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Abstract

Background: Chronic inflammation is a characteristic feature of diabetic cutaneous wounds. We sought to delineate novel
mechanisms involved in the impairment of resolution of inflammation in diabetic cutaneous wounds. At the wound-site,
efficient dead cell clearance (efferocytosis) is a pre-requisite for the timely resolution of inflammation and successful healing.

Methodology/Principal Findings: Macrophages isolated from wounds of diabetic mice showed significant impairment in
efferocytosis. Impaired efferocytosis was associated with significantly higher burden of apoptotic cells in wound tissue as
well as higher expression of pro-inflammatory and lower expression of anti-inflammatory cytokines. Observations related to
apoptotic cell load at the wound site in mice were validated in the wound tissue of diabetic and non-diabetic patients.
Forced Fas ligand driven elevation of apoptotic cell burden at the wound site augmented pro-inflammatory and attenuated
anti-inflammatory cytokine response. Furthermore, successful efferocytosis switched wound macrophages from pro-
inflammatory to an anti-inflammatory mode.

Conclusions/Significance: Taken together, this study presents first evidence demonstrating that diabetic wounds suffer
from dysfunctional macrophage efferocytosis resulting in increased apoptotic cell burden at the wound site. This burden, in
turn, prolongs the inflammatory phase and complicates wound healing.
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Introduction

The Centers for Disease Control and Prevention (CDC) report

that diabetes affects nearly 21 million Americans i.e., ,7% of the

U.S. population. Impairment of cutaneous wound healing is a

debilitating complication commonly encountered during diabe-

tes mellitus. Foot ulcers represent the most prevalent diabetic

wounds and frequently lead to limb amputations. The incidence

of diabetic foot lesions has been reported to be similar in type 1 vs

type 2 diabetic patients [1]. In human diabetic ulcers, multiple

deviations from normal healing have been identified (reviewed in

[2]. Diabetic ulcers are characterized by a chronic inflammatory

state primarily manifested by imbalances in pro- and anti-

inflammatory cytokines [3]. Transient self-resolving inflamma-

tion is essential for successful wound healing. Wound inflamma-

tion is driven by a variety of mediators that are tightly controlled

in space and time [4,5]. Wound-site macrophages represent a key

player that drive wound inflammation. Diabetes is known to

compromise macrophage function including phagocytosis activ-

ity [6,7]. Diabetic macrophages produce high levels of pro-

inflammatory cytokines [8,9].The causative factors underlying

the chronic inflammatory state of diabetic wounds remain to be

characterized.

During the early inflammatory phase, a large number of

polymorphonuclear neutrophil (PMN nearly 50% of all cells at

the wound site) are recruited to the wound site [10]. Following

completion of their tasks, PMN must be eliminated in order to

initiate the next stage of wound healing. Non-resolving

persistent inflammation may derail the healing cascade

resulting in chronic wounds. In the course of adult cutaneous

wound healing, the granulation tissue decreases in cellularity

and evolve into a scar [11]. Rapid increase in cell infiltration

during tissue reconstruction is balanced by apoptosis. Apoptosis

allows for the elimination of cells that are no longer required at

the injury site or cells that are too damaged to facilitate the

healing process. While mechanisms of apoptosis have been

intensely studied, the specific mechanisms of disposal or

clearance of apoptotic cells from the wound site remain poorly

understood [12].

Phagocytosis of apoptotic cells has distinctive morphologic

features and unique downstream consequences. deCathelineau

and Henson [13] and Gardai et al [14] coined the term

efferocytosis [15]. Efferocytosis refers to phagocytosis of apoptotic

cells, an essential feature of immune responses and critical for the

resolution of inflammation. This final removal step in the cell-

death program plays a critical role in protecting tissues from

PLoS ONE | www.plosone.org 1 March 2010 | Volume 5 | Issue 3 | e9539



exposure to the toxic contents of dying cells and also serves to

prevent further tissue damage by stimulating production of anti-

inflammatory cytokines and chemokines [16,17]. Inappropriate

clearance of cell corpses may lead to autoimmune diseases and

chronic inflammation [18]. Adequate removal of apoptotic PMNs

by macrophages from the wound site is a pre-requisite for the

restoration of normal tissue function resolving inflammation. In

the clinical treatment of chronic wounds, debridement is

commonly practiced and is aimed at the removal of dead,

damaged, or infected tissue to improve the healing potential of the

remaining healthy tissue. We posit that at the wound-site

successful debridement at the cellular level is a pre-requisite to

the resolution of inflammation and successful healing. The

objective of this study was to test this novel hypothesis and to

delineate mechanisms that are involved in the impairment of

resolution of inflammation in diabetic wounds. This reports

presents first evidence collected from functionally active macro-

phages harvested from diabetic wounds.

Results

Mice homozygous (BKS.Cg-m +/+ Leprdb/J or db/db) for

spontaneous mutation of the leptin receptor (Leprdb) become

identifiably obese around 3 to 4 weeks of age. Elevation of blood

sugar was evident within 4 to 8 weeks after birth. Excisional

(6 mm) wounds created on the back of these mice showed severe

impairment in closure when compared to their corresponding

control (heterozygous db/+) mice (data not shown). Using

histological approaches, we observed that the wounds of diabetic

mice contained higher number of apoptotic cells compared to the

wound tissue of control db/+ mice (Figs. 1A–B). TUNEL staining

and Western blot using active caspase-3 antibody demonstrated

consistent outcomes (Fig. 1C–E). To test the clinical relevance of

the above-said findings punch biopsies (3 mm) were collected from

matched (patient characteristics, wound location and clinical

condition) wounds of consented diabetic and non-diabetic patients

(Table 1). Scoring of active caspase 3 positive cells demonstrated a

Figure 1. Increased number of apoptotic cells in wounds of diabetic mice and humans. A, Representative mosaic images from day 3
wounds of diabetic (db/db) or non-diabetic (db/+) mice stained with active caspase 3 (brown). Counterstaining was performed using
hematoxylin (blue). The mosaic images of whole wounds were collected under 206 magnification guided by MosaiX software (Zeiss) and a
motorized stage. Each mosaic image was generated by combining 12–14 images. Inset: higher magnification image of the boxed area marked in
the mosaic image. scale bar (inset) = 10 mm; B–C, quantification of active caspase 3 (B) or TUNEL positive cells (C). Data are shown as mean 6 SD
(n = 3); *, p,0.05 versus control non diabetic (db/+) mice; D. A representative Western blot image of active caspase-3 (casp-3) and GAPDH
(housekeeping) in day3 wound tissue extracts of diabetic (db/db) or non-diabetic (db/+) mice. E. Densitometry data of blot shown in panel D.
Data shown are mean 6 SD (n = 3). *, p,0.05 compared to db/+ mice; F–G, wound biopsies were obtained from non-diabetic or diabetic patients
presented at the wound clinic. Specimens (3 mm punch) were obtained from the edge of wounds immunostained using active caspase 3 (brown)
antibody as a marker of apoptotic cells. Counterstaining was performed using hematoxylin (blue); F. microscopic images, arrows indicate
positive cells. Scale bar = 50 mm; G, quantification of active caspase 3 positive areas shown in F. Data shown are mean 6 SD (n = 3); * p, 0.05
versus non diabetic leg wounds.
doi:10.1371/journal.pone.0009539.g001
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significantly higher load of apoptotic cells in the wound tissue of

individuals with diabetes (1F–G). In order to identify the types of

cells in the diabetic wounds that were undergoing apoptosis, dual

immunofluorescence studies were performed (Fig. 2). Wound

tissue sections (d3 and d7) from diabetic animals were immuno-

stained with active caspase-3 antibody to visualize apoptotic cells.

The sections were then co-immunostained using either anti-

neutrophil or anti-CD31 (endothelial cell marker) antibody

Fig. 2A&B). The results clearly demonstrate that at day 3 majority

of caspase-3 positive cells were neutrophils. Some endothelial cells

were positive for caspase-3 on day 7 post-wounding. These data

suggest PMNs, and endothelial cells at least in part, represent the

apoptotic cells detected in the wounds.

To test whether increased oxidative stress in diabetic mice

contributes to increased number of apoptotic cells in wounds, the

diabetic mice were supplemented (gavaged) daily with N-acetyl

cysteine (NAC). NAC is a well known antioxidant effective in

decreasing oxidative stress in diabetic mice at the abovementioned

dose [19,20]. After three weeks of supplementation, plasma lipid

peroxidation levels were measured as marker for oxidative stress.

Data presented in Fig. S1A demonstrate that diabetic mice,

compared to the matched non-diabetic mice, show significantly

high levels of lipid peroxidation. NAC supplementation for three

weeks significantly decreased plasma lipid peroxidation (Fig. S1A).

4-Hydroxy-2-nonenal (HNE) is a major product of endogenous

lipid peroxidation, which is found as a footprint in the aftermath of

oxidative stress [21]. Anti-HNE staining demonstrated that similar

to plasma, wound tissue of db/db mice exhibit higher levels of

oxidative stress which is ameliorated following NAC supplemen-

tation (Fig. S1B). Despite attenuated oxidative stress following

NAC supplementation, no change in apoptotic cell count in

wounds was observed in the diabetic mice (Fig. S1C). These

observations argue against the involvement of oxidative stress in

determining the apoptotic cell load in the wound tissue of diabetic

mice.

To evaluate apoptotic cell clearance activity, homogenous

wound macrophage suspensions were derived from diabetic and

non-diabetic (control) mice. Wound macrophages were isolated

employing a polyvinyl alcohol (PVA)-sponge implantation ap-

proach. This isolation procedure resulted in macrophage cultures

with .95% (95.961.7%) homogeneity. Wound-site macrophages

were co-cultured with cell-tracker (red)-tagged cells that were

either apoptotic or viable (Fig. 3). Thymocytes were made

apoptotic by activating them with 5 mM dexamethasone for

12 h. Over 90% cells become phosphatidylserine (PS) positive

(Fig. 3A). The co-culture resulted in clasping (Fig. 3B) and

phagocytosis of the fluorescent-labeled apoptotic cells (Figs. 3C).

Macrophages were phagocytotically-silent when co-cultured with

viable cells (Fig. 3D). The difference in observation between

Figs. 3D&E were objectively tested using scores (Fig. 3H). High

powered DIC or fluorescence images were utilized to discriminate

between adherent and engulfed apoptotic cell (Fig. 3F&G).

Table 1. Demographic characteristic of patients and their
wound size/age.

Control Diabetic

Age 4865 45611

Gender M,F M,F

Race AA,C AA,C

Wound size (mm3) 2.55-82.11 1.26-66.0

HbA1c ND 4.7-6.0

Wound age .30 d .30 d

AA, African American; C, Caucacians; M, male; F, female; ND, not determined;
doi:10.1371/journal.pone.0009539.t001

Figure 2. Identification of apoptotic neutrophils and endothelial cells in diabetic wounds. Representative immunostained section of: A,
day 3 wound showing neutrophils (green) and active casp-3 (red) staining; and B, day 7 wound showing endothelial cells (CD31, green) and active
casp-3 (red) staining. Nuclear counterstaining was performed using DAPI (blue). i, Low power (20x) images, Scale bar = 50 mm.; ii-iv, high powered
images of the boxed area in i showing active casp-3 (red) and DAPI (blue) (ii) anti-neutrophil or anti-CD31 (green) and DAPI (blue) (iii); and merged
images of anti-neutrophil/anti-CD31 and active casp-3. Casp3 positive neutrophils/endothelial cells are shown with white arrows. Scale bar (Aii-iv and
Bii-iv) = 10 mm.
doi:10.1371/journal.pone.0009539.g002
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Significantly impaired apoptotic cell clearance or efferocytosis

activity of wound macrophages isolated from diabetic mice was

noted (Fig. 4). We sought to test whether the impairment in

apoptotic cell clearance activity of wound macrophages was

limited to the db/db model or macrophages from other diabetic

mice models show comparable results. To address this issue, we

used other genetic models of type 1 diabetes. The NOD/LtJ mice

are susceptible to spontaneous development of autoimmune (type

1) insulin dependent diabetes mellitus (IDDM) [22]. Similarly, B6-

Ins2Akita model of spontaneous type 1 diabetes is a relatively new

model of non-obese insulin-dependent diabetes [22]. Consistent

with results from the db/db mice, wound macrophages derived

from NOD as well as from Akita mice showed increased number

of apoptotic cells in wound tissue (data not shown) as well as clear

impairments in dead cell clearance activity (Figs. 4C&D). Results

addressing the time-course demonstrate that wound macrophages

harvested form non-diabetic mice during the early inflammatory

phase (day 3 post-wounding) possess the highest apoptotic cell

clearance activity (Fig. 4B). This activity is attenuated during the

intermediary (day 7) or late (day 15) phases of healing (Fig. 4B).

Compared to controls, the phagocytic activity was markedly

impaired in macrophages from diabetic mice at all time points

examined (Fig. 4B).

Transient inflammation is an integral component of the

successful healing process [23]. While inflammation-derived

mechanisms support key healing processes such as debris-removal

and angiogenesis, it is necessary that the inflammation be resolved

in a timely manner to allow the remainder of the healing cascade

to follow [23]. To address mechanisms implicated in the resolution

of wound inflammation, wound tissue was harvested from diabetic

mice and their corresponding controls on days 1, 3, and 7 day

post-wounding. Compared to corresponding control mice, diabetic

mice showed increased levels of the pro-inflammatory cytokines

TNF-a and IL-6. Of related interest, IL-10, an anti-inflammatory

cytokine, was significantly lower in the diabetic wound tissue

(Fig. 5A). This line of evidence demonstrates an imbalance

between pro-inflammatory and anti-inflammatory cytokines in the

diabetic wound antagonizing timely resolution of inflammation.

Macrophages represent a major source of cytokines in the wound.

Thus, cytokine production by wound macrophages isolated from

diabetic and control mice was examined. Wound macrophages

from db/db and db/+ control animals were isolated and cultured

overnight. Next, the pro-inflammatory cytokines TNFa, IL-6 were

assayed from the culture media. Macrophages from diabetic mice

produced higher levels of the pro-inflammatory cytokines TNF-a
& IL-6 and lower anti-inflammatory cytokine IL-10 compared to

non-diabetic controls (Fig. 5B). Taken together, the results from

wound tissue (Fig. 5A) as well as isolated wound-site macrophages

(Fig. 5B) demonstrate that the cytokine expression pattern in the

diabetic wound resist resolution of inflammation leading to a

prolonged inflammatory phase.

In the next phase of the study we sought to address whether

there is a link between the observed higher burden of apoptotic

cells in the diabetic wound and impaired resolution of wound

Figure 3. Dead cell clearance by wound-site macrophages. For dead cell clearance assay, wound macrophages were co-cultured with cell-
tracker labeled (red) thymocytes. A, Thymocyte apopotosis detected using Annexin V (FITC conjugated). Annexin V binds to externalized
phosphatidyl serine (PS), a characteristics of apoptotic cells. Such treatment resulted in over 90% cells becoming phosphatidylserine (PS) positive.
Data are mean 6 SD; p,0.05 (n = 4). B, F4/80-FITC (green) and DAPI (blue, nuclear) stained wound macrophage establishing link with an apoptotic
thymocyte (red); C, wound macrophage (F4/80-FITC and DAPI stained) engulfed a number of red apoptotic thymocytes; D, co-cultures of control
(untreated, viable) thymocytes (red) with wound macrophage (DIC image) followed by wash; E, co-cultures of apoptotic thymocytes (red) with wound
macrophages (differential image contrast, DIC image) followed by wash; F–G, Representative high magnification image of a macrophage in DIC (F) or
stained with F4/80 FITC (green, G) showing engulfed and adhered (white arrows) apoptotic thymocytes (red). H, scoring of thymocytes engulfed by
macrophage. Data are presented as phagocytic index which is defined as total number of apoptotic cells engulfed by macrophages in a field of view
divided by total number of macrophage presented in the view. This approach enables normalization of the data against macrophage number. Data
presented as mean 6 SD (n = 3). *, p,0.01 compared to macrophage co-cultured with control thymocytes.
doi:10.1371/journal.pone.0009539.g003
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inflammation and closure. To increase apoptotic cell burden at the

wound site with minimal perturbation of other aspects of wound

biology, JO2 (anti-CD95) or its isotype control (IgG2) antibody

was applied topically to wounds once per day during the early

inflammatory phase (0–4 d post wounding). This approach led to a

significantly higher load of apoptotic cells at the wound site

(Fig. 6A–D). The Fas antigen is a death-domain containing cell

surface protein that is present in many cell types [24]. Our goal, in

using this approach, was to increase apoptotic cell burden caused

by fas-mediated killing of neutrophils. However, we recognize that

there is a possibility that other major cell types e.g. keratinocytes

and macrophage present at the wound tissue may be killed by JO2.

Thus, we chose to experimentally address this potential compli-

cation. Results showed that growing keratinocyte tip cells were not

affected by anti-CD95 JO2 treatment (Fig. 6E). Wound macro-

phages were also not affected by anti-CD95 JO2 treatment (data

not shown). These findings are consistent with published reports

showing that these two cell types both are resistant to CD95-

mediated apoptosis [25,26]. Of outstanding interest was the

observation that increasing apoptotic-cell count at the wound site

caused significant increase in pro-inflammatory cytokine (TNFa,

IL-1b, and IL-6) expression and decreased anti-inflammatory

cytokine (IL-10 and TGFb1) levels at the wound site on days 1 & 3

post-wounding (Fig. 7). Such an augmented inflammatory

response in JO2 treated wounds was associated with impaired

closure as manifested by expanded wound area (Fig. 6F).

Finally, we tested the hypothesis that successful efferocytosis

‘‘switches’’ the wound macrophages from a pro-inflammatory

mode to an anti-inflammatory mode. Following effecrocytosis

wound macrophages were activated with LPS and IFN-c to induce

expression of TNF-a, as a marker of pro-inflammatory mediator.

A significant suppression of inducible TNFa gene and protein

expression was observed in post-phagocytosis macrophages (co-

cultured with apoptotic cells) compared to macrophages that did

not phagocytose (cultured with viable cells) (Fig. 8). These

observations indicate that successful phagocytosis suppresses pro-

inflammatory gene expression in macrophages leading to the

concept that impaired efferocytosis in the diabetic wound may be

responsible for defective resolution of inflammation.

Discussion

Diabetes is known to be associated with impaired phagocytic

function of macrophages [27,28,29,30,31,32]. Findings of this

study collectively present maiden evidence supporting that

increased count of apoptotic cells in cutaneous wounds of diabetic

mice and humans is associated with compromised dead cell

clearance activity of wound macrophages. The major conclusions

of this study are that: i) diabetic wounds have increased apoptotic

cells load which is in part due to impaired apoptotic clearance

activity of the macrophages at the diabetic wound site. This

conclusion is based on the observations that diabetic wounds in

mouse and human have increased apoptotic cell count primarily

contributed by apoptotic PMNs, and that macrophages isolated

from diabetic wounds are impaired in their activity to phagocytose

apoptotic cells; ii) increase in apoptotic cell burden in diabetic

wounds augments inflammatory response in wounds. This

conclusion is based on the observation that experimental elevation

of apoptotic cell load at the wound site resulted in increased

inflammatory response; and iii) impaired dead cell clearance

activity in diabetic wound macrophages compromises resolution of

inflammation in diabetic wounds. This is supported by the

observation that successful clearance of apoptotic cell by wound

macrophages attenuates the expression of inflammatory cytokines

and that diabetic wound macrophages, impaired in their ability to

phagocytose, produce elevated levels of pro-inflammatory

cytokines.

Elevated apoptotic cell count is a known feature of the diabetic

wound [33]. Factors other than impaired phagocytosis by

macrophages, as proposed in this study, that may contribute to

Figure 4. Dead cell clearance activity is impaired in wound-site
macrophages harvested from diabetic mice. A, representative
images of macrophage (phase contrast) from diabetic (db/db) and their
matched control non diabetic (db/+) co-cultured with apoptotic thymo-
cytes (red); B–D, quantification of dead cell clearance activity of wound
macrophages from three different genetic backgrounds; B, phagocytic
index of wound macrophages harvested 3, 7 or 15 day post implantation
from db/+ (non-diabetic control) or db/db (type 2 diabetes); C, phagocytic
index of wound macrophages harvested day 5 post implantation from NOR
(control) or NOD (type 1 diabetes); and D, phagocytic index of wound
macrophages harvested day 5 post implantation from Akita (Ins2Akita, type
1 diabetes) & C57Bl6 (non-diabetic controls). Data are mean 6SD (n = 3).
*, p,0.05 versus control mice.
doi:10.1371/journal.pone.0009539.g004
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elevated apoptotic cell count in the diabetic wound include

acceleration of apoptosis caused by advanced glycation end

products (AGEs), activation of protein kinase C (PKC) and

increased oxidative stress [34]. In support of glycation being

involved in accelerating apoptosis of neutrophils in the peripheral

blood of patients with T2DM a tight association between the rates

of apoptosis with elevated HbA1c has been reported [35].

Implication of oxidative stress in accelerating apoptosis in diabetics

have been proposed [36] but is not supported by observations of

the current study demonstrating the effectiveness of NAC as an

antioxidant but no effect of such intervention on apoptotic cell

burden at the wound site.

Other than accelerated apoptosis, increased apoptotic cells load

at the wound site may be contributed by inefficient clearance of

apoptotic cells from wounds by macrophages. Peritoneal macro-

phages from non-obese diabetic (NOD) mice are known to engulf

apoptotic cells less efficiently than those from non-diabetic mice

[30,32]. Our observation that wound derived macrophages from

three different genetic models of diabetes suffer from impaired

efferocytosis function is consistent with such reports. From a

metabolic and related mechanistic stand-point, NOD and db/db

diabetic mice have several fundamental differences [22,30,37].

NOD mice develop spontaneous autoimmune destruction of b-

cells at approximately 5 month of age. This model has a number of

similarities with features of human type 1 diabetes [22]. In terms of

early onset and an autosomal dominant mode of inheritance and

primary dysfunction of the b cells, Akita mice resemble the

condition of human maturity-onset diabetes of the young [38].

Db/db mouse is an established model of deficient wound healing

associated with human type 2 diabetes mellitus (T2DM) [39,40].

The genetic basis for this inbred mouse model is a single-gene

autosomal recessive defect in leptin receptor which produces leptin

resistance and results in hyperphagia, obesity and the subsequent

symptoms of insulin resistance, insufficient insulin secretion,

hyperglycemia and elevated HbA1c (9.162.1) levels

[22,41,42,43]. One common feature of three above-described

models is that they all suffer from hyperglycemia. Hyperglycemia

associated advanced glycated end products (AGEs) have been

Figure 5. Increased pro-inflammatory cytokine levels in diabetic wounds and in wound-site macrophages. A, Cytokine levels in
excisional wound tissue collected on days 1, 3 and 7 post-wounding were measured using ELISA. Data are presented as pg cytokine levels per mg of
wet tissue. Mean 6 SD (n = 5).*, p,0.05 db/db versus db/+; B, PVA sponges were harvested on days 3, 7 or 15 after implantation and macrophages
were isolated. Macrophages (16106) were seeded in 6-well plates. Cytokine levels in culture media was measured 24 h post-seeding using ELISA.
Mean 6 SD (n = 4). *, p,0.05 db/db versus db/+.
doi:10.1371/journal.pone.0009539.g005
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shown to directly suppress phagocytosis activity of macrophages

[31].

Inflammation is tightly regulated by the following two types of

signals: i) initiate & maintain inflammation; and ii) resolve

inflammation [23]. An imbalance between the two signals, in

favor of the former, results in chronic inflammation and derails the

healing cascade. Pro-inflammatory cytokines IL-1a, IL-1b, IL-6

and TNF-a are prominently up-regulated during the repair

process [44]. IL-10 is recognized as a major suppressor of the

inflammatory response [45]. An important role of this anti-

inflammatory cytokine in attenuating the expression of pro-

inflammatory cytokines in fetal wounds resulting in minimized

matrix deposition and scar-free healing has been demonstrated

[46]. Increased levels of the pro-inflammatory cytokines TNF-a
and IL-6 and a decreased level of IL-10, an anti-inflammatory

cytokine were observed in diabetic wound tissue compared to non-

diabetic healing wound. A modest yet significant decrease in IL-10

levels in db/db mice wound compared to non-diabetic control

suggests that IL-10 alone is not sufficient in suppressing the

augmented inflammatory response in the wounds of these mice.

Interestingly, increased expression of IL-10 is known to be

associated with impaired healing in humans chronic venous

insufficiency ulcers [47] that are known to have persistent

inflammation. The specific significance of IL-10 in regulating

diabetic wound inflammation remains to be characterized.

Persistent (day 13 post wounding) expression of the inflammatory

cytokines IL-1a and TNF-a was observed in an excisional wound

healing model in diabetic (db/db) mice [48]. Lowering of the

functionally available levels of the pro-inflammatory cytokine

TNF-a using anti-TNF-a therapy directed at managing activated

macrophages restore diabetic wound healing in ob/ob mice [9].

These lines of evidence suggest that the perturbation of a delicate

balance between pro-inflammatory and anti-inflammatory cyto-

kines in the diabetic wound predisposes the wound to impaired

resolution of inflammation [3,48]. Macrophages represent a major

source of the cytokines in wounds [44]. The kinetics of cytokine

production by wound macrophages was not concurrent with the

dynamics of tissue wound cytokines. However, the observation

that macrophages derived from diabetic wounds produces

increased levels of pro-inflammatory cytokines compared to the

non-diabetic control macrophages support that the augmented

pro-inflammatory state of diabetic wound tissue is at least in part

Figure 6. Topical application of Fas-activating anti-CD95 JO2 to the wound-site increased apoptotic cell count while not inducing
apoptosis in keratinocytes. A, visualization of TUNEL stained apoptotic cells in day 5 wound tissue treated with anti-murine CD95 (clone:JO2,
2 mg/wound) or vehicle containing isotype control (IgG2). Positive control (wound tissue treated with proteinase K and nuclease) showing TUNEL
positive apoptotic cells with green nuclei stain; B, scoring of apoptotic cells in wound tissue sections stained with TUNEL. *, p,0.05 compared to the
paired vehicle-treated wounds; C, a representative Western blot image of active caspase-3 (casp-3) and GAPDH (housekeeping) in tissue extracts from
IgG2 or JO2 treated d3 wounds; D, densitometric data of blot shown in panel C. Data shown are mean 6 SD (n = 3). *, p,0.05 compared to IgG2
treated wounds; E, JO2 treatment did not induce keratinocyte apoptosis. Keratin-14 (green), active caspase-3 (red) and DAPI (blue) stained migrating
epithelial tip in placebo (left) or JO2 treated (right) wounds. Scale bar = 20 mm. Active caspase-3 staining was observed in the granulation tissue but
not in the hyper-proliferative epithelium or epithelial tip following JO2 treatment; F, wound area as percentage of initial wound determined on the
day 3 after wounding. Data are shown as mean 6 SD (n = 4).*, p,0.05 versus corresponding control IgG2 treated wound.
doi:10.1371/journal.pone.0009539.g006
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due to increased pro-inflammatory phenotype of the diabetic

wound macrophages. This contention is supported by studies using

macrophage depleted mice where a key role of macrophages in

wound cytokine/growth factor dynamics has been demonstrated

[23,49,50]. TNF-a expressing macrophages in diabetic animals

have been also shown to be are primarily responsible for the

impairment of wound healing in this genetic model [9] The

macrophages isolated from CD18 null mice exhibit impaired

phagocytic clearance of PMNs, impaired wound closure and a

marked reduction of TGF-b1, an anti-inflammatory growth factor

released by macrophages [51]. These two studies further support

the contention that the pro-inflammatory state of wound

macrophage plays a major role in compromising the resolution

of inflammation in diabetic wounds.

The Fas/Fas ligand pathway has been implicated as an

important cellular pathway mediating apoptosis in diverse cell

types [52]. Neutrophils are specifically highly susceptible to rapid

apoptosis in vitro after stimulation with activating anti-Fas IgM

(mAb CH-11) [53]. Topical treatment of anti-CD95 JO2

treatment does not induce apoptosis in proliferating keratinocytes

or macrophages. We utilized this opportunity to set up a Fas-

directed approach to increase the apoptotic cell burden at the

wound site. The approach reported in this study served as an

effective tool to query the significance of apoptotic cell burden on

wound biology. Higher apoptotic cell burden at the wound-site

resulted in larger open wound indicating a slower rate of closure.

Contraction, epithelialization and granulation tissue formation

represent the major processes that contribute to the overall wound

healing/closure of full thickness dermal wounds. No effect on

wound epithelialization yet a slower rate of closure suggests that

contraction and/or granulation tissue formation was likely affected

under these conditions. Increased apoptotic cells in wounds also

resulted in elevated the levels of pro-inflammatory cytokines in

wounds supporting the notion that increased apoptotic cell burden

at the wound-site results in augmented inflammatory response.

This is consistent with previous observation in non-wound studies

demonstrating that inappropriate clearance of apoptotic cell

corpses lead to chronic inflammation [18]. Both apoptosis as well

as the efficient clearance of apoptotic cells are important

determinants of the resolution of inflammation in vivo [54,55,56].

Phagocytic removal of apoptotic cells by macrophages is a pre-

requisite for the restoration of normal tissue function resolving

inflammation [56,57,58,59]. Engulfment of apoptotic cells by

macrophages results in potent anti-inflammatory and immuno-

suppressive effects caused by production of anti-inflammatory

cytokines such as TGF-b1, IL-10 & IL-4 and suppressed release of

pro-inflammatory mediators including TNF-a, IL-6 by activated

macrophages [56,60,61,62].

Macrophages are dynamic and heterogeneous cells. Since the

introduction of the concept of alternative activation of macro-

phages in 1992 [63], these cells have been broadly assigned to two

broad groups: (i) classically activated or type I macrophages (M1)

which are pro-inflammatory effectors, and (ii) alternatively

activated or type II macrophages (M2) that possess anti-

inflammatory properties [64]. In response to cues from the

microenvironment, pro-inflammatory activated M1 macrophages

may switch to M2 [65]. Results of this work support that

efferocytosis may be one of such cues that drives the switching of

macrophages towards an anti-inflammatory state [60].

While efferocytosis orchestrates successful resolution of inflam-

mation, this process is also regulated in an autocrine manner by

anti- as well as pro-inflammatory mediators such as TNFa [66].

Once inflammation is resolved, the phenotype of resolution-phase

macrophages has been shown to be altered primarily via cAMP

dependent mechanisms [67]. For the first time, we present

functional results from viable macrophages isolated from the

wound-site in vivo to directly demonstrate that successful

efferocytosis of apoptotic cells results in suppression of a major

pro-inflammatory mediator i.e, TNFa. Understanding the mech-

anisms of resolution of inflammation by wound macrophages as

well as of the post resolution phenotype of macrophages require

further investigation.

In sum, this study provides first evidence that macrophages from

diabetic wounds suffer from impaired in dead cell clearance

activity as one of the key factors resulting in increased apoptotic

Figure 7. Increasing dead cell burden in wounds resulted in
increased pro-inflammatory cytokine levels. Wound tissue
treated with anti-CD95 JO2 or control IgG2 were harvested on days 0,
1 and 3 post-wounding. Cytokine levels from paired (control and
treated) wound tissue were measured using ELISA on the indicated
days post-wounding. Significant increase in pro-inflammatory cytokines
(TNFa, IL-6, IL1b) and decrease in levels of anti-inflammatory cytokines
IL-10 and TGFb1 was noted in wounds that had increased apoptotic cell
load. Data (mean 6SD, n = 5) are presented as pg cytokine per mg
wound tissue. *, p,0.05 compared to IgG treated control side.
doi:10.1371/journal.pone.0009539.g007
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cell burden at the wound site. This burden, in turn, prolongs the

inflammatory phase and complicates the healing process and

compromises resolution of inflammation. Correction of impaired

efferocytosis in diabetic wounds and strategies to intercept the

adverse effects of impaired efferocytosis emerge as novel targets for

the management of chronic inflammation commonly noted in

diabetic wounds.

Materials and Methods

Ethics Statement
Vertebrate animals. All animal studies have been approved

by Ohio State University’s Institutional Animal Care and Use

Committee (IACUC).

Human subjects. All human studies were approved by the

Ohio State University’s Institutional Review Board (IRB).

Secondary-Intention Excisional Cutaneous Wound Model
Male (8–12 week aged) mice were used for this study. For

wounding, mice were anesthetized with isoflurane inhalation. Two

6 mm full-thickness (skin and panniculus carnosus) excisional

wounds were placed on the dorsal skin (shaved and cleaned using

betadine), equidistant from the midline and adjacent to the four

limbs. The wound were left to heal by secondary intention

[68,69,70].

Determination of wound area. Imaging of wounds was

performed using a digital camera (Canon PowerShot G6). The

wound area was determined using WoundMatrixTM software as

described previously [68,69,70]. All animal studies have been

approved by Ohio State University’s Institutional Animal Care

and Use Committee (IACUC).

Polyvinyl Alcohol (PVA) Sponges Implantation
Circular (8 mm) sterile PVA sponges were implanted subcuta-

neously on the back of the mice, a location matched for the site of

excisional wounds [71]. In brief, following induction of anesthesia

by isofluorane inhalation, dorsal midline was shaved and cleaned

with betadine. Two midline 1 cm incisions were made with a

scalpel. Small subcutaneous pockets were created by blunt

dissection, two pockets per animal. Two PVA sponges were

inserted to each pocket. Incisions were closed with skin staples

(9 mm) or suture (3-0 SurgilineTM). Animals were then returned to

clean cages for the monitoring of recovery. The animals were

euthanized by CO2 inhalation for final harvest of the PVA

sponges.

Isolation of Wound Macrophages from PVA Sponges
Subcutaneously implanted PVA sponges were harvested on a

designated day and a single wound cell suspension was generated

from sponges by repeated compression. The cell suspension was

filtered through a 70 mm nylon cell strainer (Falcon) to remove all

the sponge debris. For macrophage isolations, magnetic cell

sorting was carried out using mouse anti-CD11b tagged microbe-

ads (Miltenyi Biotec, Auburn, CA). This procedure yields a

purified (.95%) population of wound macrophage as determined

by F4/80 staining. Subcutaneously implanted polyvinyl alcohol

(PVA) sponges are extensively used as model for wound-healing

studies especially those addressing inflammation [71,72]. The

model is best suited for acute studies because on a longer term,

after about 4 weeks of implantation, it is known to elicit foreign

body response resulting in giant cell accumulation and fibrosis. In

shorter term studies, the approach represents a reproducible and

biologically valid model for the study of acute healing responses

[72]. No major differences were noted in the cell characteristics

and activity of PVA sponge derived cells and closed incisional

wound derived cells [72]. When compared to excisional wounds,

some differences that are primarily attributed to low-grade

bacterial contamination of open wounds have been reported

[73]. In our excisional wound studies, we routinely check wounds

for bacterial contaminations using procedures described previously

Figure 8. Efferocytosis of apoptotic cells by wound macrophages resulted in suppression of pro-inflammatory TNFa gene and
protein expression. Following apoptotic cell clearance assay the non-phagocytosed thymocytes were removed by washing and cells were
challenged with LPS (1 mg/ml) and IFNc (10 ng/ml) for 4 h (gene expression) or 16 h (protein expression). TNFa gene (A) and protein (B) expression
were measured using real-time PCR and ELISA, respectively. mRNA expression data are presented as % change compared to LPS+IFNc non-activated
control samples. Protein data is expressed as concentration of TNF-a secreted in culture media. Data are mean 6SD (n = 4); **, p,0.01 compared to
macrophage cultured with viable cells.
doi:10.1371/journal.pone.0009539.g008
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[69]. As reported earlier although low grade contamination is

indeed observed in superficial tissues, deep tissue biopsies have not

shown any bacterial contamination [69] suggesting that excisional

wound deep-tissue macrophages are similar to macrophages

derived from the described PVA sponge model.

Apoptotic Cell Clearance Assay
For the assay, wound macrophages were seeded in 8-well

chambered slides. Apoptotic (5 mM dexamethasone treated for

12 h; yield .90% PS positive thymocytes, Fig. 3A) thymocytes

were added to each chamber in a (1:10) macrophage:thymocyte

ratio. Prior to co-culture with macrophages, thymocytes were

labeled with a fluorescence cell-tracker reagent (CellTrackerTM

Orange CMTMR, Molecular Probes). Thymocytes have been

largely used and are well accepted for efferocytosis studies

performed using cultured macrophage ex vivo. Moreover, upon

induction of apoptosis, both PMN and thymocytes are known to

externalize phosphatidyl serine (PS), one of the key mechanisms of

apoptotic cell recognition by macrophages [74,75]. Phagocytosis

assay was performed for 1 h at 37uC. In co-culture studies, shorter

incubation times (10–15 min) were used for adherence assay while

longer (45–60 min) co-culture period were utilized for the

phagocytosis assays [51]. Macrophages were then extensively

washed to remove non-phagocytosed cells. Cells were fixed with

4% paraformaldehyde and stained using F4/80-FITC. Imaging

was performed using a fluorescence microscope (thymocytes, red;

macrophage green or phase contrast). Quantitation of phagocy-

tosed thymocytes by each macrophage was performed using

Axiovision software (Zeiss) by counting 50–100 macrophages from

each well. Data are expressed as ‘‘phagocytic index’’. This index is

defined as the total number of apoptotic cells engulfed per

macrophage present in the field of view [62]. This approach

enables normalization of the data against macrophage number.

Human Subjects and Sample Collection
Subjects participating in the study were chronic wound patients

seen at our Comprehensive Wound Center outpatient clinics that

have been either clinically diagnosed type 2 diabetes (n = 3) or no

diagnosis of diabetes (non-diabetic, control; n = 3). The demo-

graphic characteristics of patients and wound related information

are listed in Table 1. Protocols were approved by the Ohio State

University’s Institutional Review Board. Declaration of Helsinki

protocols were followed and patients gave their written, informed

consent. Wound (at the wound perimeter) biopsies (3 mm) were

obtained from individual subjects, immediately embedded in

O.C.T compound (Tissue-TekH) and stored frozen in liquid N2 for

histological analysis.

Histology
Formalin-fixed paraffin-embedded or frozen wound specimens

were sectioned. Frozen section (10 mm) or deparaffinized paraffin

sections (4 mm) were immunostained as described earlier [69]

using the anti-active caspase 3 (anti-active caspase 3, Abcam, Inc,

Cambridge, MA) and rabbit anti-HNE (Alexis, AXXORA, LLC,

san Diego, CA) antibody. The sections were subsequently stained

using appropriate HRP or fluorochrome tagged secondary

antibody and counterstaining were performed as described

previously [69]. For the visualization of wound epithelialization,

anti-keratin-14 (1:500; Covance, Berkeley, CA) with appropriate

fluorescence tagged secondary antibody was used. Counterstaining

was performed with DAPI to visualize nuclei (Molecular probe,

OR). Neutrophils and endothelial cells were visualized using anti-

neutrophil (1:100, Serotec, Raleigh, NC) and CD31 (1:200, BD

Pharmingen, San Diego, CA).

TUNEL staining. This assay enables the monitoring of

apoptotic cells in tissue sections and was performed using a

commercially available kit (DermaTACS, Trevigen Inc).

Image quantification. Between 3–5 high powered images

were quantified for each data point from each animal.

Quantification was performed employing a Image processing

tool kit (Adobe Photoshop) software that utilizes a color subtractive

process [76].

Antioxidant Supplementation
Diabetic (db/db) mice were divided in two equal subgroups.

The first group was supplemented (intragastric, daily once) with N-

acetylcysteine (NAC) at a dose of 1 mg/g body weight [19,20].

The control group of mice was supplemented with matched

volume of the vehicle (saline).

Plasma Lipid Peroxidation
As a marker of lipid peroxidation, plasma malondialdehyde

(MDA) levels were detected by the thiobarbituric acid reactive

substances (TBARS) method. The assay was performed using

OXItek TBARS assay kit (ZeptoMetrix Corporation, Buffalo NY).

Wound Tissue Cytokine Analysis
Wound edge tissue [70] was pulverized under liquid nitrogen

followed by extraction of protein in a buffer compatible with

ELISA as described [77]. The cytokine levels in tissue extracts

were measured using commercially available ELISA kits (R & D

Systems).

Wound Macrophage Cytokine Analysis
Macrophages were seeded in 6-well plates and cultured in

RPMI 1640 medium containing 10% heat inactive bovine serum

for 24 h under standard culture conditions. After 24 h, the media

was collected and the cytokine levels in culture media were

measured using commercially available ELISA kits (R & D

Systems).

Western Blot
Western blot was performed as described previously [78,79,80].

Primary antibody against active caspase-3 was obtained from

Abcam.

Statistics
In vitro data are reported as mean 6 SD of at least three

experiments. Comparisons among multiple groups were made by

analysis of variance ANOVA. p,0.05 was considered statistically

significant. For in vivo studies, data are reported as mean 6 SD of

at least 4–6 animals and 3 humans per group.

Supporting Information

Figure S1 Antioxidant supplementation to diabetic mice

attenuates oxidative stress but does not influence apoptotic cell

count in wound tissue. Diabetic db/db mice were supplemented

with N-acetyl-cysteine (NAC, 1 mg/g body weight, daily once) for

three weeks. The control db/db group was supplemented with

matched volume of saline. At the end of three weeks blood glucose,

body weight and plasma MDA levels were measured. Two

excisional (8 mm punch) wounds were placed on the back of mice.

NAC supplementation continued throughout the healing period.

A, Plasma lipid peroxidation (MDA levels) as a marker of oxidative

stress was measured. Data are mean 6 SD; n = 6. **, p,0.001

compared to non-diabetic (db/+) group. ##, p,0.005 compared
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to diabetic group supplemented with saline. B, Wound lipid

peroxidation was measured using anti-hydroxynonenal (HNE)

antibody and immunostaining. Data are mean 6SD (n = 4), **,

p,0.01 compared to diabetic group supplemented with saline. C,

Apoptotic cell count in wound tissue sections was measured using

active caspase 3 immunohistochemical approach. Quantification

(bar graphs) of caspase 3 positive area was performed using Image

processing Tool kit. Data are shown as mean 6 SD (n = 4).

Found at: doi:10.1371/journal.pone.0009539.s001 (0.06 MB

PDF)
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