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Histopathologists have been attempting to define a stan-
dard taxonomy for breast cancer based on morphology 
since the 1960s. Outcome prediction and clinical deci-
sions are still commonly made by histological profiling and 
various other clinical parameters.1 However, the introduc-
tion of gene expression microarrays more than a decade 
ago promised that the use of quantitative assessment of 
all genes, rather than hisopathological subjective assess-
ments or measurements of the expression level of single 
genes or proteins, would offer a more precise determina-
tion of the continuous tumor biology and outcome in breast 
cancer. Genome-wide profiling of breast cancer tumors 
and cell lines are continually used to identify dysregulated 
biological processes that characterize the etiology and 
progression of the disease at the molecular level.2–4 cDNA 
microarrays, DNA and RNA sequencing, and proteomics 
and metabolomics technologies rapidly uncover the hetero-
geneity of this disease. Such heterogeneity, coupled with 
variable response to therapy, motivated subcategorization 
of patients with breast cancer into various subtypes,5,6 and 
more recently subtypes of subtypes.2 Of note, the molecular 
profiling of breast cancer tumors has identified upregulation 
of particular receptors within different patient subgroups 
such as the estrogen receptor, the progesterone receptor, 
and the epidermal growth factor receptor 2 (HER2),7 which 
serve as personalized subtype-specific biomarkers and 
drug targets. Today, ~70% of patients receive adjuvant ther-
apy, and decisions are increasingly made based on subtype 
classification. Adjuvant therapies are those given in addi-
tion to the main treatment, e.g., after surgical removal of the 
tumor. Adjuvant therapies can be radiotherapy or systemic 
therapies such as chemotherapy, or drug-targeted thera-
pies. Clinical implementation of subcategorization of breast 
cancer tumors into the five subtypes; luminal A, luminal B, 
HER2+, normal-like, and basal are currently established. 

These subtypes are continually refined and are correlated 
with clinical outcome such as tumor metastatic propensity, 
response to various drugs, and patient-survival expectancy. 
Commercial and noncommercial biomarker diagnostic 
tools that rely on the combined expression of biomarker 
gene sets such as OncotypeDX (21 genes),8 Veridex (76 
genes),9 MammaPrint (70 genes),10 PAM50,11 and others12,13 
demonstrated clinical applicability in identifying tumor sub-
types, and are used routinely for selecting therapeutic 
regimens. Drug-induced gene expression signatures identi-
fied in panels of cancer cell lines can potentially enhance 
such approaches to elicit more precise and personalized 
therapies that would lead to better clinical outcomes.14 Cell 
lines are more easily amenable than tumors from patients 
for measuring gene-expression changes induced by many 
drugs and their combinations at different concentrations 
and time points. In this direction, recent studies reported 
drug–response profiles for many breast cancer cell lines.15,16 
For instance, Heiser et al.15 reported the responses of 55 
cell lines to 77 drugs and combined the results from such 
screen to basal geneexpression profiles of these cell lines 
to explain the molecular mechanisms potentially responsi-
ble for the differential response of specific cells to specific 
drugs. The study by Heiser et al. showed that gene expres-
sion profiles can correlate with susceptibility of specific cell 
lines to particular classes of drugs. However, the next step, 
linking cell lines to patient tumors, is not trivial. Some of 
the challenges are dealing with the high dimensionality of 
the data including temporal stage of the tumors, time points 
after drug treatment of the cell lines, drug-concentration 
considerations, platform-dependent variability, and bio-
logical differences between tumors from patients and cell 
lines, including cell-media factors and the immortalized 
transformation from tumors into cell lines. Mindful of these 
issues, we developed new methods to (i) identify clusters 

Genome-wide expression data from tumors and cell lines in breast cancer, together with drug response of cell lines, open 
prospects for integrative analyses that can lead to better personalized therapy. Drug responses and expression data collected 
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of patients across large cohorts; (ii) link clusters of patients 
to cell lines; and (iii) visualize networks that connect drugs 
to cell lines based on drug-sensitivity measures, and cell 
lines to patient tumors based on gene expression similar-
ity or metasignature similarity. Metasignatures are identi-
fied by performing gene-list enrichment analyses using a 
transcription factor gene-set library created from the ChEA 
database,17 or a histone modification gene-set library cre-
ated by processing data from the Roadmap Epigenomics.18 
A schematic diagram of the overall approach is depicted in 
Figure 1. Consequently, this approach aims to facilitate the 
integration of such data for the ultimate purpose of guid-
ing subtype-specific drug selection for individual patients 
for personalized and precision medicine. Along the way, the 
analysis identified discrepancies between our current clas-
sification of cell lines and patient tumors, suggesting two 
major subtypes of patient clusters in breast cancer. In addi-
tion, the analysis also uncovered molecular mechanisms of 
dysregulated pathways in specific subsets of patients and 
linked those pathways and clusters to expected outcome.

RESULTS
Stratification of patient tumors and cell lines
We first reanalyzed the classical gene expression data from 
the 122 breast cancer Stanford/Norway (S/N) patient tumor 
microarray study.7 From this study, we only considered the 
authors’ defined 453-probe signature used to stratify sam-
ples into the five known subtypes. From these 453 genes, 
we identified a 55-gene biomarker set that best stratified 
the five tumor subtypes using analysis of variance with P 
< 0.00001 cutoff after Benjamini–Hochberg correction. This 
55-gene biomarker set was created using a similar approach 
applied to extract the widely used PAM5011 biomarker gene 
set. PAM50 and our 55-gene biomarker gene set share nine 
genes: CCNE1, ERBB2, ESR1, FOXA1, FOXC1, GRB7, 
KRT5, NAT1, and SLC39A6. To visualize the heterogeneity 
of breast cancer tumors from the S/N data set, the biomarker 
set of genes was used to generate principal component 
analysis and hierarchical clustering plots (Supplementary 
Figure S1 online). The plots show that the tumors segre-
gate well based on subtype. However, the luminal B subtype 

Figure 1  Schematic of the pipeline for the generation of integrated tripartite networks of patient clusters, cell lines, and drugs. Drug/cell-
line correlation matrix was integrated with gene expression or metasignatures matrices from cell lines and from three studies that profiled 
gene expression in tumors from patients. From each expression or metasignature matrix, clusters of patients were identified and mapped to 
individual cell lines, whereas cell lines were connected to the drugs that show most potency in inhibiting their proliferation. KFSYSCC, Koo 
foundation Sun-Yat-Sen Cancer Center; TCGA, The Cancer Genome Atlas. S/N, Stanford/Norway.
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is slightly mixed with the ERBB2+ subtype. The hierarchical 
clustering plot shows that STARD3, a lipid transporter, and 
MED1, a transcriptional regulator, are uniquely upregulated 
in the ERBB2+ subtype; a set of 16 genes (center cluster) 
are upregulated in the basal tumor subtype; whereas 38 
genes (top cluster), one of which being ESR1, are found 
to be predominantly upregulated in the luminal A subtype.

Next, we examined the ability of the 55-gene biomarker set 
to stratify patients from two other large-scale studies that pro-
filed breast cancer tumors from individual patients: the Koo 
foundation Sun-Yat-Sen Cancer Center (KFSYSCC) study 
(327 patients)19 and The Cancer Genome Atlas (TCGA) 
study (536 patients).2 In addition, gene expression and drug–
response data were extracted from the supplementary data 
of the study by Heiser et al.15 A subset of 31 cell lines was 
chosen because those cell lines have both gene expression 
and drug–response data. Of the 55 biomarker genes, 52 from 
the S/N study were found in the other sources of expression 
data. Therefore, this 52 gene set was used as the final bio-
marker set (Supplementary Table S1 online). This 52-gene 
biomarker set, identified from the S/N tumors, can segregate 
patients based on their known subtype in the independent 
KFSYSCC and TCGA tumor cohorts similar to previously 
published biomarker gene sets that significantly overlap 
with our set (Supplementary Table S2 online). The princi-
pal component analysis plots show that the biomarker set 
produced subtype-specific groups, with the luminal cell lines 
grouping closer to the ERBB2+ tumors (Supplementary Fig-
ure S1a–d online). It is known that ERBB2+ have luminal 
origin but contain a higher genomic ERBB2 copy number. 
The differential-expression profiles show consistency among 
the proportion of patients classified into the various subtypes 
for KFSYSCC and TCGA; whereas showing that the basal 
subtype is the most distinct in differential expression. The bio-
marker set produced similar differential-expression patterns 
in the cell lines, which were independently categorized into 
their four previously defined subtypes (Supplementary Fig-
ure S1d online).

To assess similarity in gene expression profiles between 
the cell lines and the tumor groups, we correlated the mRNA 
expression of the cell lines with those of each patient clus-
ter using the biomarker gene set (Figure 2a). Clustering the 
correlations between cell lines and tumor clusters revealed 
subtype-specific expression similarity and enabled match-
ing of patient subtypes to cell-line subtypes. For the mRNA-
expression analysis, we found that the basal subtype tumors 
have similar expression profiles to the basal subtype cell 
lines, as expected. However, we also found strong similar-
ity of basal classified tumors to claudin-low cell lines, sug-
gesting that claudin-low cell lines and basal subtyping of 
tumors may be similar at the transcriptome level. Of note, we 
found that ERBB2+ tumors are more similar to the AU-565, 
SK-BR-3, HCC1954, and UACC-893 cell lines relative to the 
other luminals and ERBB2+ cell lines, suggesting that not 
all ERBB2+ cell lines can be matched to ERBB2+ patients 
equally well. The higher correlation between the normal-
like tumors and the basal subtype cell-lines HCC70 and 
HCC1187 is also consistent with what is expected. Once 
we have identified the various clusters of patients and cell 
lines, we can match them and connect them to the drugs 

that show most potency in growth inhibition and apoptosis 
for these cell lines.

Computing metasignatures
As an alternative, we developed a different approach to iden-
tify clusters of patients and connect clusters of patients to 
cell lines. We first compared the normalized gene expression 
levels for each gene in each group of patients or cell lines 
to identify the genes that are highly expressed in a specific 
patient or cell line. For this, we computed the average and SD 
for each gene in each data set and then converted expres-
sion levels to z-scores that reflect deviation from the aver-
age expression. We then selected the genes that are highly 
expressed in each patient or cell line using the P < 0.01 cutoff 
to create a gene-set library stored in a gene matrix transpose 
format (Supplementary Table S3 online). The next step is 
computing gene-list enrichment analysis using the Fisher’s 
exact test for enrichment for transcription factors or histone 
modifications. Each list of highly expressed genes from each 
individual patient or cell line is compared for overlap with lists 
of genes identified to be regulated by mammalian transcrip-
tion factors as determined by ChIP-seq data collected for the 
ChEA database,17 or regulated by a histone modification as 
determined by the ChIP-seq-based experiments performed by 
the Roadmap Epigenomics Consortium.18 We have created a 
gene-set library from the Roadmap Epigenomics by process-
ing 644 ChIP-seq experiments to identify putative target genes 
for 27 histone-modification types measured in various human 
cell types. The results from the enrichment analysis that com-
pared the upregulated genes in the patients and cell lines 
with the ChEA or histone modification gene-set libraries are 
matrices in which the columns represent patients or cell lines, 
whereas the rows represent enrichment terms (Supplemen-
tary Table S4 online). The negative log of the overlap P value 
enrichment score can be considered as transcription factor 
or histone modification pseudo-activity and as such we name 
these matrices metasignatures. We followed exactly the same 
analysis as described above for mRNAs using the metasig-
natures instead of the mRNA values. Now the biomarker set 
is not made of genes, but of the most informative transcrip-
tion factors or histone modification ChIP-seq experiments that 
overlap with the highly expressed genes in subsets of cell lines 
or patients (Supplementary Figures S2 and S3 online).

The results from such metasignature analysis attempt to 
divide the patients and cell lines into five subtypes. How-
ever, it appears that the patients are actually naturally 
divided into two relatively even major subtypes: tumors that 
are mostly regulated by Myc and RUNX1 and the activation 
mark H3K4ME3 histone modification; whereas the second 
group is made of tumors that are mostly regulated by Suz12 
and the repressive histone mark H3K27ME3. This is con-
sistent with our knowledge that Suz12 is a part of the poly-
comb repressive complex (PRC2) that is responsible for the 
H3K27ME3 modification,20 which is found near suppressed 
genes. On the other hand, the H3K4ME3 is known to be an 
activation mark21 and its association with Myc is also known. 
The segregation into two subtypes is most profound for the 
TCGA and KFSYSCC data sets, both showing a similar 
pattern that is consistent with the S/N data set. However, 
the S/N data set also shows a strong Smad signature for 
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the basal tumors, which are only weakly detected in the 
TCGA and KFSYSCC data sets. Correlation with the cell 
lines (Figure 2a,b and Supplementary Figure S4 online) 
shows that most cell lines match the Suz12-PRC cluster of 
patients; whereas the HCC1419 cell line is the only line that 
matches the Myc-H3K4ME3 signature. Of note, the TCGA 
data set has a small group of patients that show enrich-
ment for H3K9ME3. These patient clusters correlate with 
the T47D and HCC202 cell lines (Figure 2b).

The biomarker set approach is supervised and tries to 
divide patients into their expected five categories. Hence, 
the analysis is biased toward previous classification of the 
patients from the S/N study into five subtypes. To test the 
metasignature approach without this bias, we also created 
hierarchical clustering plots using the metasignatures of 
KFSYSCC and TCGA without the filtering step of identifying 
a biomarker set based on previously defined subtypes (Fig-
ure 3a,b and Supplementary Figures S5–S8 online). This 

Figure 2  Connecting cell lines to clusters of patients. (a) Correlation of coexpressed patient tumor clusters and cell lines using the biomarker 
gene set or (b) the supervised metasignature approach applied using the histone modification gene-set library. KFSYSCC, Koo foundation 
Sun-Yat-Sen Cancer Center; TCGA, The Cancer Genome Atlas.
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analysis identified the two major clusters as above, and new 
distinct small clusters of patients in the TCGA and KFSYSCC 
data sets. It is interesting that the TCGA and KFSYSCC data 
sets show very similar patterns of global metasignatures 

even though the studies used various microarray platforms. 
For example, a set of patients enriched with the previously 
assigned luminal A subtype is found to be highly enriched 
for upregulated genes regulated by the RE1-silencing 

Figure 3  Unsupervised metasignature clustering of The Cancer Genome Atlas patients using the (a) ChEA or (b) histone modifications gene-
set libraries. Patients are colored based on the classifications determined by the supervised mRNA approach according to their classified 
subtype using the 52 biomarker gene set.
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transcription factors (Figure 3a for TCGA, and Supplemen-
tary Figure S5 online for KFSYSCC). Another distinct cluster 
is enrichment for factors that include STAT3, 4, and 6, and 
MYB, and CEBPB, and GATA 1 and 2.

Overall and globally, the patients are divided into two major 
groups: the MYC group that also includes the RUNX1, E2F1 
transcription factors, and the second group, which includes 
Suz12 and P53 as key enriched transcription factors. The 
previous assignment of patients into their designated clus-
ters is highly mixed but definitely not random because small 
clusters of patients all belong to the same subtype, one of the 

five established subtypes. The histone-modification metasig-
natures applied to the TCGA and KFSYSCC data also con-
tain distinct small clusters of patients, but divide the cohorts 
into the two main groups (Figure 3b for TCGA, and Supple-
mentary Figure S6 online for KFSYSCC). The correlation 
of the unsupervised TCGA and KFSYSCC metasignature 
with the unsupervised metasignatures computed for the cell 
lines shows high similarity to the results with the supervised 
approach. Most cell lines highly correlate with the Suz12/
P53/H3K27ME3 metasignatures of patients and only the 
HCC1419 correlates with the active marks-enriched patients. 

Figure 4  Kaplan–Meier survival curves applied to the identified clusters using the metasignature supervised and unsupervised methods. 
(a) The two major clusters identified using the ChEA metasignatures in the KFSYSCC data set. (b) The two major clusters identified using 
the histone modification metasignatures in the KFSYSCC data set, as well as a smaller cluster of seven patients. (c–f) Survival curves for the 
unsupervised clustering applied to the TCGA and KFSYSCC data sets. The major clusters are the lines with the more refined fluctuations. 
These clusters correspond to clusters shown in Figure 3 and Supplementary Figures S1–S6 online. KFSYSCC, Koo foundation Sun- 
Yat-Sen Cancer Center; TCGA, The Cancer Genome Atlas.
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Some other cell lines, i.e., T47D, HCC202, HCC1937, and 
HCC1954 appear to have a unique correlation with small 
subsets of patients (Supplementary Figures S9 and S10 
online). These patients may benefit from targeted therapies 
tailored specifically for them.

Validation of newly identified clusters using distance to 
metastasis
The identification of new clusters of patients using the meta-
signature approach can be validated if it provides clear clas-
sification of patients with respect to observed outcome. For 
this, we analyzed the time-to-metastasis-event data avail-
able for both the TCGA and KFSYSCC data sets to evaluate 
the survival curves for each cluster identified by the meta-
signature approach. The results show clear and consistent 
division in expected outcome for the two major classes of 
patients: the Suz12/P53/H3K27ME3-enriched tumors have 
better prognosis than the MYC/RUNX1/H3K4ME3-enriched 
tumors (Figure 4). In addition, the STAT3/GATA/H3K36ME3 
cluster shows very good prognosis with almost no recur-
rence events (Figure 4d–f), whereas the RE1-silencing 
transcription factor and SMAD-enriched cluster have very 
poor prognosis (Figure 4c). Figure 4 only shows recurrence 
curves that are statistically significantly different (paired log-
rank test, P < 0.05).

Integrated network visualization of patient tumors, cell 
lines, and drugs
Next, we processed the drug–response data for the 31 cell 
lines treated with 77 drugs from the study by Heiser et al.15 
Response was quantified as the concentration of the drug 
needed to inhibit 50% of cell growth (IG50). The concentra-
tions were converted into sensitivity measures by taking the 
−log10(IG50); this means that higher values correspond to 
higher sensitivity of a cell line to a drug. Finally, to provide a 
condensed, integrated view of the connections between the 
independent data sets and data types, we created tripartite 
networks that capture the connections between gene expres-
sion signature, or metasignatures, from the patients and cell 
lines with drug–response data for the 31 cell lines treated with 
77 drugs. These data sets were integrated into tripartite graphs 
illuminating the indirect relationships between patient clusters 
and drugs (Figure 5 and Supplementary Figure S11 online).

The tripartite network created from the supervised mRNA 
approach automatically identified the luminal A cell lines 
HCC1428, BT-483, and MCF7. The CAMA-1 cell line was 
clustered with the luminal B clusters of patients and two 
ERBB+ cell lines: HCC202 and HCC1419. These two ERBB+ 
cell lines are appropriately sensitive to ERBB-signaling inhibi-
tors. However, these inhibitors are predicted to work less well 
on the normal-like clusters of patients that are also connected 
to two ERBB+ cell lines. Although most cell lines are sensitive 
to chemotherapies that target microtubules, each identified 
cluster of patients and their associated cell lines are con-
nected to different targeted therapies: e.g., heat shock protein 
inhibitors are predicted to work best for the luminal A cluster.

The tripartite networks created from the supervised 
(Figure 5b and Supplementary Figure S11a online) and 
unsupervised (Supplementary Figure S11b online) meta-
signature approaches show a consistent but clearer picture. 

The clusters of patients divide into two main groups with more 
cell lines connected to the Suz12/H3K27ME3 patients. These 
cell lines are more sensitive to the chemotherapies. Targeted 
therapies including kinase inhibitors such as those targeting 
EGFR and ERRB2, or PI3K or mTOR, are connected to the 
few ERBB+ cell lines and their corresponding patient clus-
ters. The MEK inhibitor GSK1120212 is most specific for the 
HCC202 cell line, which is most similar to the H3K9ME3 clus-
ter, suggesting these subgroup of patients are likely to benefit 
mostly by using this drug (Figure 5b).

DISCUSSION

In this study, we developed a new method to cluster patients 
based on gene expression data. The method computes 
metasignatures for the upregulated genes in each patient 
based on a comparison across all patients. It would be inter-
esting to also look at downregulated genes’ metasignatures. 
The results from the metasignature analysis challenge cur-
rent views of subtypes in breast cancer. It suggests two broad 
categories with a few additional distinct subtypes made of 
few patients. Low levels of trimethylation at lysine 27 have 
been previously associated with poor prognosis.22 The fact 
that only few cell types match the Myc/ERBB2+ signature is 
surprising and could be due to issues with our computational 
settings, but can also challenge current dogmas in the field. If 
our analysis is correct, it suggests that more cell types from 
this type should be developed. It would be interesting to see 
if different clustering of patients will emerge when robust pro-
teomics approaches become feasible. In this study, we also 
developed a network-based approach for integrating and 
visualizing gene expression similarity between patient tumors 
and cell lines, together with in vitro drug–response data. The 
network condenses, prioritizes, and connects heterogeneous 
data types to enable matching individual patients to potential 
treatments. Future work can prioritize drug combinations by 
also including drug-induced gene expression signatures col-
lected from breast cancer cell lines.23

There are currently 53 drugs approved by the US Food 
and Drug Administration for use in breast cancer. Many are 
derivatives of the same drugs and many are chemothera-
pies targeting cell replication by DNA damage, microtubule 
polymerization disruption, or protein synthesis. Few tar-
geted drugs exist, and these targets are mainly from the 
EGFR/ERRB2 or the ESR1 pathways. Broadly, our analy-
sis suggests that the tumors with metasignatures enriched 
for the repressive marks Suz12/H3K27ME3 would benefit 
more from chemotherapies targeting microtubule polym-
erization disruption, whereas tumors with metasignatures 
enriched for active marks Myc/H3K4ME3 are more likely to 
benefit from targeted therapies such as those directed at 
the EGFR/ERRB2 pathway and PI3K/AKT pathway. There 
are many more experimental drugs that are pathway spe-
cific and these are currently being tested for both growth-
inhibition response and global gene expression in many 
cell lines. It is expected that the results from such studies 
will lead to better specific therapeutics with fewer adverse 
events.24

One of the shortcomings of the metasignature approach 
is that the ChEA and histone modification gene set library 
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data sets are incomplete and come from many cell types; 
for ChEA, many of the ChIP-seq data are from mice. Within 
this data there might also be a bias for some specific cell 
types such as stem cells, which are highly represented in 
both data sets. Regardless, the advantage of the metasigna-
ture approach is that the results, besides providing a different 
level of clustering, suggest regulatory mechanisms specific 
for subtypes; these can serve as potential drug targets tai-
lored for specific subtypes.

Currently, there are no clinical data available to validate 
the predictions made by our analyses. Clinical trials can be 
designed by classifying patients first into their respective sub-
types, using various approaches, and then treating patients 
with the predicted drugs that match their subtype classi-
fication. Such an approach to clinical trials is increasingly 
becoming more accepted, but the gap between knowledge 
and practice is still wide.25 Before clinical trials can be con-
sidered, drug responses of cell line need to be proven to be 

Figure 5  Network that integrates gene expression and drug–response data to connect groups of patients, cell lines, and drugs. Edges 
between patient groups and cell lines are colored based on higher (red) or lower (green) expression correlation. Edges between cell lines and 
drugs are colored based on higher (magenta/purple) to lower (cyan) drug sensitivity. (a) On the basis of supervised mRNA expression; (b) On 
the basis of metasignature applied using the ChEA gene-set library. KFSYSCC, Koo foundation Sun-Yat-Sen Cancer Center; S/N, Stanford/
Norway; TCGA, The Cancer Genome Atlas.
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clinically appropriate and even before that, high-throughput 
drug responses for many cell-line studies need to show con-
sistency across labs and publications. So far only two studies 
profiled many drugs across many cell lines in cancer,5,16 and 
hopefully these two studies are consistent. More efforts in 
this direction and further validation in xenograft models, as 
well as considerations of side effects, could move us closer 
to testing the approach presented here in humans.

Although much is known about breast cancer, and the 
prognosis for this disease has substantially improved, there 
are other cancers with much worse prognoses, for which 
less is known and new therapeutics are desperately needed. 
Hence, data-integration approaches, such as the one pre-
sented here, may better fit these cancers. On the other hand, 
the method is data hungry, and less data are typically avail-
able for other cancers. Overall, the study is important for 
communicating ideas about data-integration opportunities 
and the types of analyses that gradually become more pos-
sible. However, conclusions about our findings need to be fur-
ther confirmed by additional computational and experimental 
methods given that the approach has many limitations.

METHODS
Stratification of patient tumors and cell lines
Data from the S/N patient tumor gene expression microar-
ray study (GEO accession GSE4335)7 profiling 122 tumor 
samples from patients with breast cancer were reprocessed. 
Probes without a gene symbol or those belonging to multiple 
UniGene clusters as assessed by SOURCE (http://source.
stanford.edu) were removed. Probes corresponding with 
the same gene symbol were averaged for each sample if 
the correlation between the probes was >0.7; otherwise the 
probe with the highest variance across samples was chosen, 
yielding the 453 unique gene biomarker set. Samples that 
exhibited close intrasubtype-cluster similarity were retained 
for further analysis (n = 73 patients). From the 453 genes, 
genes that best stratified the five tumor subtypes, using ana
lysis of variance with P < 0.00001 after Benjamini–Hochberg 
correction, were selected; thereby resulting in a 55-gene bio-
marker set. The P value cutoff was empirically determined to 
yield the best stratification of tumors based on subtype. Gene 
expression data from a cohort of 327 fresh frozen tumors 
from patients with breast cancer diagnosed by the KFSYSCC 
were obtained from GEO (accession GSE20685).19 All 
probes for the same gene symbols as for the S/N clones were 
then matched. Principle component analysis and hierarchical 
clustering plots were applied using MATLAB, Natick, MA.

Integrated network visualization of patient tumors, cell 
lines, and drugs
To establish edges in the network, the two patient tumor data 
sets and the cell-line data set were independently standard-
ized by subtracting the median expression of each gene. Each 
patient sample in the S/N 73-sample data set was assigned 
to one of five tumor clusters, corresponding to five known 
breast cancer subtypes. The 327 KFSYSCC tumor samples 
were clustered using K-means into five clusters as well, inde-
pendent of the S/N data. Five K-means-cluster-centroids were 
chosen under the assumption that the KFSYSCC samples also 

contained patient tumors of five subtypes, similar to the S/N 
subtype designations. Pearson correlations were then com-
puted between the mean expression of the biomarker genes 
in each patient cluster and the biomarker genes in each of 
the 31 cell lines, yielding 31 cell lines × 10 = 310 comparisons 
between patient tumors and cell lines. The patient tumor/cell-
line edges were extracted from this adjacency matrix of cor-
relations between the 10 patient clusters (five from each study) 
and the 31 cell lines using the 52 biomarker genes. For each 
patient cluster, edges representing the top 5% of cell lines with 
the highest correlation between the cell line and patient cluster 
were retained. Edges were colored from green to red in gradi-
ent, signifying lower to higher correlations. The cell line/drug 
edges in the network were extracted from the adjacency matrix 
of sensitivity measures between the 77 drugs and the 31 cell 
lines. For each cell line, edges were drawn for the top 5% of 
drugs that the cell line is most sensitive to, where edges were 
colored in shades of cyan to magenta, signifying lower to higher 
sensitivity. The network was visualized using the yEd software 
(http://www.yworks.com) and customized MATLAB scripts.

Processing the ChIP-seq data from the roadmap 
epigenomics
The histone modification gene-set library was created by pro-
cessing experiments from the Roadmap Epigenomics.18 All 
ChIP-seq experiments from this data set were applied on human 
cell lines with antibodies targeting 27 different histone modi-
fication marks. ChIP-seq data sets from the Roadmap Epig-
enomics project deposited to GEO database were analyzed 
and converted to gene sets with the use of the tool SICER.26 
For each experiment, an input control sample was matched 
according to the description provided. ChIP-seq experiments 
without matched controls input were not included. The resulting 
gene-set library contains 27 types of histone modifications for 
64 human cell lines from various tissue origins.

Calculation of P values for the significance of differ-
ences between Kaplan–Meier curves
We consider two groups of patients who experience events 
(metastases) at various times and may be censored (left the 
study or death) at any time. Let j = 1,2,3,…,J be the indexes 
labeling the distinct times of events in either group. Then let 
N1j and N2j be the number of patients “at risk” (not experi-
enced an event and still in the study) at time j, and let Nj = 
N1j + N2j. Let the number of observed events at time j in each 
group be labeled O1j and O2j, respectively, with the total num-
ber Oj = O1j + O2j. We then make the null hypothesis: each 
group is identically distributed.

In this case, the number of observed events in the first 
group, O1j, at any given time should be distributed according 

to the Hypergeometric distribution, with mean: E
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The log-rank statistic is then: Z O E Vj
J

j j j
J

j= ∑ − ∑= =1 1 1 1( ) / ,  
which can then be compared with the standard Gaussian dis-
tribution to derive the P value.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?

33 Genome-wide mRNA-expression profiling has 
been applied to profile breast cancer cell lines 
and large cohorts of tumors from patients, 
identifying five major subtypes.

WHAT QUESTION DID THIS STUDY ADDRESS?

33 The study combines drug–response data and 
basal gene expression data from cell lines and 
tumors to identify patient clusters and map 
combinatorial therapy for each cluster.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE

33 The study identifies new clusters of patients 
using a metasignature approach. The approach 
identifies distinct clusters of patients that are 
strongly correlated with prognosis as well as 
pointing to specific transcriptional regulatory 
mechanisms at play for each cluster.

HOW THIS MIGHT CHANGE CLINICAL 
PHARMACOLOGY AND THERAPEUTICS

33 The study identified clusters of patients with 
breast cancer in a unique way that might be 
more powerful than current methods; it also 
rationally connects clusters to therapeutic op-
tions through computational analysis and data 
integration.
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