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Purpose: The temporal lobe, a critical hub for cognition, also plays a central role in

the regulation of autonomic cardiovascular functions. Lesions in this area are usually

associated with abnormalities in the regulation of heart rate (HR) and blood pressure

(BP). The analysis of the heart rate variability (HRV) is useful to evaluate the cardiac

parasympathetic nervous system activity. This study aims at comparing HRV changes

occurring in two groups of patients suffering from Temporal Lobe Epilepsy (TLE). To that

aim, we evaluated patients differentiated by the right or left location of the epileptic foci.

Materials and Methods: Fifty-two adult patients with a diagnosis of TLE were enrolled.

Each patient underwent a 20-min EEG+ EKG recording in resting state. According to the

localization of epileptic focus, patients were divided into two subgroups: right TLE (R-TLE)

and left TLE (L-TLE). HRV parameters were calculated with a short-lasting analysis

of EKG recordings. Time-domain and frequency domain-related, as well as non-linear

analysis, parameters, were compared between the two groups.

Results: Compared to the R-TLE group, L-TLE subjects showed a significant decrease

in low frequency (LF) (p < 0.01) and low frequency/high-frequency ratio (LF/HF) (p

< 0.001) as well as increased HF values (p< 0.01), a parameter indicative of the presence

of an increased cardiac vagal tone. These results were also confirmed in the subgroup

analysis that took into account the seizure types, responses to antiepileptic drugs, seizure

frequencies, and etiology.
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Conclusions: The main finding of the study is that, compared to R-TLE, L-TLE is

associated with increased cardiac vagal tone. These results indicate that patients with

TLE exhibit a lateralized cardiac autonomic control. L-TLE patients may have a lower risk

of developing cardiac dysfunctions and less susceptible to develop Sudden Death for

Epilepsy (SUDEP).

Keywords: temporal lobe epilepsy, interictal epileptic discharges, heart rate variability, autonomic nervous system,

cardiovascular risk

INTRODUCTION

Temporal lobe epilepsy (TLE) is the most common form of focal
epilepsy in adults and accounts for 60% of all epilepsy forms (1).
TLE is associated with a large variety of clinical manifestations.
A less studied phenomenon associated with TLE and other
forms of epilepsy is the simultaneous presence of autonomic
imbalance (2–7). However, experimental data indicate that ictal
and interictal epileptogenic activity can spread from the temporal
lobe and interfere with autonomic functions. Moreover, the
temporal lobe plays a central role in the activity of the “Central
Autonomic Network” (CAN), a complex system that includes
cortical, midbrain, and brainstem regions that are in control of
the autonomic cardiovascular functions (8, 9).

Additional areas like the central nucleus of the amygdala
(CeA) and some hypothalamic regions are also involved in the
CAN (10–16). The activation of these structures contributes
to the dysregulation of cardiovascular activity as well as the
production of arrhythmic and blood pressure changes that are
often observed in TLE patients. The two regions are strongly
connected to other cortical regions, like the insular cortex (I.C.),

FIGURE 1 | Central Autonomic Network (CAN). Autonomic cardiovascular functions (ACF) are regulated by a complex system called “Central Autonomic Network”

that encompasses cortical, midbrain, and brainstem areas. Several portions of the temporal lobe, along with the central nucleus of the amygdala (CeA) and the

hypothalamic nuclei, are involved in the ACF regulation. The insular and medial prefrontal cortex, as well as the amygdala, are involved in high-order processing of

viscerosensory information and the initiation of integrated autonomic responses. These areas are intimately interconnected with each other as well as with the

hypothalamus (periventricular and lateral zone), the anterior cingulate cortex, and brainstem regions. Seizures that arise from the amygdala-hippocampal, cingulate,

opercular, anterior frontopolar, and orbitofrontal regions can produce autonomic manifestations that include cardiac arrhythmias, viscerosensory phenomena, vomiting,

genitourinary symptoms, and sexual arousal (17–21). Zoom rectangle: Functional organization of the hippocampus in the periventricular, medial, and lateral zones.

the prefrontal cortex (PFC), and the anterior cingulate cortex
(ACC), that are also part of the CAN [(8, 9); Figure 1].

Although the mechanisms leading to the development of
epilepsy-related autonomic changes are not entirely understood,

a current hypothesis postulates that these phenomena result
from the progressive alterations, occurring in autonomic centers,

that are triggered by repetitive seizure discharges (22). In line

with this hypothesis, experimental data indicate that autonomic
alterations depend on the pharmacological modulations exerted
by specific anti-seizure (ASD) treatments [like carbamazepine (3,

23) and phenytoin (24)] or by the length of the patient epileptic
history (25). Furthermore, in drug naïve patients, the autonomic

imbalance has been found to be less present in the early stages

of the disease but becomes more prominent with the progression
of the epileptic process (25). Moreover, chronic TLE can induce
structural lesions characterized by the presence of significant
neuronal loss and sclerosis in two regions that are involved in
the CAN, like the amygdala and the hippocampus (26–28). These
structural alterations play a role in the pathophysiology and
development of the SuddenDeath for Epilepsy (SUDEP) (27–31).
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Several studies have suggested the presence of hemispheric
lateralization of the autonomic control of the cardiovascular
functions. Bradycardic effects have been associated with the
stimulation of the left temporal lobe, while tachycardic responses
are linked with the right stimulation (32, 33). However, it is still
unclear whether transient modifications of the brain activity—
like the ones occurring upon interictal epileptic discharges
(IED)—influence cardiac functioning in a hemispheric-specific
fashion (34). Previous studies have demonstrated that IED affect
the occurrence of Heart Rate Variability (HRV) modifications
that are observed in focal epilepsy (35). However, little is known
about the specific autonomic changes associated with TLE.

The analysis of HRV is a useful tool to evaluate the impairment
of cardiac autonomic control (36). The HRV represents the
change in the time interval between successive heartbeats
(37, 38). HRV provides an index of the parasympathetic
nervous system activity (36, 39), whereas possible inferences on
sympathetic components have been revised and rejected (20, 36,
40). Some authors (21, 41) have indicated that HRV cannot be
employed to infer activities of the sympathetic nervous system as
some HRV parameters mostly relate to baroreflex functions. The
relationship between HRV and parasympathetic activity has been
extensively described (41).

The analysis of HRV has been extensively employed to
study changes of the sympathovagal balance that occurs upon
physiological responses of healthy subjects as well as in patients
affected by cardiac or neurological diseases. It is now well-
established that the HRV is reduced in individuals who have
epilepsy. The phenomenon is present in newly diagnosed and
drug naïve patients (42) and a relevant marker of cardiovascular
risks like, for instance, the predisposition to generate ventricular
arrhythmias (43–46).

The present study aimed at comparing the interictal changes
of HRV that occur in TLE patients differentiated by the right
or left location of the epileptic foci. In these two groups,
the relationship between interictal epileptiform discharges and
modifications of the autonomic cardiac control assessed.

METHODS

Patient Demographics and Clinical
Features
Fifty-two adult patients (24 men and 28 women, mean age 42.9
± 16.4 years, age range = 20–73 years) affected by TLE with
a clear EEG interictal discharges lateralization (right or left)
were retrospectively selected from the database of patients who
underwent a 21-channel video-electroencephalogram (video-
EEG) recording at the Epilepsy Center of the University “G.
D’Annunzio” of Chieti-Pescara and the Epilepsy Center of
the Catholic University of the Sacred Heart of Rome. Video-
EEGs were recorded using a sampling frequency of 256Hz.
During the recording sessions, patients were supine and relaxed.
Two neurologists subspecialized in epilepsy made a qualitative
evaluation of EEG recordings, highlighted IED, and their
specific localization. All the investigated patients exhibited

clear lateralization of EEG interictal discharges. Patients with
bilateral IED were excluded from the analysis. No ictal events
were recorded.

All patients received a diagnosis of TLE based on clinical
(43), neurophysiological, and interictal video-EEG, as well as by
brain magnetic resonance (MRI) scans performed to determine
the epilepsy etiology. The mean disease duration time was
14.9 ± 15.2 (duration range = 1–61 years). All patients
were right-handed.

The group was equally divided into a subset of 26 patients
presenting with left temporal IED and 26 patients exhibiting right
temporal IED. Patients did not exhibit psychiatric comorbidity
as assessed by the Symptom checklist-90 (SCL-90) (47). None
of the patients were treated with drugs that interfere with the
functioning of the Autonomic Nervous System (ANS), including
oral contraceptives. None of the investigated patients had a
history of heart diseases, endocrine disorders, metabolic deficits,
uremia, or any other known disease that could have affected
autonomic functions, including sleep-related apnea. Selected
patients were no-smoker and had no history of alcohol or
drug abuse. No coffee, tea or other energizing drinks, as well
as meals, were ingested in the 2 h before EEG recordings. No
intense physical activity was reported in the day before EEG. All
patients reported regular sleep routines in the 7 days before the
recording. Patient responses to pharmacotherapy were analyzed
according to the ILAE diagnostic criteria for pharmaco-resistant
epilepsy (48). Patients treated with carbamazepine or phenytoin
were excluded from the analysis. The clinical and demographic
features of the study cohort are summarized in Table 1.

EKG Samples and Heart Rate Variability
(HRV) Analysis
Bipolar electrocardiogram (EKG) recordings from lead I of a 12-
lead EKGwere carried out utilizing the EKG channel of the EBN-
Neuro EEGNet System (EBN Neuro–Florence Italy). According
to guidelines for HRVmeasurement in epileptic patients (34), we
took in consideration EKGs only in patients who were recorded
(1) at least 8 h after the last tonic-clonic seizure, (2) at least 1 h
after the last known clinical, subclinical electroencephalographic
seizure, and (3) at least 1 h before the next seizure. We excluded
from the analysis patients who presented a respiration rate above
12 cycles/min (0.2Hz) during the EKG registration to rule out
biases due to individual differences in respiration. EKG data were
sampled at a frequency of 256Hz and exported from the EBN
system (EEGNET, Florence, Italy) in the European Data Format
(EDF). All data were subsequently processed using dedicated
software for HRV analysis (Kubios, HRV software version 2.1,
University of Eastern Finland, Kuopio, Finland). The software
identified QRS complexes and R peaks using a multiscale wave-
let-based peak detection algorithm. Before proceeding with the
HRV analysis, all the RRI samples were visually inspected by two
trained neurologists to remove any artifacts, extrasystoles, and
erroneously detected R waves or insertions of missed R beats. The
rate of artifacts that were detected and removed was 5% of all RRI
in the EKG recordings.
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TABLE 1 | Demographics and clinical data.

Right TLE Left TLE

(n = 26) (n = 26)

Age (years) 40.32 ± 14.32 45.35 ± 18.13 p = 0.301

Disease duration (years) 16.6 ± 16.072 12.91 ± 14.32 p = 0.399

Seizure types p = 0.095

Focal 9 (35%) 15 (56%)

- Focal cognitive seizures 5 11

- Focal automatism seizures 4 5

- Focal sensory seizures 0 1

Focal to bilateral 17 (65%) 11 (44%)

Seizure control p = 0.569

Seizure-free 15 (64%) 17 (65%)

No seizure-free 11 (44%) 9 (35%)

Response to ASD p = 0.792

Pharmacoresistance 5 (20%) 6 (23%)

Non-pharmacoresistance 18 (79%) 18 (69%)

Undefined 3 (11%) 2 (8%)

Etiology p = 0.780

Unknown etiology 11 (44%) 12 (46%)

Known etiology 15 (60%) 14 (54%)

Brain tumor 3 3

Cortical malformation 7 6

- Post-traumatic 1 3

- Ischemic Stroke 2 0

- Vascular malformation 1 1

- Multiple Sclerosis 1 0

- Infectious encephalitis 0 1

Demographics, clinical data, and statistical comparisons performed in the right and left

TLE patients.

TLE, temporal lobe epilepsy; ASD, anti-seizure drugs.

A short-term recording analysis (49) (time-series length =

5min) was performed to assess heart rate variations in time and
frequency domains as well as non-linear analysis.

The time-domain methods are derived from the beat-to-beat
R.R. interval values in the time domain. HRV parameters that
measure the variability within the R.R. time intervals in the
time-domain assessed in terms of (1) mean R.R. (the mean
heart rate in a precise R.R. sequence); (2) SDNN (standard
deviation of all R.R. intervals); (3) RMSSD (root mean square
of the difference of adjacent R.R. intervals); (4) pNN50 (the
percentage of successive R.R. intervals differing more than
50ms); (5) HRV triangular index (integral of the density of the
R.R. interval histogram divided by its height), and (6) TINN
(baseline width of the R.R. interval histogram). According to
the current literature (50), short-term analysis of SDNN and
RMSSD is the most reliable HRV time-domain parameters.
SDNN assesses sympathetic and parasympathetically-mediated
HRV variations. It should be pointed out that SDNN appears to
be more accurate when calculated over 24 h compared to shorter
periods, thereby representing the “gold standard” for the medical
stratification of cardiac risk. The RMSSD is the primary time-
domain measure used to estimate the vagus-mediated changes of

HRV (51). Lower RMSSD values correlate with higher scores on
a risk inventory for SUDEP (52).

Frequency-domain measurements estimate the distribution
of absolute or relative power into four frequency bands. The
power spectral density (PSD) of the R.R. series was calculated
using parametric methods (based on self-regressive models, AR).
PSD was analyzed by calculating the frequency of waves for the
different frequency bands. According to the Task Force of the
European Society of Cardiology and the North American Society
of Pacing and Electrophysiology (1996) (36), H.R. oscillations
should be analyzed taking in consideration selected frequencies:
Very Low Frequency (VLF, 0–0.04Hz), Low Frequency (LF,
0.04–0.15Hz), and High Frequency (HF, 0.15–0.4Hz). The most
common frequency domain parameters include the powers of the
bands VLF, LF, HF expressed in absolute (VLF [ms2], LF [ms2],
and HF [ms2]) and relative values (VLF%, LF%, and HF%),
the normalized power of the LF and HF bands (LF n.u. = LF
[ms2]/(total power [ms2] – VLF [ms2]; HF n.u.=HF [ms2]/(total
power [ms2] – VLF [ms2]), and the LF/HF ratio.

Spectral analysis allows the discrete analysis of different
autonomic components. HF band reports the parasympathetic
components, whereas the interpretation of the LF band is
controversial (21, 53–59). VLF, LF, and HF bands can be
expressed in absolute (ms2) or relative (expressed in % or n.u.)
units, but absolute values are preferred (59). A recent study
(60) investigated the general pattern and timeframe of cardiac
autonomic changes that occur upon aging. The study showed that
HF as well as LF expressed in absolute units, are decreased by 30–
35%with aging. On the contrary, normalized values were affected
less (0.8–1.2%).

In line with recent recommendations (17) we present and
discuss results of spectral analysis expressed in absolute and
normalized units. As recommended by the European Society of
Cardiology (ESC) guidelines (36), VLF assessment in a short-
term EKG analysis is of dubious value, and its interpretation
should be avoided. The LF/HF ratio has been considered
as an index of sympathovagal balance. However, this view
has been criticized (50). The consensus is now that the
precise physiological underpinning of LF/HF is unclear, thereby
questioning its predictive value to assess autonomic balance.
However, several studies have reported that the index has
prognostic value as far as the mortality risk due to cardiovascular
or non-cardiovascular causes (61–65).

The non-linear analysis is another alternative way to
characterize the variability of heart rate by measuring complex
fluctuations of cardiac rhythms. This method allows the
definition of the unpredictability of time series resulting from the
complexity of the mechanisms that regulate HRV. SD1 and SD2
non-linear parameters can be extrapolated from the Poincaré
plot (obtained by plotting every R-R interval against the prior
interval and thereby creating a scatter plot). SD1 assesses short-
term HRV, correlates with the HF power, and is directly related
to RMSSD (66), whereas SD2 investigated short- and long-term
HRV and correlates with the LF power. Another useful non-
linear parameter is approximate entropy (ApEn), which has been
developed to measure the complexity of relatively short time-
series. Applied to HRV data, large ApEn values indicate low
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FIGURE 2 | HRV-related parameter comparison in patients with R-TLE and L-TLE. Right (yellow) and left (light blue) graph boxplots depict statistically significant

differences in LF n.u. (p < 0.01), HF n.u. (p < 0.01), LF [ms2] (p < 0.05), LF% (p < 0.0001), HF% (p < 0.001), and LF/HF ratio (p < 0.0001), SD1 (p < 0.05) as well as

SD2 (p < 0.05) in the two study groups. Mann-Whitney test was employed for statistical analysis. p < 0.05 was considered statistically significant. *p < 0.05; **p <

0.001; and ***p < 0.0001.

predictability of fluctuations in successive R.R. intervals (67),
whereas small ApEn values indicate signals that are regular and
predictable (68). A modified version of ApEn is sample entropy
(SampEn), used to assess the complexity of physiological time-
series signals (69). SampEn values are interpreted and used like
ApEn and can be calculated from shorter time-series (<5min).
Other non-linear parameters like detrended fluctuation analysis
(DFA) are designed to analyze time series that span over several
hours of data; therefore, their significance in short term analysis
is not relevant.

Statistics
Before comparing the two groups (left vs. right TLE), the
normality of distribution of all metric data was tested with the
Shapiro-Wilk test. Significance was set at p < 0.05. The analysis
revealed a non-normal distribution of the data. Metric variables
(age, disease duration, MeanRR, SDNN, RMSSD, pNN50, R.R.
triangular index, TINN, SD1, SD2, ApEN, SampEN, HF, and
LF absolute power, HF and LF normalized unit, HF and
LF percentage, LF/HF ratio) were compared employing the
one-way analysis of variance with the Mann-Whitney U-test.
Nominal variables (seizure type, seizure control, response to
ASD, etiology) were analyzed and compared between left and
right TLE with 2 × 2 contingency tables using the chi-square
or Fisher’s exact test. Correlations between disease duration and
HRV frequency parameters were performed using the Sperman
correlation test.

The level of significance was set at p< 0.05. Statistical analyses
were performed using SYSTAT 12 software (SYSTAT R© Software
Inc., 2007).

RESULTS

L-TLE and R-TLE groups did not show any significant difference
as far as age (p = 0.301), disease duration (p = 0.399), seizure
control (p = 0.569), etiology (p = 0.780), and seizure types (p
= 0.095). The two groups also showed no differences in time-
domain parameters (MeanRR, SDNN, RMSSD, pNN50, R.R.
triangular index, and TINN). The HRV spectral component
analysis indicated a significantly decreased LF/HF ratio in the
L-TLE patients when compared to the R-TLE individuals (p
< 0.0001). Compared to the R-TLE group, L-TLE showed
significantly increased HF n.u. (p < 0.0001) and HF% (p <

0.0001) with decreased LF [ms2] (p < 0.05), LF n.u. (p <

0.001), and LF% (p < 0.001). The non-linear analysis showed
significantly increased SD1 (p < 0.01) and decreased SD2 (p
< 0.01) in the L-TLE group. No significant differences were
observed when comparing ApEN (p = 0.133) and SampEN
(p = 0.570) between the two groups. Time-domain, frequency
domain, and non-linear analysis features are summarized in
Figure 2. No correlations between disease duration and LF, HF,
or LF/HF ratio values were observed.

Subgroups Analysis
We analyzed and compared HRV parameters in the R-TLE
and L-TLE groups taking into account (1) the seizure types
(focal seizures vs. focal-to-bilateral tonic-clonic seizures); (2) the
response to ASDs (pharmacoresistant vs. no pharmacoresistant);
(3) seizure frequency (seizure-free vs. non-seizure-free patients),
and (4) the etiology (unknown etiology vs. epilepsy of
known etiology).
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FIGURE 3 | HRV-related parameter comparison in patients with focal or focal-to-bilateral seizures. (A) Right (yellow) and left (light blue) graph boxplots depict

statistically significant differences in LF n.u. (p < 0.0001), HF n.u. (p < 0.0001), LF% (p < 0.01), HF% (p < 0.001), and LF/HF ratio (p < 0.0001) of the two study

groups of patients suffering from focal seizures. (B) Right (yellow) and left (light blue) graph boxplots depict statistically significant differences in LF n.u. (p < 0.001), HF

n.u. (p < 0.001), LF% (p < 0.01), and LF/HF ratio (p < 0.001) of the two study groups of patients suffering from focal-to-bilateral seizures. Mann-Whitney test was

employed for statistical analysis. p < 0.05 was considered statistically significant. *p < 0.05; **p < 0.001; and ***p < 0.0001.

Seizure Type (Focal Seizures vs. Focal-to-bilateral

Tonic-Clonic Seizures)
Patients with focal seizures in the L-TLE group showed
significantly increased HF n.u. (p < 0.0001) and HF% (p < 0.01)
as well as decreased LF n.u. (p < 0.0001), LF% (p < 0.01), and
LF/HF ratio (p < 0.001) when compared to homologous R-TLE
patients. Patients with focal-to-bilateral tonic-clonic seizures in
the L-TLE group showed significantly increased HF n.u. (p <

0.001), decreased LF n.u. (p< 0.001), LF % (p< 0.01), and LF/HF
ratio (p < 0.001) compared to homologous R-TLE patients.
No statistically significant differences were observed between
the two groups as far as time-domain parameters (MeanRR,
SDNN, RMSSD, pNN50, R.R. triangular index, and TINN) and
non-linear analysis (SD1, SD2, ApEn, and SampEn). Time-
domain, frequency domain, and non-linear analysis features of
the subgroups are summarized in Figure 3.

Response to ASDs (Pharmacoresistant vs.

Non-pharmacoresistant)
Patients with pharmacoresistant epilepsy in the L-TLE group
showed significantly increased HF n.u. (p < 0.001), HF% (p <

0.01) as well as decreased LF n.u. (p < 0.001), and LF/HF ratio

(p < 0.001) compared to homologous R-TLE patients. Patients
with non-pharmacoresistant epilepsy in the L-TLE group showed
significantly increased HF n.u. (p < 0.0001), HF% (p < 0.01),
decreased LF n.u. (p < 0.0001), LF% (p < 0.01), and LF/HF
ratio (p < 0.0001) when compared to matched R-TLE patients.
No statistically significant differences were observed between
the two subgroups as far as time-domain parameters (MeanRR,
SDNN, RMSSD, pNN50, R.R. triangular index, and TINN) and
non-linear analysis (SD1, SD2, ApEn, and SampEn). Time-
domain, frequency domain, and non-linear analysis features are
summarized in Figure 4.

Seizure Frequency (Seizure-Free vs. No Seizure-Free

Patients)
Seizure-free patients in the L-TLE group showed significantly
increased HF n.u. (p < 0.0001), decreased LF n.u. (p < 0.0001),
LF% (p < 0.01), and LF/HF ratio (p < 0.0001) compared to
homologous R-TLE patients. No seizure-free patients in the L-
TLE group showed significantly increased HF n.u. (p < 0.001),
HF% (p < 0.001), decreased LF n.u. (p < 0.001), and LF/HF
ratio (p< 0.001) when compared to homologous R-TLE patients.
No statistically significant differences were observed between
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FIGURE 4 | HRV-related parameter comparison in seizure-free or no seizure-free patients. (A) Right (yellow) and left (light blue) graph boxplots depict statistically

significant differences in LF n.u. (p < 0.0001), HF n.u. (p < 0.0001), and LF/HF ratio (p < 0.0001) of seizure-free TLE patients. (B) Right (yellow) and left (light blue)

graph boxplots depict statistically significant differences in LF n.u. (p < 0.001), HF n.u. (p < 0.001), HF% (p < 0.001), and LF/HF ratio (p < 0.001) of no seizure-free

TLE patients. Mann-Whitney test was employed for statistical analysis. p < 0.05 was considered statistically significant. *p < 0.05; **p < 0.001; and ***p < 0.0001.

the two subgroups as far as time-domain parameters (MeanRR,
SDNN, RMSSD, pNN50, R.R. triangular index, and TINN) and
non-linear analysis (SD1, SD2, ApEn, and SampEn). Time-
domain, frequency domain, and non-linear analysis features are
summarized in Figure 5.

Etiology (Unknown Etiology vs. Known Etiology)
Patients with epilepsy with unknown etiology in the L-TLE
group showed significantly increased HF. n.u. (p < 0.001),
decreased LF n.u. (p < 0.001), LF% (p < 0.01), and LF/HF
ratio (p < 0.001) when compared to matched R-TLE patients.
Patients with epilepsy with known etiology in the L-TLE
group showed significantly increased HF n.u. (p < 0.0001)
and HF% (p < 0.01), decreased LF n.u. (p < 0.0001), LF%
(p < 0.01), and LF/HF ratio (p < 0.0001) when compared
to homologous R-TLE patients. No statistically significant
differences were observed in the two subgroups as far as
time-domain parameters (MeanRR, SDNN, RMSSD, pNN50,
R.R. triangular index, and TINN) and non-linear analysis
(SD1, SD2, ApEn, and SampEn). Time-domain, frequency

domain, and non-linear analysis features are summarized in
Figure 6.

DISCUSSION

The present study aimed at comparing the interictal changes
of HRV in TLE patients who were differentiated by the right
or left location of the epileptic foci. R-TLE and L-TLE subjects
were investigated to assess the relationship between interictal
epileptiform discharges and modifications of the autonomic
cardiac control. Our data show that R-TLE patients exhibit a
reduced parasympathetic tone, as indicated by the presence of HF
reductions. These patients also exhibit a higher risk of mortality
as assessed by the LF/HF parameter.

Autonomic dysregulation and HRV variations are important
cardiovascular risk factors as these alterations underlie a
potentially harmful decrease of the parasympathetic tone.

The reduced parasympathetic tone may predispose to a “pro-
arrhythmic” condition (44, 46, 70), which, in turn, may lead
to an increased risk of SUDEP. The quantification of HRV is
an established method to assess the parasympathetic activity of
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FIGURE 5 | HRV-related parameter comparison in patients with pharmacoresistant or non-pharmacoresistant epilepsy. (A) Right (yellow) and left (light blue) graph

boxplots depict statistically significant differences in LF n.u. (p < 0.001), HF n.u. (p < 0.001), HF% (p < 0.05), and LF/HF ratio (p < 0.001) of pharmacoresistant TLE

patients. (B) Right (yellow) and left (light blue) graph boxplots depict statistically significant differences in LF n.u. (p < 0.0001), HF n.u. (p < 0.0001), LF [ms2] (p <

0.05), LF% (p < 0.01), HF% (p < 0.01), and LF/HF ratio (p < 0.001) of non-pharmacoresistant TLE patients. Mann-Whitney test was employed for statistical analysis.

p < 0.05 was considered statistically significant. *p < 0.05; **p < 0.001; and ***p < 0.0001.

the ANS. The standard recording period of ≤5min (short-term
analysis) is now recommended by the Taskforce of the European
Society of Cardiology as a valid procedure for the assessment of
HRV components (36).

Clinical data concerning the possibility of a lateralized control
of autonomic functions in epileptic patients are controversial.
Although HRV features associated with ictal events have been
extensively described (70–72), little is known about the role of
IED changes in the cardiac autonomic regulation of patients
with epilepsy. By definition, interictal epileptic discharges are
brief spikes or sharp waves that are not associated with clinical
symptoms. Despite their brief nature, IED play an essential
role in the development of some epilepsy-related comorbidities,
including cognitive decline (73, 74) and hormonal changes
(75). However, the role of IED in the development of cardiac
alterations is not well-understood. Compared to healthy controls,
patients with epilepsy exhibit a higher incidence of subtle
abnormalities in HRV as well as abnormalities in the cardiac
response to physiological stimuli (3, 4, 6, 76).

In patients affected by generalized seizures, the presence of
HRV alterations that are related to IED were initially described
by Faustmann and Ganz (76). These authors have indicated that

patients with normal interictal EEG exhibit HRV that are similar
to healthy controls. HRV modifications may be driven by ASD.
Carbamazepine (3, 23) and phenytoin (24), in particular, have
been shown to promote HRVmodifications even though the role
of carbamazepine is controversial (77). Other studies, especially
those investigating drug-free, naïve, patients (42), reported that
the role of ASD in the modification of HRV is marginal, thereby
stressing the importance of the central control exerted by the
cortex on the activity of the ANS.

Our results are in line with data indicating the presence of an
asymmetrical autonomic innervation of the heart as well as the
lateralization of the cardiac autonomic output in the brainstem.
These data are thereby suggesting a different contribution of the
two hemispheres in the control of the heart rate. In that context,
preclinical and clinical data have demonstrated that lesions of the
right hemisphere produce an increased sympathetic tone (33, 78).
Furthermore, the stimulation of the left insula has been shown to
induce a bradycardic response, whereas tachycardia and pressor
responses are more elicited from the stimulation of the right
insula (32). Studies based on the pharmacological inactivation
of both hemispheres, obtained through the intracarotid injection
of amobarbital, have produced conflicting results (79–81). One
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FIGURE 6 | HRV-related parameter comparison in patients with epilepsy with unknown or known etiology. (A) Right (yellow) and left (light blue) graph boxplots depict

statistically significant differences in LF n.u. (p < 0.001), HF n.u. (p < 0.001), LF% (p < 0.05), and LF/HF ratio (p < 0.001) of unknown etiology TLE patients. (B) Right

(yellow) and left (light blue) graph boxplots depict statistically significant differences in LF n.u. (p < 0.001), HF n.u. (p < 0.0001), LF% (p < 0.05), HF% (p < 0.05), and

LF/HF ratio (p < 0.0001) of known etiology TLE patients. Mann-Whitney test was employed for statistical analysis. p < 0.05 was considered statistically significant.

*p < 0.05; **p < 0.001; and ***p < 0.0001.

study (79), albeit robust in terms of the size of the enrolled
patients, suffers from methodological issues related to the length
of the HRV evaluation (i.e., ultra-short lasting analysis) and the
presence of anticonvulsant treatment as 65 of the 73 enrolled
patients have been treated with carbamazepine or phenytoin.

Additional evidence supporting the notion of lateralization
of the control of the cardio-autonomic functions comes
from studies employing functional Magnetic Resonance
Imaging (fMRI). fMRI data related to the cortical control of
spontaneous and arousal-induced fluctuations in the amplitude
of skin conductance responses (SCR) support the presence
of a sympathetic activity that is mainly controlled by the
right hemisphere (82). These findings are also confirmed by
electrophysiological studies performed on patients with side-
specific hemispheric lesions that indicated a decreased galvanic
skin response in patients with right-hemisphere lesions. In
contrast, increased responses were found in subjects with lesions
of the left hemisphere (83, 84).

Studies employing positron emission tomography to
investigate hemispheric-specific increases of blood flow showed
increased perfusion in the right insula of healthy patients
undergoing physical activity or exposure to mental stress. In

contrast, increased blood flow occurred in the left insula of
subjects performing non-strenuous tasks (85).

CONCLUSIONS

Our data provide experimental evidence to support the
notion of lateralized cortical control of the cardiac autonomic
functions in TLE patients. In particular, our findings suggest
that epileptic patients with an L-TLE focus exhibit a lower
risk of developing cardiac dysfunctions independently of the
disease duration. Given the well-known correlations between
the presence of HRV modifications and the occurrence of
SUDEP, it can be inferred that patients with L-TLE may be less
susceptible to develop SUDEP. A recent study (86) attempted
to define the incidence of clinically relevant arrhythmias in
refractory focal epilepsy and assessed the predicting value
of postictal arrhythmias as risk markers for SUDEP. The
study investigated people with refractory epilepsy (both TLE
and non-TLE) who were implanted with a loop recorder
and followed for 2 years. The study found no clinically
relevant arrhythmias during the follow-up. It is conceivable
that the inclusion of non-TLE patients in the study could
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have blurred the results, thereby open the possibility that
findings may be different when taking into consideration
only TLE patients and when employing HRV alterations as
selection criteria.

We acknowledge some limitations of our study. Given the
small number of patients in the subgroup analysis, we were
not able to investigate the impact of every specific ASDs in the
modification of HRV features. However, although the role of
the most recent ASDs in the modulation of HRV remains to be
defined, our data indicate that, independently of specific ASDs,
R-TLE patients exhibit a reduced vagal tone. Further studies will
be needed to understand the impact that specific ASDs may have
on HRV modifications as well as to assess the role of pharmaco-
resistance in producing worse cardioautonomic balance. Finally,
our results indicate that it would be important to investigate,
with long-term EKGmonitoring, whether R-TLE patients show a
higher risk of developing arrhythmias.
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