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A SARS‑CoV‑2 (COVID‑19) 
biological network to find targets 
for drug repurposing
Mahnaz Habibi1,5*, Golnaz Taheri2,3,5 & Rosa Aghdam4,5

The Coronavirus disease 2019 (COVID‑19) caused by the SARS‑CoV‑2 virus needs a fast recognition 
of effective drugs to save lives. In the COVID‑19 situation, finding targets for drug repurposing 
can be an effective way to present new fast treatments. We have designed a two‑step solution to 
address this approach. In the first step, we identify essential proteins from virus targets or their 
associated modules in human cells as possible drug target candidates. For this purpose, we apply 
two different algorithms to detect some candidate sets of proteins with a minimum size that drive 
a significant disruption in the COVID‑19 related biological networks. We evaluate the resulted 
candidate proteins sets with three groups of drugs namely Covid‑Drug, Clinical‑Drug, and All‑Drug. 
The obtained candidate proteins sets approve 16 drugs out of 18 in the Covid‑Drug, 273 drugs out 
of 328 in the Clinical‑Drug, and a large number of drugs in the All‑Drug. In the second step, we study 
COVID‑19 associated proteins sets and recognize proteins that are essential to disease pathology. 
This analysis is performed using DAVID to show and compare essential proteins that are contributed 
between the COVID‑19 comorbidities. Our results for shared proteins show significant enrichment for 
cardiovascular‑related, hypertension, diabetes type 2, kidney‑related and lung‑related diseases.

The global impact of the Coronavirus disease 2019 (COVID-19) pandemic has brought an urgent need for finding 
treatments to reduce morbidity and mortality. Repurposing existing drugs is an effective and fast way to prepare 
such treatments by finding a new use for drugs that already have safety and pharmacological  profiles1. Drug 
repurposing can be done using different drug development methods. In the COVID-19 situation, drug repur-
posing can be a fast and cost-effective approach to find novel treatments. Recent studies have increasingly used 
computational methods to algorithmically predict new drug targets or drug repurposing candidates. Focusing 
on drug targets that are already approved clinically and evaluating their therapeutic potential for COVID-19 can 
be one of the fastest solutions. Fehr et al.2 revealed that SARS-CoV-2 infects human cells by hijacking the host’s 
translation mechanism to produce 29 viral proteins. These 29 proteins bind to multiple human proteins to set 
up the molecular processes that needed for viral duplication and additional host infection. Gorden et al.3 used 
affinity purification mass spectrum method to find interactions between a map from human and SARS-CoV-2 
proteins. This study released the 26 proteins from 29 proteins that the SARS-CoV-2 infects in the human body. 
They also identified 332 human proteins involve in these viral proteins binds. Among these 332 proteins, 67 
druggable human proteins with 69 existing drugs identified. The identification of dependencies between host 
proteins and virus infection can provide significant insights into finding suitable drug targets for developing 
antivirals medicine against SARS-CoV-2. Saha et al.4 described the probable molecular mechanism of Remdesivir 
as one of the best drug candidates for COVID-19. They showed the effect of Remdesivir with abroad spectrum of 
anti-viral activity against many viruses, to inhibit the RNA synthesis of SARS-CoV-2. Patel et al.5 constructed a 
tripartite network-based for repurposing the approved drugs to treat COVID-19 patients. Their study showed that 
the anti-viral properties of resveratrol against SARS-CoV-2 virus could be readily exploited to effectively control 
the viral load at the early stages of COVID-19 infection. Saha et al.6 took a brief look at the development stages 
of different vital drug candidates, that were being tested as potential vaccines or therapeutics against COVID-19.

Analysis of this large amount of data in the biological process helped us for a better understanding of cel-
lular mechanisms. This kind of data is usually represented in the form of a network. One of the most important 
biological networks constructed from experimental data is the protein–protein interaction (PPI)  network7–9. The 
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graph-based analysis of PPI networks with respects to different human diseases has resulted in the identification 
of appropriate drug target  proteins10, 11. The previous studies demonstrated that the relationship between essential 
proteins in the biological network along with some graph-based  properties12, 13. Most of the essential proteins 
have a high degree in a  network13. Another important graph-based property in the network is the betweenness 
centrality  value12. The value of betweenness for each node in the network represents the total number of the 
shortest pathways that pass through this node in the network.

Recent studies showed that removing the essential proteins disrupt the vital biological processes in the cell 
and may be lethal to an  organism14. Some computation methods designed informative networks from bio-
logical processes data to identify essential proteins with important biological properties. For this purpose two 
 algorithms15, 16 are applied. These algorithms detect the minimum number of proteins from biological networks 
that lead to a major disruption in the network.

In the first part of this work, we construct a biological network as a weighted simple graph related to virus 
targets or their associated biological processes. Then, we use two effective  algorithms15, 16 to find the minimum 
number of proteins from biological networks that lead to a major disruption in the network. The selection meth-
ods for essential nodes in the first and second algorithms are based on the betweenness value for each node in a 
weighted graph and the spectral partitioning in the Laplacian graph, respectively. We evaluate our candidate sets 
as essential proteins related to COVID-19 with three groups of drugs namely Covid-Drug, Clinical-Drug, and 
All-Drug. We show that 16 drugs out of 18 in the Covid-Drug and 273 drugs out of 328 in the Clinical-Drug are 
approved by our method. Also, our candidate sets approve a large number of drugs in All-Drug.

In the second part of this work, we identify proteins in our candidate sets that are associated with some under-
lying diseases related to COVID-19. At the end, we find 93 proteins as a final set of essential proteins related to 
disease pathology. It can be concluded that our candidate proteins are targeted by a large number of COVID-19 
drugs. We also show some significant signaling and disease pathways.

Results
To identify the best proteins set as a drug target, we propose a two-step method. In the first step, we try to detect 
essential proteins from SARS-CoV-2 virus targets or their associated modules in human cells. Then, in the 
second step, we try to find essential proteins that are related to comorbid disease pathologies. To construct our 
sets, we consider 1374 Informative Biological Process (IBP) Gene Ontology (GO) terms related to 332 human 
proteins identified  in3 as high-confidence virus human protein interactions. In order to prioritize proteins that 
can be essential proteins sets related to COVID-19, T, Cut1 , Cut2 , C1 , C2 , T1 , T2 and Cut75 , Level1 , S1 , S2 , E1 and 
E2 , sets are defined as follows:

• T: The set of 332 proteins reported as possible targets of the SARS-CoV-2  virus3.
• Cut1 : The minimum cut set resulted from Algorithm 116.
• Cut2 : The minimum cut set resulted from Algorithm 215.
• C1 : The elements of Cut1 that physically interacted with the SARS-CoV-2 virus (intersection of Cut1 and T).
• C2 : The elements of Cut2 that physically interacted with the SARS-CoV-2 virus (intersection of Cut2 and T).
• T1 : Intersection of C1 and C2.
• T2 : Union of C1 and C2.
• Cut75 : From all of the proteins in the Cut1 or Cut2 that have the highest degree and the highest number of 

disruption, 75 most important proteins are selected.
• Level1 : The neighbors of T set.
• S1 : Intersection of Cut1 and Cut2.
• S2 : Union of Cut1 and Cut2.
• E1 : Set of essential proteins associated with COVID-19 that are placed in Cut1.
• E2 : Set of essential proteins associated with COVID-19 that are placed in Cut2.

The complete description of T, Cut1 , Cut2 , C1 , C2 , T1 , T2 , Cut75 , Level1 , S1 , S2 , E1 and E2 sets is presented in 
Table 1.

Evaluation of our proposed essential proteins subsets with respect to the number of disrup‑
tion. The Venn diagram for T1 , T2 , C1 , C2 and T sets is illustrated in Fig. 1 (http:// bioin forma tics. psb. ugent. 
be/ webto ols/ Venn/). This figure shows that from 332 proteins in T set, only 71 proteins are selected with men-
tioned algorithms ( T2 ). From these 71 proteins, 20 proteins are selected in both of mentioned algorithms ( T1 ) 
(see “Methods” section), 37 proteins are selected uniquely in Algorithm 1 ( C1\T1 ) and 14 proteins are selected 
uniquely in Algorithm 2 ( C2\T1 ). The results of mentioned sets are summarized in Table 2. The number of 
proteins in T1 , C1 , C2 , T2 , Cut75 , T, S1 , Cut1 , Cut2 , S2 and Level1 sets are reported in the first row. The second row 
shows the mean of degrees of the mentioned sets. The third row shows the number of 1374 IBP GO terms over-
lapped with our sets and their number of unique IBP GO terms are collected in the fourth row (see “Dataset” in 
the “Methods” section)17. According to Table 2, for example, the number of unique IBP GO terms for T1 with a 
size of 20 is equal to 400, and similarly for T2 with a size of 71 is equal to 821. The ratio of the number of unique 
IBP GO terms to the total IBP GO terms indicates that the degree of uniqueness of the introduced proteins sets 
are represented in the fifth row. The ratio of the number of unique IBP GO terms to the size of the selected set 
represents on average, each protein causes how many unique disruption. T1 has the highest percentage of unique 
IBP GO terms and also, the ratio of the number of disruption on average in comparison with other sets. The 
ratio of the number of unique IBP GO terms to the size of the selected set is shown in the sixth row of the table. 

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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Table 1.  Description of the defined sets. Best results are indicated in bold.

Set Description

T The set of 332 proteins reported as possible targets of the SARS-CoV-2  virus3

Cut1 The minimum cut set resulted from Algorithm 116

Cut2 The minimum cut set resulted from Algorithm 215

C1 The elements of Cut1 that physically interacted with the SARS-CoV-2 virus (intersection of Cut1 and T)

C2 The elements of Cut2 that physically interacted with the SARS-CoV-2 virus (intersection of Cut2 and T)

T1 Intersection of C1 and C2

T2 Union of C1 and C2

Cut75
From all of the proteins in the Cut1 or Cut2 that have the highest degree and the highest number of disruption, 75 most important 
proteins are selected

Level1 The neighbors of set T

S1 Intersection of Cut1 and Cut2
S2 Union of Cut1 and Cut2
E1 Set of essential proteins associated with COVID-19 that are placed in Cut1
E2 Set of essential proteins associated with COVID-19 that are placed in Cut2

Figure 1.  The Venn diagram of T1 , T2 , C1 , C2 and T sets. The complete description of sets is presented in Table 1.

Table 2.  The summary of statistics of the proposed sets. The first row shows the size of T1 , C1 , C2 , T2 , Cut75 , 
T, S1 , Cut1 , Cut2 , S2 , Level1 sets. The second row shows the mean of degrees of mentioned sets. The number of 
1374 IBP GO terms overlapped with the subsets and their number of unique IBP GO terms are collected in the 
third and fourth rows, respectively. The ratio of the unique IBP GO terms to total IBP GO terms and the ratio 
of the number of unique IBP GO terms to the size of the selected set are represented in the fifth and sixth rows, 
respectively. The complete description of sets is presented in Table 1. Best results are indicated in bold.

T1 C1 C2 T2 Cut75 T S1 Cut1 Cut2 S2 Level1

No. proteins 20 57 34 71 75 332 1115 2017 2100 3002 7845

Mean of degrees 122.45 95.41 96.44 88.28 406.48 59.65 78.09 69.91 59.12 59.32 59.71

IBP GO terms 439 857 557 975 1384 1870 10,378 14,642 13,726 17,990 18,052

Unique IBP GO terms 400 737 493 821 643 1374 1120 1279 1197 1306 1364

Percentage of Unique IBP GO terms 0.91 0.85 0.88 0.84 0.46 0.73 0.11 0.08 0.08 0.07 0.07

Average Unique IBP GO terms 20 12.92 14.5 11.56 8.57 4.13 1.00 0.63 0.57 0.43 0.17
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Compared to the Cut75 set, we can conclude that the proposed  algorithms15, 16 are not just based on high degrees 
and high disruption, also some valuable properties are used in them to select the important proteins.

Figure 2 shows the boxplots of the degrees in PPI network (part (a)) and the unique number of IBP GO 
terms (part (b)) that are resulted from T1 , T2 , C1 , and C2 , respectively. As shown in Fig. 2, the degrees of selected 
sets are similarly distributed, and the majority of the number of disruption is located between 0 and 40 with a 
maximum value of 70. The median of the number of unique disruption related to T1 is bigger than the other sets. 

In order to evaluate the performance of the mentioned algorithms, we compare our selected subsets from T 
( T1 , T2 , C1 and C2 ) with randomly generated subsets. For each of the proposed sets ( T1 , T2 , C1 and C2 ) of size n, 
103 proteins sets are generated as possible targets of SARS-CoV-2 virus from T with size n. Suppose that Ni for 
i = 1, . . . , 103 are the number of GO terms (from 1374) that disrupted with randomly generated set and N is the 
number of unique IBP GO terms resulted from our sets. Let X = {i|Ni > N} for i = 1, . . . , 103 where X denotes 
the number of random results that performed better than the output of the two mentioned algorithms. The null 
hypothesis, H0 , is that our selected proteins set of size n is not important. The alternative hypothesis, H1 , is that 
our selected proteins set of size n is indeed important. We use Exceeding Value as EV =

|X|

1000
, where |X| denotes 

the size of X18. If EV < α then, we reject H0 ( α is a threshold value that we consider to be 0.05). The values of EV 
for all selected proteins sets are equal to zero (This value causes extremely significant results). We can conclude 
that the results of mentioned algorithms show a better performance than all of these random selections. Figure 3 
illustres the boxplots of the number of disruption resulted from 1000 randomly selected sets of sizes 20, 71, 57, 
and 34, respectively. The small red lines above each boxplot in this figure shows the number of unique IBP GO 

Figure 2.  (a) Boxplot of the degrees in protein–protein interaction (PPI) network for T1 , T2 , C1 , and C2 sets; (b) 
Boxplot of the number of unique IBP GO terms resulted from each of the four sets. The complete description of 
sets is presented in Table 1.

Figure 3.  Boxplot of number of unique IBP GO terms resulted from 1000 randomly selected sets of sizes 20, 71, 
57, and 34, respectively. Red small lines in the figure are the number of unique IBP GO terms for T1 , T2 , C1 and 
C2 sets. The complete description of sets is presented in Table 1.
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terms related to T1 , T2 , C1 , and C2 which are equal to 400, 821, 737, and 493, respectively (see Table 2). As shown 
in this figure, the results of random selections are significantly less than our results. It means that there is no 
random set that performs better than our selected set. It can be concluded that the results are significantly far 
from random and by choosing the appropriate sets, a significant amount of disruption happens. 

Evaluation of our proposed essential proteins subsets with respect to the related drugs. To 
justify our proposed essential proteins, we evaluate 37 experimental unapproved drugs for COVID-19 that are 
reported in  DrugBank19. From these 37 drugs, 19 drugs have no targets information and only 18 drugs have the 
drug target information from our PPI network that denoted as Covid-Drug. These 18 drugs have 78 proteins 
targets in our PPI network. It is worth mentioning that just one of these proteins is from T set (P33527 protein). 
We find that from these 18 drugs in Covid-Drug, only two of them have this target in 332 proteins including 
Ritonavir and Ibuprofen. Both of these drug targets are approved with mentioned algorithms. In other words, 
this target is determined with T2 to be one of the significant targets in mentioned algorithm. We also find that all 
drugs in this group except Favipiravir and Leronlimab have targeted at least one proteins in our cut sets, while 
the Level1 set with 7845 proteins are targeted with 14 drugs in Covid-Drug. The details of some statistical infor-
mation of our candidate essential proteins subsets for Covid-Drug group are reported in Table 3. In this table, 
the first row indicates the size of T1 , C1 , C2 , T2 , T, S1 , Cut1 , Cut2 , S2 and Level1 sets, respectively. The number of 
proteins targets and related drugs for Covid-Drug group are reported in the second and third rows, respectively. 
The fourth and fifth rows show the ratio of the number of proteins that are targeted and their related drugs for 
Covid-Drug group to the size of sets, respectively. The results of presence (blue color) or absence (white color) 
of overlaps in proteins targets of T1 , T2 , C1 , C2 , T, Level1 , Cut1 , Cut2 , S1 and S2 sets with the targets of Covid-Drug 
are shown in the Fig. 4. For a better evaluation of mentioned algorithms, the drug targets and related drugs in 
Covid-Drug group are illustrated in Fig. 5 . In this figure, the green diamond nodes indicate the drugs and the 
blue circle nodes show the targets associated with these drugs. The protein that is the target of a large number 
of drugs is shown in red color. Figure 5 shows the distribution of drug targets in mentioned algorithm for three 
separate subsets of S2 . The first subset contains a protein that targeted by the virus ( T2 ), the second subset con-

Table 3.  The summary of drug targets and related drugs for Covid-Drug group. The first row shows the size of 
T1 , C1 , C2 , T2 , T, S1 , Cut1 , Cut2 , S2 , Level1 sets. The number of proteins targets and related drugs in each set for 
Covid-Drug group are reported in second and third rows, respectively. The fourth and fifth rows show the ratio 
of the number of proteins that targeted and their related drugs in each set for Covid-Drug group to the size of 
sets, respectively. The complete description of sets is presented in Table 1. Best results are indicated in bold.

T1 C1 C2 T2 T S1 Cut1 Cut2 S2 Level1

No. proteins 20 57 34 71 332 1115 2017 2100 3002 7845

No. proteins targets 0 1 0 1 1 15 22 20 27 34

No. drugs 0 2 0 2 2 14 15 15 16 14

Ratio of the proteins targets 0 0.017 0 0.014 0.003 0.013 0.011 0.009 0.008 0.004

Ratio of drugs 0 0.035 0 0.028 0.006 0.0125 0.007 0.007 0.005 0.001

Figure 4.  The presence (blue color) or absence (white color) of the overlap of proteins targets of T1 , T2 , C1 , C2 T, 
Level1 , Cut1 , Cut2 , S1 and S2 sets with the targets of Covid-Drug. The complete description of sets is presented in 
Table 1.
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tains some proteins that are located in Level1\T2 (shown as L) and other proteins of S2 are located in the third 
subset (C). It is noticeable that the P08684 protein is shown in red color, is one of the targets for most drugs in 
the Covid-Drug group. The red, blue, and black dotted edges are related to L, C, and T2 sets, respectively.

Figure 5.  The drug targets in Covid-Drug group for T2 , L ( Level1\T2 ), and C ( other proteins of S2 except S2\L 
) sets. The red color node indicates the protein that is the target of a large number of drugs. The red edges, blue 
edges and black dotted edges are related to L, C and T2 sets, respectively. The complete description of sets is 
presented in Table 1.

Table 4.  The summary of drug targets and related drugs for Clinical-Drug group. The first row shows the size 
of T1 , C1 , C2 , T2 , T, S1 , Cut1 , Cut2 , S2 , Level1 sets. The number proteins targets and related drugs in each set for 
Clinical-Drug group are reported in second and third rows, respectively. The fourth and fifth rows show the 
ratio of the number of proteins that targeted and their related drugs in each set for Clinical-Drug group to the 
size of sets, respectively. The complete description of sets is presented in Table 1.

T1 C1 C2 T2 T S1 Cut1 Cut2 S2 Level1

No. proteins 20 57 34 71 332 1115 2017 2100 3002 7845

No. proteins targets 1 4 2 5 15 154 218 217 281 398

No. drugs 2 17 4 19 30 225 246 260 273 284

Ratio of the proteins targets 0.05 0.070 0.058 0.070 0.045 0.138 0.108 0.103 0.093 0.051

Ratio of drugs 0.1 0.298 0.117 0.267 0.090 0.201 0.1215 0.121 0.091 0.036
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The second group of drugs contains 449 drugs as clinical trials for COVID-19. From these 449 drugs, 328 
drugs have targets in the PPI network denoted as Clinical-Drug. These 328 drugs can target 888 proteins in a 
cell. From these 888 proteins, 281 proteins are approved with mentioned algorithms. The details of some statisti-
cal information about Clinical-Drug are reported in Table 4. In this table, the first row indicates the size of T1 , 
C1 , C2 , T2 , T, S1 , Cut1 , Cut2 , S2 and Level1 sets, respectively. The number of proteins targets and related drugs for 
Clincal-Drug group are reported in the second and third rows, respectively. The fourth and fifth rows show the 
ratio of the number of proteins that targeted and their related drugs for Clincal-Drug group to the size of sets, 
respectively. As seen in Table 4, from these 888 proteins, 15 of them are located in T set. From the 328 drugs 
in Clinical-Drug group, 30 drugs have these 15 targets. From these 15 proteins, five of them are approved with 
mentioned algorithms. On the other hand,19 drugs of this group are approved with the already-mentioned 
five proteins of T2 . From above 30 drugs, 11 ( = 30 − 19) drugs can target proteins in T set, these drugs are not 
approved with the proposed sets, ( T1 , T2 , C1 and C2 ), which are subsets of T. The size of our proposed sets is much 
smaller than T set, it is worth mentioning that despite the small size, they are able to determine important drug 
targets in the COVID-19. Our results show that 10 out of 11 drugs have been targeted with S2 set (see Fig. 6).

We also find that from 7,845 proteins in Level1 , 398 proteins are targeted by 284 drugs from Clinical-Drug 
group. It is noticeable that 273 drugs from these 328 drugs are approved with mentioned algorithms. Figure 7 
shows that from these 328 Clinical-Drugs, 19 drugs have targets in the Level1 set but are not approved with any 
of the proteins in S2 set. On the other hand, there are eight other drugs that can target proteins in S2 set but are 
not approved with any of the proteins in Level1 set. Despite the fact that the size of the recommended sets is 
much smaller than Level1 set, but the target of these drugs is neither belongs to T set nor Level1 set. From these 
eight drugs, two of them (Metenkefalin and Remdesivir) are related to a specific drug (Covid-Drug) that is 
widely used for COVID-19 (see Fig. 4). The drug targets and related drugs in Clinical-Drug group are illustrated 
in Fig. 8, 9 and 10 . In these figures, the green diamond nodes indicate that the drugs and the blue circle nodes 
show the targets associated with these drugs. Figure 8 shows the drug targets in Clinical-Drug group that are 
located in T2 set. The P33527 protein, shown in red color, is one of the targets of most drugs in the Clinical-Drug 
group. Figure 9 shows the drug targets in Clinical-Drug group that are located in L set. The P33527, P35348 
and Q16678 proteins shown in red color, are the targets of most drugs in the Clinical-Drug. The drug targets in 
Clinical-Drug group that are located in C set are reported in Fig. 10. The P08684, P05177, P04798, P07550, and 
Q15439 proteins shown in red color, are the targets of most drugs in the Clinical-Drug group. 

We also study the number of targets in all drugs reported in UniProt as human drugs that denoted as All-
Drug. The summary of drug targets and related drugs are presented in Table 5. In this table, the first row indicates 
the size of T1 , C1 , C2 , T2 , T, S1 , Cut1 , Cut2 , S2 and Level1 sets, respectively. The number of proteins targets and 
related drugs for All-Drug group are reported in the second and third rows, respectively. The fourth and fifth 
rows show the ratio of the number of proteins that targeted and their related drugs for All-Drug group to the 
size of sets, respectively. It can be concluded that the proposed candidate proteins sets approve a large number 
of drugs in All-Drug.

Evaluation of our candidate essential proteins associated with COVID‑19 pathology. The 
results of two previous subsections show that Cut1 and Cut2 sets are good candidates to find appropriate subsets 
that are related to COVID-19 pathology. In this subsection, two of these possible candidate subsets are evalu-

Figure 6.  The presence (blue color) or absence (white color) of overlap of approved drugs in T and S2 sets that 
are not approved with any of the proteins in T2 set. The complete description of sets is presented in Table 1. Best 
results are indicated in bold

Figure 7.  The presence (blue color) or absence (white color) of different approved drugs in Level1 and S2\T sets 
that are not approved with any of the proteins in S2 set.The complete description of sets is presented in Table 1.
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ated. COVID-19 is a pandemic disease with a wide range of symptoms among different patients. What is clear 
is that the disease varies from asymptomatic to fatal in individuals. Recent studies show that the disease is 
more severe in people with underlying conditions such as Cardiovascular diseases, Diabetes, Hepatitis, Lung 
diseases, Kidney disease, and different types of cancers. Therefore, we expect that the underlying genetics of 
these diseases are associated with essential proteins that are associated with COVID-19. To find these essential 
proteins, we use gene-disease relation from Database for Annotation, Visualization, and Integrated Discovery 
(DAVID). Some proteins that are annotated to four out of five of these specific comorbid diseases in the Cut1 and 
Cut2 sets with significant p− value are chosen as a set of essential proteins associated with COVID-19 ( E1 and 
E2 ). Table 6 shows 76 and 79 essential proteins with the pathology of these comorbid diseases, respectively. In 
Fig. 11, we compare our candidate E1 and E2 sets with set of genes proposed by Dolan et al.20. This figure shows 
that 58 essential genes are approved by E1 , E2 sets and also a set of genes proposed by Dolan et al. as essential 
proteins associated with COVID-19. We also evaluate the functional annotation by the performance of enrich-
ment analysis on our candidate E1 and E2 sets. In Tables 7 and 8 the top significantly enrichment pathways for E1 
and E2 sets are identified by DAVID analysis are reported, respectively. Finally, 93 proteins contain E1 ∪ E2 are 
introduced as a final essential proteins set associated with COVID-19 disease pathology (See Table 6).

Discussion and summary
COVID-19 pandemic, which is caused by acute respiratory syndrome (SARS-CoV-2), is currently causing irrepa-
rable harm to human life, so the world needs to quickly identify effective drugs to restrict the spread of the 
disease. One of the best ways to identify effective drugs in different diseases is to find proteins that are essential 
for the pathology of the diseases. The main idea of this paper is to find a set of proteins that are essential for the 
pathology of COVID-19 that can help us find some appropriate drugs. Therefore, in the first part of this work, 
we focused on finding the essential proteins of the virus targets or their associated modules in the human cells. 
For this purpose, we applied two algorithms to find the essential proteins associated with COVID-19 ( Cut1 and 
Cut2 ). Both algorithms are based on finding the least number of proteins that are involved in the most biological 
processes associated with the virus and removing them causes the most disruption in the COVID-19 related 
biological networks. Then, we studied the set of proteins including the intersection and union of the results of 
these two algorithms and the intersection of each of these results with the targets of virus, as well as the set of 
virus targets and a set including the neighbors of the virus targets. Our results showed that out of 1373 biological 
processes related to COVID-19, 1306 biological processes have overlap with essential proteins in S2 (Table 2). 
On the other hand, according to the definition of the set of biological processes related to COVID-19, the targets 
set of virus (T) with 332 proteins has overlap with all 1374 biological processes. Then, we need a more detailed 
analysis for the candidate sets of essential proteins. We evaluated the number of drugs used as an unapproved 
drug in COVID-19 (Covid-Drug) and targeted at least one of the proteins in these candidate sets. The results of 
our study showed that of among 17 drugs in the Covid-Drug group, 16 drugs target at least one of the proteins 
in S2 set. From 17 drugs in this group, only Ritonavir and Ibuprofen target one of the proteins in T set which 
both of them are approved by S2 set. As a result, the T candidate set cannot be a good candidate as the essential 
proteins sets compared to our proposed S2 set. We also studied a group of drugs that are in the clinical trial 
phase (Clinical-Drug) and showed that 83% of them (273/328) target at least one protein of our candidate set. 
However, the T set confirms only 9 % (30/328) of these drugs. Although the Level1 set approves 86% (284/328) 
of these drugs, the low ratio of drugs to the number of proteins of this set shows that the Level1 set cannot be a 

Figure 8.  The drug targets in Clinical-Drug group that are located in T2 sets.
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good candidate for essential proteins related to COVID-19 (Table 4). We also studied all of the drugs reported 
in UniProt that target at least one of the proteins in our PPI networks. The results of our study showed that our 
proposed S2 , T1 , C1 , C2 , T2 and S1 sets contain a significant percentage of drug targets (Table 5). The results of 
Tables  3, 4 and  5 show that out of 2,017 essential proteins obtained from Algorithm 1 ( Cut1 ) 22 drug targets are 
from the Covid-Drug group, 218 drug targets are from the Clinical-Drug group and 581 drug targets are from 
all All-Drug group. Also, among 2100 essential proteins obtained from Algorithm 2 ( Cut2 ), 20 drug targets are 
from the Covid-Drug group, 217 drug targets are from the Clinical-Drug group, and 539 drug targets are from 
the All-Drug group. In other words, the results of these two algorithms include a higher rate of target proteins 
than the Level1 and T sets, considering the size of the sets. As a result, the outcomes of both algorithms can be 
identified as suitable candidate sets for COVID-19 related essential proteins sets. But, it is noticeable that not 
every essential protein is an appropriate candidate as an essential protein, because some of the essential proteins 
are related to the cellular function of the cell, and selecting them may lead to disruption of cellular functions. 
Therefore, we try to select candidate proteins that are essentials in disease pathology.

Figure 9.  The drug targets in Clinical-Drug group that are located in L set.
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Figure 10.  The drug targets in Clinical-Drug group that are located in C set.

Table 5.  The summary of drug targets and related drugs for All-Drug group. The first row shows the size of 
T1 , C1 , C2 , T2 , T, S1 , Cut1 , Cut2 , S2 , Level1 sets. The number proteins targets and related drugs in each set for 
All-drug group are reported in second and third rows, respectively. The fourth and fifth rows show the ratio of 
the number of proteins that targeted and their related drugs in each set for All-drug group to the size of sets, 
respectively. The complete description of sets is presented in Table 1.

T1 C1 C2 T2 T S1 Cut1 Cut2 S2 Level1

No. proteins 20 57 34 71 332 1115 2017 2100 3002 7845

No. proteins targets 9 19 15 25 64 356 581 539 764 1393

No. drugs 76 166 87 177 274 2831 3345 3297 3754 4454

Ratio of the proteins targets  0.45 0.333 0.441 0.352 0.192 0.319 0.288 0.256 0.2545 0.177

Ratio of drugs 3.8 2.912 2.558 2.492 0.825 2.539 1.658 1.57 1.250 0.567
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In the second part of this work, we focued on finding the essential proteins associated with COVID-19 pathol-
ogy. To detect this set of essential proteins, we studied proteins that are associated with some underlying diseases. 
Since COVID-19 has more severe symptoms for patients with underlying diseases such as cardiovascular-related, 
hypertension, diabetes type 2, kidney-related diseases, and lung-related diseases. Identifying the proteins asso-
ciated with these diseases that are in our essential proteins sets can be a suitable way to find essential proteins 
that are fundamentally related to COVID-19 pathology. Therefore, we selected the proteins presented in each 
of the candidate sets that are associated with at least four of the five underlying mentioned diseases. Our results 
showed that 76 essential proteins from the Cut1 set and 79 essential proteins from the Cut2 set are related to the 
mentioned diseases. These two sets are named E1 and E2 , respectively. Finally, 93 proteins are introduced as 
essential proteins associated with COVID-19 disease pathology ( E1 ∪ E2 ). Our study showed that from these 93 
proteins, only one protein, (P09601), was placed in the target set of virus (T) proteins and targeted by 15 drugs, 
including NADH. It is noticeable that this drug was not in the two groups of Covid-Drug and Clinical-Drug, but 
it has been approved in other studies  recently21. Among these essential proteins, 7 proteins (P01375, P08684, 
P10415, P10635, P15692, P35354, Q9NR96) have been targeted by Covid-Drug group drugs. Out of 18 drugs 
in this group, 10 drugs including Azithromycin, Ritonavir, Ibuprofen, Colchicine and Dexamethasone were 
approved through these essential proteins. Besides, we found that 35 proteins out of 93 essential proteins were 
targeted by clinical drugs. We also found from 328 drugs in the Clinical-Drug group 185 drugs were approved 
by these 35 essential proteins, including Baricitinib22 and Amlodipen. Finally, we studied that for 65 out of 93 
essential proteins associated with COVID-19 pathology, 1689 drugs including Erythromycin and Letermorir 
was introduced, which will be presented as future work. In addition, we analyzed the significant pathway enrich-
ment for each of the candidate essential proteins sets. The results showed some signaling pathways enrichment 

Table 6.  Essential proteins associated with COVID-19 pathology.

Proteins

E1

O00206, O14543, O60603, P00533, P00734, P01019, P01130, P01133, P01137, P01344

P01374, P01375, P01579, P01584, P01889, P02647, P02649, P02751, P02778, P03372

P04114, P04637, P05019, P05089, P05112, P05164, P05231, P05362, P06858, P08571

P08684, P09211, P09601, P10145, P10415, P10635, P11021, P11473, P13498, P13500

P13501, P14210, P14780, P15692, P16035, P17813, P19838, P21549, P28482, P29279

P29459, P29474, P31645, P31749, P35222, P35354, P38936, P40763, P40933, P41597

P42336, P42345, P42898, P48023, P48061, P60568, P78423, P78527, P81172, Q04721

Q14116, Q15848, Q16236, Q30201, Q99958, Q9NR96

E2

O00206, O14543, O14763, O60603, P00533, P00734, P01019, P01033, P01130, P01133

P01137, P01344, P01375, P01579, P01583, P01584, P01889, P01891, P01892, P01911

P01912, P02647, P02649, P02778, P03372, P03989, P04114, P04229, P04439, P04637

P05019, P05089, P05106, P05112, P05164, P05231, P05362, P05534, P06858, P08253

P08684, P09211, P09601, P10415, P10635, P11226, P13498, P13500, P13501, P14210

P14780, P15692, P16035, P17813, P19438, P19838, P25445, P29279, P29474, P31749

P35222, P35354, P38936, P40763, P42336, P42345, P48023, P48061, P60568, P78423

P78527, P81172, Q14116, Q15848, Q16236, Q30201, Q99958, Q9NR96, Q9Y2R2

Figure 11.  Essential proteins in E1 , E2 sets and set of proteins proposed by Dolan et al.20 .
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related to COVID-19 (hsa04621; hsa04064; hsa04620); that have been introduced in the previous  study23. There 
are also some significant disease-pathways (hsa05142; hsa05144; hsa05323; hsa05164; hsa05321) that have been 
presented in previous  study24.

Methods
Dataset. In this work, we use five human high-throughput PPI network datasets. The first dataset, Huri, 
contains 52,548 human binary protein  interactions25. The second one is gathered from the Biological General 
Repository for Interaction Datasets (BioGRID) and contains 296,046  interactions26. This dataset has several 
interactions that are obtained from different techniques. We only use the interactions that are represented as 
physical inactions and co-complexed proteins. The three other datasets are  (Hippie27,  Apid28, and  Hint29) which 
contain 57,428, 17,1448 and 64,399 experimentally interactions, respectively. These interactions are derived 
from high-throughput yeast-two hybrid (Y2H) and mass spectrometry methods. All of the proteins from these 
five datasets are mapped to their corresponding Uniprot ID. If a protein could not be mapped to a Uniprot ID, it 
is removed. The final interactome that we used in this study contains 25,260 proteins and 30,4730 interactions. 
For each of these proteins, we use biological process terms from  GO17 to point out the biological modules in 
human. We find that only 20,642 proteins from 25,260 or 81% of them are annotated. We use the IBP concept 
to avoid biases in the annotations that would potentially lead to incorrect conclusions. We consider a biological 
process annotation informative if it has the following two properties. First, it needs to have at least k proteins 
annotated with it. Second, each of its descendants GO terms needs to have less than k proteins annotated with 
them. In this study, we set three as a value of k. This yields to 1374 IBP GO terms related to 332 human proteins 
which are also identified as high-confidence SARS-CoV-2 Human PPI detected by Gordon et al.3 We also use 
all drugs and their targets reported in the UniProt website https:// www. unipr ot. org30 to evaluate our candidate 
sets as drug targets. This dataset contains 3064 proteins targets in our network. In addition, we use two groups 
of drugs related to COVID-19 reported in https:// www. drugb ank. ca  website19.

Table 7.  Some of the significantly enriched pathways that are related to COVID-19 essential proteins ( E1).

Term No. gene P-value FDR

Annotation cluster 1 (Enrichment score: 9.739)

hsa05142:Chagas disease (American trypanosomiasis) 18 1.15E−16 1.23E−14

hsa05144:Malaria 14 7.52E−16 2.68E−14

hsa05323:Rheumatoid arthritis 15 1.17E−13 2.09E−12

hsa05164:Influenza A 18 7.98E−13 1.22E−11

hsa05321:Inflammatory bowel disease (IBD) 13 1.00E−12 1.34E−11

hsa04620:Toll-like receptor signaling pathway 15 1.68E−12 1.99E−11

hsa05146:Amoebiasis 14 2.99E−11 2.28E−10

hsa05140:Leishmaniasis 12 8.49E−11 5.68E−10

hsa05152:Tuberculosis 16 1.67E−10 9.90E−10

hsa05134:Legionellosis 10 2.55E−09 1.30E−08

hsa05145:Toxoplasmosis 12 1.04E−08 4.82E−08

hsa04064:NF-kappa B signaling pathway 11 1.32E−08 5.89E−08

hsa04621:NOD-like receptor signaling pathway 9 7.35E−08 3.03E−07

hsa05133:Pertussis 9 7.49E−07 2.59E−06

hsa05132:Salmonella infection 9 1.64E−06 4.88E−06

h_nthiPathway:NFkB activation by Nontypeable Hemophilus influenzae 5 0.008042 0.129753

Annotation cluster 2 (Enrichment score: 4.639)

hsa04621:NOD-like receptor signaling pathway 9 7.35E−08 3.03E−07

hsa05020:Prion diseases 5 3.62E−04 6.06E−04

hsa04623:Cytosolic DNA-sensing pathway 6 4.52E−04 7.22E−04

Annotation cluster 3 (Enrichment score: 3.278)

hsa04060:Cytokine–cytokine receptor interaction 19 1.76E−11 1.57E−10

h_cytokinePathway:Cytokine Network 10 1.25E−08 2.12E−06

hsa04940:Type I diabetes mellitus 8 1.69E−07 6.47E−07

h_inflamPathway:Cytokines and Inflammatory response 10 2.09E−07 1.77E−05

hsa05332:Graft-versus-host disease 7 7.97E−07 2.66E−06

hsa05330:Allograft rejection 7 1.62E−06 4.88E−06

hsa04630:Jak-STAT signaling pathway 10 1.40E−05 3.55E−05

22.Cytokine-chemokine_CNS 7 3.54E−05 0.001257

hsa04672:Intestinal immune network for IgA production 6 1.04E−04 2.18E−04

https://www.uniprot.org
https://www.drugbank.ca
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Algorithms for finding the essential proteins. Essential proteins perform a broad range of important 
functions in the biological network. Therefore, removing the minimum number of these essential proteins can 
have the highest impact on disrupting the biological activity of  cells31. We proposed two different algorithms 
in previous  works15, 16 for identifying the mentioned essential proteins. In this work, we modify the previous 
algorithms to find the essential proteins in the network that was created from a set of virus targets (332 proteins 
reported as possible targets of the SARS-CoV-2  virus3) and a set of processes associated with these proteins. 
For this purpose, we use biological information to build our network. Previous studies show that SARS-CoV-2 
infects the human cells by generating 29 viral proteins that bind to different human proteins. Gorden et al.3 
reveal 26 proteins from these 29 proteins and used affinity purification with the help of mass spectrometry lead-
ing to the identification of 332 human proteins involved in these viral proteins binds.

In the following section, we describe the details of algorithms 1 and 2. We explain the different parts of each 
algorithm in two separate sections. In both algorithms, the construction of the biological network is the same and 
is as follows: a biological network is considered as a weighted undirected graph G = (V ,E,ω) , where each node 
vi ∈ V  represents a protein. Two proteins vi and vj are connected with an edge eij ∈ E if they participate in the 
same biological process. The ω(eij) represents the weight of eij which illustrates the number of biological processes 
that two proteins vi and vj participate in it. The degree of node vi shows the number of edges incident to this node.

Algorithm 1: betweenness value. In this algorithm, we try to impose maximum disruption to the network by 
selecting the least number of essential proteins with respect to the value called betweenness. For this purpose, 
we define the path and betweenness in the following. A path between two nodes in the graph is a sequence of 
edges that connect the number of distinct nodes through this path. In the weighted graph, the weight of the path 
is obtained from the sum of the weight of edges in this path, and the shortest path between two nodes is defined 
as a path with minimum weight. Having considered that, we can define the betweenness value for each node, vi 
, in the following way:

Table 8.  Some of the significantly enriched pathways that are related to COVID-19 essential proteins ( E2).

Term No. gene P-value FDR

Annotation cluster 1 (Enrichment score: 9.739)

hsa05142:Chagas disease (American trypanosomiasis) 18 1.15E−16 1.23E−14

hsa05144:Malaria 14 7.52E−16 2.68E−14

hsa05323:Rheumatoid arthritis 15 1.17E−13 2.09E−12

hsa05164:Influenza A 18 7.98E−13 1.22E−11

hsa05321:Inflammatory bowel disease (IBD) 13 1.00E−12 1.34E−11

hsa04620:Toll-like receptor signaling pathway 15 1.68E−12 1.99E−11

hsa05146:Amoebiasis 14 2.99E−11 2.28E−10

hsa05140:Leishmaniasis 12 8.49E−11 5.68E−10

hsa05152:Tuberculosis 16 1.67E−10 9.90E−10

hsa05134:Legionellosis 10 2.55E−09 1.30E−08

hsa05145:Toxoplasmosis 12 1.04E−08 4.82E−08

hsa04064:NF-kappa B signaling pathway 11 1.32E−08 5.89E−08

hsa04621:NOD-like receptor signaling pathway 9 7.35E−08 3.03E−07

hsa05133:Pertussis 9 7.49E−07 2.59E−06

hsa05132:Salmonella infection 9 1.64E−06 4.88E−06

h_nthiPathway:NFkB activation by Nontypeable hemophilus influenzae 5 0.008042 0.129753

Annotation cluster 2 (Enrichment score: 4.639)

hsa04621:NOD-like receptor signaling pathway 9 7.35E−08 3.03E−07

hsa05020:Prion diseases 5 3.62E−04 6.06E−04

hsa04623:Cytosolic DNA-sensing pathway 6 4.52E−04 7.22E−04

Annotation cluster 3 (Enrichment score: 3.278)

hsa04060:Cytokine–cytokine receptor interaction 19 1.76E−11 1.57E−10

h_cytokinePathway:Cytokine Network 10 1.25E−08 2.12E−06

hsa04940:Type I diabetes mellitus 8 1.69E−07 6.47E−07

h_inflamPathway:Cytokines and inflammatory response 10 2.09E−07 1.77E−05

hsa05332:Graft-versus-host disease 7 7.97E−07 2.66E−06

hsa05330:Allograft rejection 7 1.62E−06 4.88E−06

hsa04630:Jak-STAT signaling pathway 10 1.40E−05 3.55E−05

22.CytokinE−chemokine_CNS 7 3.54E−05 0.001257

hsa04672:Intestinal immune network for IgA production 6 1.04E−04 2.18E−04
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where χejk is the total number of shortest paths from node vj to node vk and χejk vi is the number of shortest paths 
that pass through vi . Algorithm 1 consists of three phases. In the first phase, the weighted graph is constructed as 
mentioned earlier. Then, the betweenness value for each node in the network is calculated. In the second phase, 
the input graph is partitioned into two disjointed parts. For this purpose, the node with minimum betweenness 
value is chosen as a candidate to put into a partition. Then, from all of the neighbors of this node, the node 
with the least betweenness value is selected and placed in the other partition, respectively. We continue this 
procedure recursively until all nodes are put into two nearly equal size partitions. In the third phase, we should 
select the minimum number of nodes for which their removal would destroy all crossing the edges between the 
two partitions. For this purpose, we select the nodes that are connected as the endpoints of the crossing edges 
between two parts with respect to their betweenness value. This phase is continued until the connected network 
is broken apart into two disjointed partitions. The third phase is equivalent to the minimum bi-section problem, 
which is a NP-complete  problem32.

Algorithm 2: spectral partitioning. The Problem of partitioning a simple graph G into two balance or nearly 
balance partitions while minimizing the number of edges between these two parts (cut edge) is known as the 
NP-complete  problem33 . Therefore, we approximate this balanced partitioning with the spectral bi-partition-
ing algorithm. This algorithm is based on eigenvectors of Laplace of the graph and divides the graph by two 
with respect to eigenvectors of a Laplacian matrix. Spectral partitioning is one of the most successful heuristic 
approaches in graph partition algorithms. Let A = [aij] shows the adjacency matrix of G such that,

We define a matrix D = diag(di) as a diagonal degree matrix of G, in this matrix a d(vi) shows the degree of 
vi which is the number of edges incident to node vi . Now, we consider the Laplacian matrix of the graph G by 
L = D\A and L(G) = [lij] where,

The Laplacian matrix is a symmetric positive semi-definite matrix with some important properties. Let 
u = (u1, u2, ..., un) be the normalized eigenvectors of matrix L(G) and (�1, �2, . . . , �n) be the corresponding 
eigenvalues of these eigenvectors. Then, the u is that pairwise orthogonal. If the graph G is a connected one, then 
� = �1 is the only zero eigenvalue of  L33.

Here we compute the eigenvectors of Laplacian matrix L(G), according to the second smallest eigenvalue of 
this matrix �2 and put them in vector X = (x1, . . . , xn) . Next, we sort the elements of X and insert half of the 
nodes according to these elements in partition G1 and the reminder of nodes in another partition G2 . The edges 
which cross these two partitions are the edge cut of our proposed graph G. The above procedure divides the nodes 
of graph G into two partitions G1 and G2 with nearly equal sizes and a set of cut edges E(G1,G2) which connects 
these two partitions. We should disconnect these two partitions through these cut edges.

The remainder of the algorithm finding the vertex cut or a subset C from set V which has the following 
properties: (1) the set C is as small as possible; (2) the removal of C partitions graph G into two partitions G1\C 
and G2\C such that the ratio |G1\C|/|G2\C| , which shows the difference of the size of two subgraphs is as close 
to 1 as possible; and (3) for each cut edge eij ∈ E(G1\C,G2\C) , vi ∈ G1\C and vj ∈ G2\C . To find the vertex 
cut set C, suppose M = {e1 = α1β1, . . . , em = αmβm} is the set of edges in cut edge E(G1,G2) that found by the 
above mentioned algorithm. We construct the bipartite graph H that containing two partitions G1\C and G2\C , 
with above procedure. Also, we consider each of the cut edges between two partitions G1 and G2 are having one 
endpoint in each part. For example, suppose that the A = {α1, . . . ,αm} is placed in G1 and B = {β1, . . . ,βm} is 
placed in G2 , respectively. Then, we choose vertices from A and B with respect to their degrees repeatedly until 
the all the edges in C are removed.

Code availability
Datasets and the codes of the algorithms are available in our github repository (https:// github. com/ rosaa ghdam/ 
Drug- Target).
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