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Impact of cold plasma processing 
on major peanut allergens
Harshitha Venkataratnam1*, Orla Cahill1, Chaitanya Sarangapani1, P. J. Cullen1,2,3 & 
Catherine Barry‑Ryan1

Cold plasma is emerging as a novel food processing technology, with demonstrated efficacies for 
microbial inactivation and residual chemical dissipation of food products. Given the technology’s 
multimodal action it has the potential to reduce allergens in foods, however data on the efficacy 
and mechanisms of action are sparse. This study investigates the efficacy of cold plasma on major 
peanut allergens (Ara h 1 and Ara h 2). For this purpose, dry, whole peanut (WP) and defatted peanut 
flour (DPF) were subjected to an atmospheric air discharge using a pin to plate cold plasma reactor 
for different treatment durations. With increases in plasma exposure, SDS-PAGE analysis revealed 
reduced protein solubility of the major peanut allergens. Alterations in allergenicity and structure of 
Ara h 1 and Ara h 2 were examined using ELISA and circular dichroism (CD) spectroscopy. Competitive 
ELISA with proteins purified from plasma treated WP or DPF revealed reduced antigenicity for both 
Ara h 1 and Ara h 2. The highest reduction in antigenicity was 65% for Ara h 1 and 66% Ara h 2 when 
purified from DPF. Results from CD spectroscopy analysis of purified proteins strongly suggests the 
reduction in antigenicity is due to modifications in the secondary structure of the allergens induced 
by plasma reactive species. Cold plasma is effective at reducing peanut protein solubility and causes 
changes in allergen structure leading to reduced antigenicity.

Food allergy is a global health concern. The World Allergy Organisation’s epidemiological survey estimated that 
there are between 220–250 million people suffering from a food allergy condition. Approximately 8% of children 
and 3–4% of adults are affected by these food allergies1,2. More than 150 million people living in Europe are 
affected by food allergies, and 44% of adults who live in Britain have one form of allergy3. Over 170 foodstuffs 
are believed to cause allergy4. Due to their worldwide cultivation and consumption, legumes are one of the 
leading causes of allergic reactions from food. Legumes are also considered as one of the preferred vegetarian 
proteins throughout the world2. Peanuts and soybean belong to the Leguminosae family and are two of the eight 
ingredients that cause important food allergies in the US and Europe5. Peanut allergy is often the most severe and 
it is the leading cause of deadly anaphylaxis. Peanut proteins are the causative agent for IgE-mediated food aller-
gies. The World Health Organisation (WHO) and the International union of immunological Societies’ Allergen 
Nomenclature subcommittee currently recognise 17 peanut allergens6. Out of these 17 allergens Ara h 1, Ara h 
2, Ara h 3, Ara h 6 and Ara h 7 are the five major allergens as they account for a majority of the effector activity 
found in crude peanut extracts7. These allergens are grouped into protein families and super families. Ara h 2, 
Ara h 6 and Ara h 7 are 2S albumins and belong to the prolamin superfamily with a molecular weight between 
14- 20 kDa. Ara h 1 and Ara h 3 fall within the cupin superfamily and are further classified in the vicilin (Ara h 
1) and legumin (Ara h 3) families with molecular weights ranging between 60 to 65 kDa8,9.

Currently several novel food processing technologies are being explored to improve the quality, shelf-life and 
sensory attributes of foods. During processing, food proteins may undergo modifications which can minimize 
the risk associated with food allergies. Given the risks associated with these products there is a need to develop 
processing technologies which can eliminate/modify the allergen proteins for the preparation of hypoallergenic 
or nonallergenic food.

To overcome the allergenic potential of peanut, several strategies have been reported which include; enzymatic 
proteolysis, genetic modification and physical methods4. Most of the hypoallergenic food currently available 
in the market are manufactured primarily by enzymatic proteolysis. Although this approach has the ability to 
alter the sensitivity, it can have negative impacts on the organoleptic characteristics of food products10. The use 
of genetically modified food remains controversial in many countries11. Thermal processing either by humid 
or dry treatments can be effective but may also impact the sensory and nutritional value of the food. Therefore, 
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non-thermal processing technologies such as atmospheric cold plasma, which can induce changes in proteins 
and potentially mitigate allergenicity whilst retaining the organoleptic properties of food are currently being 
investigated.

Recently cold plasma has emerged as a novel food processing technology offering increased safety profiles 
and extended shelf life for food products12. Electric discharges in atmospheric air generate large quantities 
of reactive species13. In air over 100 different species may be generated; including key species such as ozone, 
hydroxyl radicals and hydrogen peroxide. These species can react with food biomolecules leading to changes in 
their structural and functional properties. Cold plasma technology can be considered as a green and sustainable 
technology as it does not leave any residues and uses low input energies14,15. Applications of cold plasma for 
microbial decontamination and modification of food packaging surfaces have already been established16. Other 
applications of cold plasma in the agri-food industry include; modification of food surfaces, germination of food 
grains17, mycotoxin and pesticide degradation and wastewater treatment18. Only a small number of studies to 
date have reported the effects of cold plasma on food allergens19,20 and although the cold plasma mechanism of 
action on allergen has not been elucidated in detail, it is has been assumed that the reactive species generated 
alters the epitope structure21. Several authors have reported possible changes in the protein structure of the PPO 
and POD enzymes due to plasma treatment22. Recently, Meinlschmidt et al.20 and Venkataratnam et al.23 reported 
changes in the immunoreactivity of soy and allergenicity of peanut after cold plasma treatment. However, data 
on the effect of cold plasma on the allergenicity of major peanut allergens are sparse. The objective of this study 
is to investigate the potential of cold plasma in reducing the allergenicity of major peanut allergens Ara h 1 and 
Ara h 2 using a novel large volume pin-to-plate atmospheric plasma reactor.

Material and methods
Materials.  Raw peanuts (Arachis hypogaea) were purchased from a local market in Dublin, Ireland and 
stored at room temperature. All reagents and chemicals used in this study were of analytical grade and obtained 
from Sigma-Aldrich, Dublin, Ireland. For preparation of defatted peanut flour, peanuts were ground using a 
pestle and mortar and defatted by addition of hexane for 5 h at 4 °C.

Cold plasma treatment.  For this study, a novel large gap pin-to-plate plasma reactor was employed 
(Leap100, Plasma Leap Technologies, Sydney, Australia). A detailed description of the working principle of this 
power source and pin reactor has been provided previously24. The reactor uses two steel plates as electrodes with 
a high voltage electrode composed of a pin array (11 × 8) and a flat plate ground electrode. The electrode pins 
placed to create a slight convex pattern that promotes a homogeneous plasma discharge across the array with 
the core pins nearer to the ground electrode. In this study, the mean distance between the bottom of the pins 
was maintained at 7 cm (Fig. 1). The high-voltage power supply (Leap100, PlasmaLeap Technologies, Sydney, 
Australia) used to generate the plasma discharge in atmospheric air was set to a resonant frequency of 52 kHz 
and a discharge voltage of 32 kV. The duty cycle was maintained at 118 s with a discharge frequency of 1 kHz. 
For each experiment, 10 g of each deshelled whole peanut (WP) with skin and ground peanut flour i.e., defatted 
peanut flour (DPF) were added to a petri dish separately and placed between two steel plates for plasma treat-
ment (Fig. 1).

Extraction and purification.  After plasma treatments, Ara h 1 and Ara h 2 from the peanut samples (WP 
and DPF) were extracted and purified using the procedures of Maleki et al.25 and Koppelman et al.26 with slight 
modifications. Briefly, crude protein extract from WP and DPF was extracted using extraction buffer (50 mM 
Tris, 200 mM NaCl, and 1 mM EDTA at pH 8.3) for 2 h at 4 °C. The samples were centrifuged at 12,000 g for 
15 min, the supernatants were subjected to ammonium sulphate precipitation (0–40%, 40–70% and 70–100%) 
and the protein pellet was collected after centrifugation. The collected protein has been further resolubilized in 
buffer at pH 8.3 without NaCl, desalted by dialysis/ultrafiltration against buffer overnight in the ratio 1:40. This 
was loaded on to a High Prep Q column and eluted with a linear salt gradient (40–300 mM NaCl). Fractions were 
collected and Sodium Dodecyl Sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was run at reducing 
conditions. Protein concentration was checked at every step using the Bradford assay. The purified Ara h 1 and 
Ara h 2 was then used to study the secondary structure of the protein.

Figure 1.   Large volume plasma discharge in atmospheric air using an 88-pin electrode.
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Electrophoresis.  The SDS-PAGE was performed using 12% hand-cast gels the procedures were slightly 
modified according to earlier studies27. Proteins were reduced and denatured using sample buffer. The samples 
were heated at 100 °C, for 5–7 min, prior to loading. Pre-stained molecular marker obtained from Fisher Sci-
entific (Dublin, Ireland) was used as a reference. Electrophoresis was performed at a constant voltage of 120 V 
using a tris glycine buffer. Rapid staining was performed according to Studier et al.28. Gels were suspended in 
50 mL of 50% ethanol, 10% acetic acid and 40% water, heated to almost boiling in a microwave oven and rocked 
on a shaker until the gel shrinks. The liquid was discarded and suspended in 50 mL of 5% ethanol, 7.5% acetic 
acid and 0.25% coomassie blue in ethanol. The gel was again heated to boiling in a microwave and placed on a 
rocker. The gels were visualized within 45 min.

Immunoblotting.  SDS-PAGE gels were prepared, as described in Sect. 2.4 and the proteins separated were 
transferred to nitrocellulose membrane at a constant voltage of 20 V for 1 h. Immunoblotting was performed 
according to Venkataratnam et al.23 with slight modifications. The nitrocellulose membrane were then blocked 
with 5% skim milk in phosphate-buffer saline containing 2% Tween 20 (PBST) for 2 h at room temperature, 
followed by overnight incubation with rabbit anti-Ara h 1 (1:5,000 in PBST, Indoor Biotechnologies) and rabbit 
anti-Ara h 2 (1:5,000 in PBST, Indoor Biotechnologies) at 4 °C. Subsequently, the membrane was washed thrice 
using phosphate-buffer saline (PBS), followed by incubation with goat anti-rabbit conjugated with horseradish 
peroxidase (HRP) (1:8,000, Sigma Aldrich, Dublin, Ireland) for 30 min at room temperature. After further wash-
ing, the membranes were incubated with an enhanced chemiluminescent luminol substrate for 1 min and the 
images were observed on C-diGit blot scanner (LI-COR).

Competitive enzyme linked immune sorbent assay (ELISA).  Competitive ELISA was performed 
according to Schmitt et al.29 The IgG-binding abilities of cold plasma-treated WP and DPF for both Ara h 1 and 
Ara h 2 were tested using competitive ELISA. 100 μL of purified native Ara h 1 and Ara h 2 (0.1 μg/mL) were 
added to every well of a 96-well ELISA plate, and coated in coating buffer (0.1 M NaHCO3, pH 9.6) followed 
by incubation overnight at 4 °C. After incubation, the wells were washed with phosphate-buffer saline tween 20 
(PBST) thrice. In order to block non-specific binding, 200 μL of 3% bovine serum albumin in PBST was added 
to each well and incubated for 2 h at 37 °C. The peanut extracts were mixed with equal volumes of rabbit Anti-
Ara h 1 (1:5,000) and rabbit Anti-Ara h 2 (1:5,000) and incubated for 30 min at 37 °C. This mixture was added 
into the coated plates and further incubated for 1 h at 37 °C. After further washing, 100 μL of goat anti-rabbit 
conjugated with HRP (1:7,000) were then added to each well, followed by incubation for 30–45 min at 37 °C for 
the detection of bound immunogen. The plates were further washed, and the colour was developed by adding 
100 μL of 3,3′,5,5′-tetramethylbenzidine to each well and incubated for 15 min at room temperature. The reac-
tion was terminated using 100 μL of 1 N hydrochloric acid and the absorbance of processed and unprocessed 
samples were read at 450 nm with a plate reader.

Secondary structure determination.  CD spectroscopy was performed according to the method of Ven-
kataratnam et al.23 with slight modifications. Conformational changes in the secondary structure were deter-
mined using Far UV (190–240 nm) circular dichroism (CD) spectra. The far UV-spectra were obtained with a 
JASON Model J-810 spectropolarimeter on 0.1 mg/mL protein solutions using a 1 mm path length quartz cell, 
at a rate of 100 nm/min and band width of 1.0 nm. Purified protein obtained from cold plasma treated (WP and 
DPF) and control Ara h 1 and Ara h 2 were desalted using centrifugal filters into Milli-Q water and immediately 
used in CD measurements. A CD spectrum of Milli-Q water was obtained for background purpose and sub-
tracted from each spectra. The secondary structure composition was calculated by Dichroweb server (program: 
CDSSTR; reference set: SET 7 optimized for 190–240 nm).

Statistical analysis.  Statistical analysis was performed using SPSS software (IBM statistical analysis Ver-
sion 19), with the data analysed by one-way ANOVA. The significance among the samples was compared at 
P < 0.05 by the least significant difference post-hoc comparison. All the tests were performed in duplicate and 
the average of the tests are represented.

Results and discussion
SDS‑PAGE.  The effects of the cold plasma treatment on peanut allergen was assessed by SDS-PAGE to visu-
alize the changes in the allergen content. For this purpose, protein concentrations of 2 mg/mL were combined 
with sample buffer with equal amounts of total protein (10 µL) loaded for each sample. Figure 2 shows the rela-
tive band intensities of the allergen proteins before and after plasma treatment. It is observed from Fig. 2 that all 
the bands ranged from molecular weight (MW) 11 to 65 kDa. The strong bands identified at 63 kDa corresponds 
to Ara h 1 and the triplet 18, 19 and 20 kDa corresponds to Ara h 2. As observed from Fig. 2 (a) there were no 
changes in the intensity with increases in treatment time of up to 15 min for either Ara h 1 or Ara h 2 for WP, 
however, with further increase in treatment time slight changes in the intensities were observed when compared 
to the control. The SDS-PAGE analysis of DPF showed a profound change in band intensities when compared to 
WP. As it can be observed form Fig. 2b after 60 min of treatment time the intensity of Ara h 1 reduced and the 
band corresponding to Ara h 2 doublet was faint. The difference in the observed effects of plasma on WP and 
DPF is may be due to changes in food matrix, surface characteristics and the nature of interaction with other 
food components, including carbohydrates and lipids. Van Wijk et al.30 investigated the influence of the food 
matrix on the immune responses to food proteins. These authors hypothesized that the food body, consisting of 
fats, carbohydrates, and other proteins, may affect the allergenic potential of proteins. The variation in antigenic-
ity of WP and DPF is that the WP have medium protein concentrations but high levels of fat. These fats may 
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protect proteins during the digestion process/treatment process, or they may affect the allergenicity of a protein. 
Moreover, the polysaccharide–protein and protein–protein and protein-lipid interactions may influence allergen 
reduction31.

The decrease in band intensity following plasma treatment is due to plasma induced crosslinking of proteins20. 
Atmospheric plasma is a good source of reactive species such as atomic oxygen (O), ozone (O3), hydroxyl radical 
(•OH), N2, NO, NO2, nitric oxide radical (NO•) as well as UV-A and UV-B radiation32,33. These species induce 
changes in protein structure. Several authors have suggested that the faint band in SDS-PAGE might indicate 
cross-linking proteins, however, there was no cross-linking observed in the gel20,34. Tammineedi et al. observed 
no change in protein of α-casein after subjecting to plasma treatment. Moreover, these authors observed pro-
longed exposure of cold plasma resulted in reducing band intensity due to increased protein to protein interac-
tions derived during protein unfolding and aggregation. The formation of aggregates and the decreased protein 
solubility could lead to the disappearance of protein bands as only soluble proteins can pass through the gel 
smoothly35 in the present study only the soluble proteins have been subjected to SDS-PAGE in this study In 
addition, the hydroxyl and hydrogen radicals (OH• and H+), along with the ozone molecule and UV radiation 
are known to be powerful protein-modifying agents36. In a study on Gly m 5, a major soy allergen which is 
structurally similar to Ara h 1, a decrease in band intensity and changes in protein profile after plasma treatment 
was observed20. Surowsky et al.22 also reported changes in the secondary structure of protein for model enzyme 
solutions. The decrease in the band intensities of WP and DPF could be attributed to plasma induced changes 
in the protein structure or oxidation of protein resulting in the formation of disulphide bonds. An earlier study 
using an atmospheric DBD plasma system, resulted in no changes in Ara h 1 for either WP and DPF23. Many 
authors have reported that the effects induced by plasma depends on the system configuration21,37. In the present 
study, a large discharge was induced between the electrodes resulting in a stable arc discharge in air. The device 
employed facilitated changes in the frequency (100–3,000 Hz), which was set to 1 kHz to maximise the intensity 
and effect of the discharge.

Immunoblotting.  The changes in the immunoblots for both WP and DPF after cold plasma treatment (15, 
30, 45 and 60 min) is presented in Figs. 3 and 4, from which it is evident that the band intensity of Ara h 1 and 
Ara h 2 decreased with increases in treatment for both WP and DPF compared to the control. With an increase 
in plasma exposure to 30 min the intensity of the band reduced which could indicate a decrease of solubility of 
Ara h 1 and Ara h 2. However, this does not mean that there is a decrease in the allergenicity in WP. The reduced 
band intensity observed in Figs. 3a and 4a for the 45 min and 60 min treated samples suggest a decrease in bind-
ing activity due to less protein in the solution. Additionally, it could also be due to the aggregation of proteins. 
The decrease in the IgG binding activity in DPF is more when compared to the WP, for both Ara h 1 and Ara h 
2 and this could be due to the protein-lipid complex in WP. This protein-lipid complex might prevent the reac-
tive species acting on the epitopes. Although, increases in the treatment dose might alter the functionality of 
the protein-lipid complex38,39. In a recent study, low pressure plasma treatment of cashew nut showed a minimal 
effect in nut composition with increases in oil extractability40. These authors indicate the barrier effect of the 
protein molecules in the upper layer of cashew limited the transition of plasma-generated radical species within 
the sample leading to no observed changes in the allergenicity after treatment.

In the present study, a decrease in the IgG binding activity for DPF was observed for both Ara h 1 and Ara 
h 2 as seen in Figs. 3b and 4b, suggesting a decrease in binding. Similar reductions in band intensities were 
observed by Nooji et al.39 with cold plasma treatment of wheat protein extracts. Additionally, Jiang et al.41 also 
reported that plasma efficacy depends on the sample surface area, sample constituents and treatment time. As the 

Figure 2.   SDS PAGE analysis of Whole peanut (a) and defatted peanut flour (b) before and after plasma 
treatment.
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treatment time and surface area exposed to the discharge increase, there is more potential for the active species 
to induce physical or chemical changes. These active species could also mask or change the IgG binding epitope 
and result in a decrease in the IgG binding pattern21. Moreover, sample composition also plays an important 
role in plasma interactions.

Zhenxing et al.34 reported that shrimp allergen was protected from free radical damage due to the presence 
of lipids in the shrimp muscle during low doses of gamma radiation. Shriver et al.19 also reported a lower IgE 

Figure 3.   Western blot analysis of Whole peanut (a) and Defatted peanut flour (b) of Ara h 1 (Note: Lane 1: 
Control; Lane 2 15 min; Lane 3: 30 min; Lane 4: 45 min Lane 5: 60 min).

Figure 4.   Western blot analysis of Whole peanut (a) and Defatted peanut flour (b) of Ara h 2 (Note: Lane 1: 
Control; Lane 2 15 min; Lane 3: 30 min; Lane 4: 45 min Lane 5: 60 min).
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binding after low plasma doses. The presence of UV light during air plasma treatment may also play a role in 
lowering the IgE binding. Chromophores e.g., amino acids chains and prosthetic groups present in the proteins 
are prone to photoreactions3. Exposure to UV light makes the protein chromophores absorb the light and cause 
side-chain oxidation, protein cross-linking and aggregation. This formation of insoluble proteins and backbone 
fragmentation by UV and other species may cause alteration in IgE binding to the allergen42.

Competitive ELISA.  Competitive ELISA was used to determine the antigenicity of purified peanut aller-
gens. Ara h 1 and Ara h 2 were extracted and purified from both control (untreated) and cold plasma treated 
DPF and WP and then used competitive ELISA analysis. Both major allergens, purified Ara h 1 and Ara h 2, were 
evaluated before and after cold plasma treatment for DPF and WP. Figure 5 shows the antigenicity of Ara h 1 
decreased with increase in plasma doses for both WP and DPF Fig. 5a,b. It can be observed from Fig. 6a that Ara 
h 2 in WP showed a decrease in antigenicity of 18%, 30%, 40% and 46% for 15, 30, 45 and 60 min, respectively. 
A profound decrease in antigenicity of Ara h 2 was observed for DPF see Fig. 6b when compared to WP. Ara h 2 
showed a decrease in antigenicity of 31% and 42% for 15 min and 30 min respectively in DPF. Further increases 
in treatment doses of DPF to 45 and 60 min showed high reductions of 59% and 66% respectively. Similarly, a 
decrease in the antigenicity of Ara h 1 was observed for DPF when compared to WP. A decrease of 38%, 41%, 
64% and 65% was observed for Ara h 1 in DPF and a decrease of 29%, 36%, 38% and 39.32% was observed for 
Ara h 1 in WP.

The prominent decrease in antigenicity of Ara h 1 and Ara h 2 in DPF is likely due to the increase in the sur-
face area of DPF compared to WP. Additionally, the difference in the reduction in antigenicity of these allergens 
are due to changes in the protein structure. Similar reductions were achieved by Venkataratnam et al.23 for cold 
plasma treatment of peanut allergens. Wu et al.43 reported that the mechanism of plasma allergen reduction 
depends on the form of protein structure. The results observed in this study are in agreement with findings from 
Meinlschmidt et al.20 who applied cold plasma for the treatment of soy allergen Gly m 5. These authors achieved 
a reduction in binding activity (91–100%) with direct and remote cold plasma treatment. Plasma species such 
as reactive oxygen species (ROS) and reactive nitrogen species (RNS) alter amino acids, resulting in changes 
in the binding epitopes44. During plasma discharges and interactions numerous chemical reactions may occur 
leading to multiple mechanisms of action and pathways. The primary mechanism of allergen reduction likely 
involves an alteration of the conformational epitopes by the formation of insoluble aggregates. The SDS-PAGE 
data supports this mechanism, where only soluble proteins can pass through the gel. Alternatively, the decrease in 

Figure 5.   Competitive ELISA of Ara h 1 in cold plasma treated WP (a) and DPF (b).
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solubility and the fragmentation could also be the case for alteration of linear epitopes3. Besides these Surowsky 
et al.22 also reported that reactive species may cleave amino acids thereby incapacitating the binding sites of 
antibodies. The dissociative addition of the single hydroxyl to form RSH and RSO• and formation of disulphide 
bonds can lead to significant effects on protein integrity. These findings show that higher exposures to plasma 
has a profound effect on the IgE binding proteins which is in agreement with previous studies. Nooji39 revealed 
a 25% decrease in IgE binding after 3 min of plasma treatment. Similarly, Shrivar19 reported a reduction in IgE 
binding to tropomyosin by up to 76% after cold plasma treatment. In addition, a recent study by Ekezie et al.45 
reported that cold plasma has been efficient in decreasing the allergenicity and antigenicity capacities by 17.6% 
and 26.8% respectively. Conversely, Tammineedi et al.46 observed no significant change in the allergenicity of 
α-casein and whey solution by indirect atmospheric plasma treatment. The present research found that there 
may be modifications or biodegradation of protein profiles. However, this tendency seemed to differ according 
to the nature of the allergen, plasma conditions, its exposure mode and its degree of structural alteration. Most 
importantly, the plasma parameters employed play an important role in the cleavage of peanut allergens.

CD spectroscopy.  CD spectral analysis was used to detect modifications in the protein secondary structure. 
Ara h 1 and Ara h 2 were extracted and purified from both control (untreated) and cold plasma treated DPF and 
WP and then used for CD spectral analysis. From Fig. 7a,b the spectra of native Ara h 1 showed a characteristic 
positive peak at 195 nm, indicating the presence of β-sheets and two negative peaks (∼ 208 nm and 222 nm) 
confirming the existence of α-helix structures. Similarly, Ara h 2 see Fig. 8a,b also shows a characteristic positive 
peak at 194 nm and negative peak at 208 nm and 222 nm. The changes in the percentage of conformational units 
for both Ara h 1 and Ara h 2 are presented in Table 1. Thus, implying that both Ara h 1 and Ara h 2 predomi-
nantly contain α-helix and these results are consistence with previous results from Venkatratnam et al.23.

With increases in the plasma treatment dose, a progressive decrease in the molar ellipticity was observed for 
both Ara h 1 and Ara h 2 in DPF and WP. The native/control (untreated) Ara h 1 is composed of 52% α-helix, 
30% β strands and 18% random coil and native/ control (untreated) Ara h 2 is 48% α-helix, 32% β strands and 
20% random coil. As shown in Table 1 there was a decline in the percentage of α-helix while there is an increase 
in the random coils, however, β strands and turns coils exhibited a varied pattern. The α-helix in DPF for Ara 
h 1 decreased after 15 min treatment with a similar decrease observed for Ara h 1 in WP. On the other hand, 
upon plasma treatment a progressive decrease in α-helix was observed for Ara h 2 from 15 min in DPF. This 
change in both the positive and negative molar ellipticity show an alternation in the secondary structure of both 
proteins. Ekezie et al.40 also reported variations in the secondary structure in king prawn allergen using a cold 

Figure 6.   Competitive ELISA of Ara h 2 in cold plasma treated WP (a) and DPF (b).
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Figure 7.   CD spectroscopy of Ara h 1 in WP (a) and DPF (b).

Figure 8.   CD spectroscopy of Ara h 2 in WP (a) and DPF (b).
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plasma jet treatment. The oxidative interactions of plasma reactive species with protein cause alterations in the 
secondary structure.

Additionally, the change in the secondary structure could also be due to the aggregation thus causing modi-
fication of the antigen epitopes and their binding ability. However, the mechanism of action of plasma on the 
allergenicity of protein is not completely understood. Nevertheless, there are multiple known mechanisms that 
affect the protein structure. The active species mainly OH· or superoxide cleaves the protein into peptides and 
further into amino acids affecting their side chains. The dominant alteration is cleavage of disulphide bonds/
oxidation of sulphur containing amino acids leading to the destruction of the binding sites for antibodies. Similar 
changes in the secondary structure of peanut protein isolate were reported by Ji et al.47. These authors suggested 
that the bombardment with high energetic ions resulted in a decrease in α-helix and β turns and overall destroy-
ing the orderly structure of PPI. Han et al.43 studied the effects of a jet plasma on activity of HRP and observed 
a similar change in the secondary structure. They suggested that the change in the structure could be due to the 
deformation of the microstructure along with the unfolding of polypeptide. The interactions of reactive species 
which can change the conformational structure, protein denaturation and reduction of protein solubility due to 
aggregate formation all of which possibly reduce the allergenicity. This study indicates the importance of the food 
matrix composition, type of allergen and structure of allergen protein on plasma induced effects. Furthermore, 
Surowsky et al.21 also reported significant effects on the protein structure, which was linked to the formation of 
hydrogen bonding leading to reduction in peptide linkages. Nonetheless, no clear consensus can be reached on 
the definite mechanism for the reduction of allergenicity of Ara h1/Ara h 2 by plasma. Additional work is still 
necessary to identify the exact interactions between plasma activate species and the allergen protein.

Conclusion
The present study was designed to evaluate the alterations in allergenic responses and structural changes of 
major peanut allergens after cold plasma treatment. The results reveal a significant reduction in the antigenicity 
of major peanut allergens Ara h 1 and Ara h 2 for both DPF and WP. The SDS-PAGE analysis revealed reduction 
in protein solubility and possible formation of insoluble aggregates. Longer plasma treatments resulted in changes 
in the secondary structure of proteins. The modification in α-helix and β-sheets structures leads to changes in 
epitope binding capacity, thereby affecting its antigenicity. Cold plasma offers a promising alternative tool to 
decrease the allergenicity of peanut. Future work should focus on in vivo studies to verify the allergic reduction 
of cold plasma-treated peanut.
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