catalytic site. By

binding to the allosteric site, Ras increases the activity

of Sos and at the catalytic site Sos activates Ras, creat-

ing a positive feedback loop between Ras and Sos.

RasGRP is another GEF to Ras. RasGRP is activated

by Rac [34]. At the catalytic site of Sos either Ras or

Rac can bind [56]. However, Ras can bind to the allos-

teric sites of Sos while Rac is bound to the catalytic

site of Sos. Thus, there is another positive feedback

loop between the active Sos and the active Rac involv-

ing RasGRP and Ras (Fig. 1F). By this positive feed-

back loop, active Sos and active Rac may mutually

increase each other’s concentration, generating the

rapid pulse of the WAVE complex-1. Thus, there is an

initial delay in signaling but once a decision of actin

polymerization has been made by the cell, a rapid

pulse of WAVE complex-1 is generated through Sos.

Innocenti et al. [56] show a dual role of Sos in activat-

ing Ras and Rac. In response to growth factors, while

Ras is transiently activated by Sos, like a pulse, Rac

activation is sustained [56]. This is similar to our pre-

diction that Sos generates a pulse while Vav generates

a sustained activation of the WAVE complex-1. In the

absence of Vav, we should see a transient pulse of the

WAVE complex-1, which is due to Sos. However in

the absence of Vav, the active Sos is also absent

(Fig. 4A). Therefore, in the absence of Vav, the

WAVE complex-1 pulse is null.

Nucleation of a new actin filament is less favorable

than the addition of actin monomers at the barbed

and the pointed ends of the filament [57]. Between the

two ends, monomer addition at the barbed end is both

faster and more favorable [57]. Furthermore, the criti-

cal concentration required for monomer addition at

the barbed end is lower than that at the pointed end.

Due to this difference and sequestration of the mono-

mer by profilin and thymosin-b4, the concentration of

the free actin monomer is maintained well below the

critical concentration at the pointed end and higher

than the critical concentration at the barbed end,

where profilin-actin can be incorporated in the elonga-

tion, leading to a net addition at the barbed end and a

net dissociation at the pointed end, which results in a

slow threadmilling from the barbed toward the pointed

end [57]. Owing to the high concentration of mono-

meric actin and the possibility of continuous polymer-

ization, barb ends are capped by capping protein and

gelsolin and the process of uncapping and nucleation

is regulated through signaling. Arp2/3 complex is

responsible for the nucleation but it has low intrinsic

activity and is activated by binding of adapter proteins

Fig. 4. Fibrinogen causes sustained activation of the lamellipodia-forming complex and a concurrent decrease in the filopodia-forming

complex. (A, B) Initially, the cell has been assumed to be at the steady state in the absence of fibrinogen. For fibrinogen studies, at t = 0,

the cell has been stimulated with fibrinogen at a concentration of 100 nM (based on the cell volume). For ‘no fibrinogen’ studies, at t = 0,

the cell has not been stimulated. For protein deletion studies, the amount of that protein has been set to 0 nM.
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WASP and WAVE. Like Arp2/3, WASP and WAVE

are autoinhibited and activated through signaling

involving Cdc42, and Rac, respectively. Although both

Rac and Cdc42 are activated by the same signaling

network, it is found that the inhibition of lamellipodia

formation, which occurs upon the deletion of the cap-

ping protein, may result in explosive formation of

filopodia [58]. Thus, there is an intrinsic dynamic

between the two forms of the cytoskeleton. Similarly, I

predict that in the absence of fibrinogen, there is a

steady presence of a filopodia-nucleating complex

(WASP complex-1) and absence of a lamellipodia-

nucleating complex (WAVE complex-1). The addition

of fibrinogen causes an increase in the WAVE

Fig. 5. Decreasing fibrinogen concentration delays the lamellipodia nucleation. (A–D) Initially, the cell has been assumed to be at the steady

state in the absence of fibrinogen. At t = 0, the cell has been stimulated with the indicated concentrations (based on the cell volume) of

fibrinogen. For protein deletion studies, the amount of that protein has been set to 0 nM.
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complex-1 to a sustained level and a concurrent

decrease in the WASP complex-1 to a very low level

(Fig. 4A,B), exhibiting the opposite dynamics. Fur-

thermore, I predict that fibrinogen causes a concurrent

increase in free Cdc42GTP (Fig. 3B). However, the

effect of fibrinogen on the WASP complex-1 and

Cdc42GTP dynamics is abolished in the absence of

PI3K-SYK interaction (Fig. 6B,D), suggesting that the

dynamics of WASP complex-1 in the presence of fib-

rinogen is due to the effect of the PI3K–SYK interac-

tion on Cdc42GTP. Similar to filopodia formation,

phagocytosis by macrophages requires activation of

Cdc42 at the advancing edge of the phagocytic cup

and deactivation of Cdc42 at the base of the cup [59].

Beemiller et al. [59] found that inhibition of PI3K

causes persistent activation of Cdc42 and stalled

phagocytic cup, which is in agreement with our predic-

tion that in the absence of the SYK–PI3K interaction,

the WASP complex-1 becomes persistently active

(Fig. 6B). Similarly, I predict that the effect of fibrino-

gen on WAVE complex-1 formation is abolished in

the absence of SYK–PI3K interaction and the WAVE

complex-1 does not form in the absence of this interac-

tion, which is in agreement with Kato et al. [60] and

Weering et al. [61], who show that inhibiting PI3K

inhibits lamellipodia extension. Furthermore, Wood-

side et al. [12] have shown that SYK interacts with the

cytoplasmic tail of b3 integrin and disruption of this

Fig. 6. PI3K–SYK interaction plays a central role in filopodia and lamellipodia nucleation. (A–D) Initially, the cell has been assumed to be at

the steady state in the absence of fibrinogen. For fibrinogen studies, at t = 0, the cell has been stimulated with fibrinogen at a

concentration of 100 nM (based on the cell volume). For ‘no PI3K–SYK interaction’ studies, the active SYK and PI3K binding reaction has

been abolished.
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physical association abolishes SYK activation and

lamellipodia formation in response to fibrinogen, con-

sistent with our prediction. Although the dynamics of

the two complexes in general turn out to be opposite

of each other in response to fibrinogen, their forma-

tion does not share all the molecules. For example,

Vav and Sos regulate only the WAVE complex-1 for-

mation in response to fibrinogen. Furthermore, the

sum of WAVE and WASP complexes is not a constant

(data not shown). Thus, the opposite dynamics of the

two complexes may be an intrinsic property of the sig-

naling network.

In summary, I predict that the PI3K–SYK interaction

is central to fibrinogen-induced dynamics of the WAVE

and the WASP complexes since in the absence of PI3K–
SYK interaction, the interplay between the two com-

plexes is abolished and fibrinogen has no effect on

lamellipodia and filopodia nucleation. Furthermore, I

predict that Sos generates a pulse of WAVE complex-1

in response to fibrinogen, reducing the response time of

lamellipodia formation. My predictions agree with the

experimental findings, although the predicted role of

Sos remains to be verified experimentally.
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