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Target-mediated drug disposition (TMDD) is the phenomenon in which a drug binds with high affinity to its pharmacological
target site (such as a receptor) to such an extent that this affects its pharmacokinetic characteristics.1 The aim of this Tutorial
is to provide an introductory guide to the mathematical aspects of TMDD models for pharmaceutical researchers. Examples of
Berkeley Madonna2 code for some models discussed in this Tutorial are provided in the Supplementary Materials.
CPT Pharmacometrics Syst. Pharmacol. (2015) 4, 324–337; doi:10.1002/psp4.41; published online on 15 June 2015.

BACKGROUND AND OVERVIEW OF TMDD MODELS

The Langmuir adsorption isotherm, defined by the chemist
Irving Langmuir (1881-1957),3 forms the basis for the most
common classic models of ligand–receptor binding. Using
pharmacological nomenclature, it relates the amount of
drug–receptor complex (P) formed with the total number of
receptors (R0) and free drug (L) in the following manner,
based on principles of the law of mass action4:

P ¼ R0L
KD1L

(II.1)

where KD is the equilibrium dissociation constant. This model
is based on the assumption that the concentration of the
ligand greatly exceeds that of the receptor and therefore is
not affected by the formation of the ligand–receptor complex.
For very potent, high-affinity compounds this assumption
may not be valid, and under such conditions the concentra-
tion of unbound drug will be affected by its binding to the
pharmacological target and the binding model becomes3:

P ¼ 1
2

KD1L01R02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKD1L01R0Þ224L0R0

q� �
(II.2)

where L0 is the initial, total drug concentration.
Eq. II.2 only applies to steady-state conditions where the

total amount of R0 and L0 remain constant, which rarely
applies to in vivo conditions. Therefore, Levy (1994)1 intro-
duced the concept of TMDD for the phenomenon of drug

distribution through binding to the pharmacological target in
the context of pharmacokinetic-pharmacodynamic (PKPD)
behavior, building on earlier studies on the interplay between
capacity limitation and enzyme/receptor turnover in pharmaco-
kinetics.5,6 Although originally proposed to describe the effects
of extensive ligand-target binding in tissues for small and large
molecules, TMDD has featured most prominently in the litera-
ture as a saturable clearance mechanism for biologics, in par-
ticular peptides, proteins, and monoclonal antibodies (mAbs).
In parallel with growing experimental evidence supporting the
TMDD concept,7 a large body of literature has developed over
the last few years addressing the theoretical aspects, typically
based on mathematical analysis and simulations.

The starting point for a basic TMDD model is the binding of a
drug (represented by L) to a target (R) to produce a complex (P)
in a reversible reaction. This second-order binding and first-
order dissociation is represented by the rate constants kon and
koff. The elimination of the drug, target, and complex by the
body are modeled by first-order rate constants keðLÞ; kout, and
keðPÞ, respectively. The production of the target (kin) is also
included. The changes of the concentrations of the three com-
pounds with time are modeled by ordinary differential equations
(ODEs) with nonlinear binding terms.

Since the first TMDD model was proposed by Mager and
Jusko in 2001,8 more complex TMDD models have been
developed. The development of these models is shown in
Figure 1 and described below.

There are several classes of drug that exhibit TMDD. The
main class of these are biologics, which are products pro-
duced by cutting-edge biotechnology and they include mAbs,
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cytokines, and growth factors.9 Biologics differ from normal
compounds because they are much larger, have slower absorp-
tion rates, confined distribution, and different elimination. They
are designed for a specific target, typically found on the cell
membrane which they bind to with high affinity.10 Due to this
high affinity, the binding to the target and subsequent turnover
of the drug–target complex can contribute significantly to the
disposition of biologics. However, this elimination by binding to
a target is saturable because of the finite number of targets on
the cell surface. This saturability causes the nonlinearity seen in
TMDD models. Also, clearly some small molecules exhibit
TMDD, as was the case for warfarin, the first drug to be
described using TMDD by Levy in 1994.1 Some examples of
how TMDD models have been used to describe the PKPD of
various drugs are provided in Table 1. Note that this is not a
comprehensive review, which would be outside the scope of a
tutorial. For a comprehensive overview of general aspects of
TMDD and PKPD of biologicals, we refer to many excellent
reviews in this area (see, for example, ref. 10 and references
therein).

ONE-COMPARTMENT MODEL

The one-compartment model, first described by Mager and
Jusko in 20018 and then mathematically analyzed in detail
by Aston et al. 2011,11 is the simplest TMDD model

(Figure 2). This model assumes a single bolus infusion of
the drug (L0) into the central compartment (represented in
Figure 2 by the zero-order rate constant, “In”).

By assuming that all reactions occur in a single compart-
ment, only a set of three ODEs is needed to fully describe
the reaction mechanism:

dL
dt
¼ 2keðLÞL2konLR1koff P (III.1)

dR
dt
¼ kin2kout R2konLR1koff P (III.2)

dP
dt
¼ konLR2koff P2keðPÞP (III.3)

Lð0Þ ¼ L0; Rð0Þ ¼ R0 ¼
kin

kout
; Pð0Þ ¼ 0: (III.4)

The Berkeley Madonna code for this base TMDD model
is provided in the Supplementary Materials (Model 1) as
well as a simulation showing the nonlinear (dose- and time-
dependent) behavior of the pharmacokinetics of the ligand.

Parameters that affect potency
Aston et al.11 mathematically analyzed this model to
answer the question of which parameters affect the potency

Figure 1 Flow chart showing the development of TMDD models. References alongside arrows indicate who developed the model
(example models are provided in Berkeley Madonna code in the Supplementary Material).
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Table 1 Examples of the ligands and receptors exhibiting TMDD that have been modeled in the current literature

Ligand Receptor PK model used PD model used Biomarker Reference

Gemtuzumab ozogamicin CD33 antigen One Compartment Cell

Level Kinetic

No N/A 31

Romiplostim c-Mpl receptor Two Compartment QE

with Depot

Yes Platelets from precursor

cells

68

TPO c-Mpl receptor Two Compartment No N/A 70

Linagliptin DPP-4 Binding in Two Compart-

ments QE

Yes N/A 35

Vildagliptin DPP-4 Binding in Two Compart-

ments QE

No N/A 36

rHuEPO EPOR Two Compartment No N/A 48

rHuEPO EPOR Two Compartment (QE

and full)

Yes Process of erythropoiesis 55, 69

Epoetin-a HEXAL/

Binocrit(HX575),

rHuEPO

EPOR Two Compartment MM

(full and RB also

tested)

Yes Red blood cell production 61

Exenatide GLP-1R Two Compartment Yes Insulin, glucose 57, 66

Exenatide GLP-1R Two Compartment with

MM absorption from

Depot

No N/A 52

Abciximab Glycoprotein IIb/IIIa Two Compartment

Wagner

No N/A 74

ANG317 (human mAb) IgE Two Compartment QSS Yes IL-4Ra 46

Xolair IgE One Compartment with

Depot

No N/A 53

Fully human IgG2 mAb ALK1 Two Compartment No N/A 42

Fully human IgG2 mAb Hepcidin FcRn Recycling No N/A 32

Anti-DKK-1 IgG2 antibody DKK-1 Two Compartment No N/A 54

Rituximab IgG Three Compartment No N/A 27

Rituximab IgG FcRn Recycling No N/A 72

IFN-b IFNAR Two Compartment with

Depot and Lymph

Yes Neopterin 75, 76

IFN-b IFNAR Two Compartment RB Yes IP-10 mRNA 7

IFN-b IFNAR Two Compartment RB

with Lymph

No N/A 47

Type 1 IFN IFNAR1 or IFNAR2 Two Compartment Ctot

and Rtot

No N/A 41

Canakinumab IL-1b Binding in Two Compart-

ments QSS

No N/A 60

Canakinumab IL-1b Binding in Two

Compartments

Yes CRP and SAA 62

Tocilizumab IL-6R (soluble) Two Compartment QSS

with MM elimination

Yes Neutrophil, platelets 64

rhLIF LIF receptor Two Compartment with 2

Depots

No N/A 73

Anti-MTX mAb MTX Two Compartment No N/A 65

Denosumab RANKL One Compartment QE

with constant Rtot

Yes Serum NTX 71

Denosumab RANKL Two Compartment QSS

with Depot

No N/A 63

PEG-TPOm TPO One Compartment Yes Platelets from precursor

cells

56

Infliximab TNFa One Compartment with

Depot

No N/A 53

Aflibercept (VEGF-Trap) VEGF Two Compartment MM No N/A 67

rhVEGF VEGF receptors Two Compartment with

constant R

No N/A 77

Filgrastim G-CSF receptor One Compartment with

Depot

No N/A 78

TRX 1 CD4 receptor Two Compartment No N/A 79
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of the drug. In this context, potency was defined as the
concentration (or amount) of drug needed to produce a
defined response or effect.12 In the analysis reported by
Aston et al.,11 potency was measured by calculating the
minimum amount of target (Rmin) observed after drug
administration. The higher the potency of a given dose of
the drug the smaller the value of Rmin. Obviously, it was
concluded that Rmin was minimized when KD ¼ koff

kon
was

reduced, i.e., when kon !1 and koff ! 0. However,
increasing kon was found to be more effective than decreas-
ing koff as a saturation effect was observed, when koff ! 0;
Rmin approached a positive limit. However, other measures
of potency, such as area under the curve (AUC), were not
considered to see whether increasing the binding rate
resulted in increased potency in general.

Chimalakonda et al.13 investigated the percentage inhibi-
tion of the receptor and confirmed that decreasing KD by
increasing kon resulted in lowering the minimum concentra-
tion of the receptor and improving the duration of receptor
inhibition. However, the maximum duration of receptor inhibi-
tion was found to be fixed for a particular antibody and dose,
regardless of its binding rate. Therefore, improving the bind-
ing affinity beyond a certain value would not result in longer
duration of inhibition. However, this result was found from
simulations of receptor concentrations and as far as we know
has not yet been confirmed using mathematical analysis.

Parameters that affect rebound
The parameters that affected rebound were also mathe-
matically analyzed by Aston et al.14 (see Figure 6).
Rebound is the process that describes the postdose
increase of free receptor concentrations to greater than the
original free receptor baseline value. Rebound occurs for
single and multiple doses if and only if the elimination rate
of the product (keðPÞ) is slower than the elimination rates of

the ligand (keðLÞ) and receptor (kout). Very recently, this work
has been extended by an analysis that takes into account
feedback mechanisms.15

TWO-COMPARTMENT MODEL: BINDING IN THE CENTRAL
COMPARTMENT

This model, first described by Mager and Jusko in 2001,8

assumes that only unbound drug can distribute into a periph-
eral tissue compartment, while other ligands remain in the
central compartment. The concentration of drug in the tissue
compartment is given by LT and the rate at which the drug is
transferred between plasma and tissue is given by the first-
order rate constants, kpt and ktp, respectively (Figure 3).

Since an extra compartment is added, another equation
is added resulting in the following model:

dLT

dt
¼ kptLC2ktpLT (IV.1)

dLC

dt
¼ 2keðLÞLC2konLC R1koffP2kptLC1ktpLT (IV.2)

dR
dt
¼ kin2koutR2konLCR1koffP (IV.3)

dP
dt
¼ konLC R2koffP2keðPÞP (IV.4)

LCð0Þ ¼ LC0; LT ð0Þ ¼ 0; Rð0Þ ¼ R0 ¼
kin

kout
; Pð0Þ ¼ 0: (IV.5)

An outline of the Berkeley Madonna code for this two-
compartment TMDD model is provided in the Supplemen-
tary Materials (Model 2).

Table 1. cont.

Ligand Receptor PK model used PD model used Biomarker Reference

Anti-CD81 mAb CD81 One Compartment QE No N/A 80

TAM-163 TrkB Two Compartment with

Depot

No N/A 81

HSP90 Inhibitors HSP90 Both Two Compartment

and One Compartment

RB

No N/A 82

AMG-811 IFN-c One Compartment QSS No N/A 44

Figure 2 One-compartment TMDD model.
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Approximations to the model
Due to the increased number of parameters occurring in
this model, simpler models based on approximations have
been developed to enable fitting the model to data more
feasible. The first of these models to be developed, by
Mager and Krzyzanski in 2005,16 was the quasi-equilibrium
(QE) model (also known as the rapid binding model).
Based on this work, Gibiansky et al.17 developed more of
these simpler models using alternative approximations.
These new models are the quasi-steady state (QSS) model
and the Michaelis–Menten (MM) model.

Quasi-equilibrium (QE) model. The QE model assumes
that equilibrium between the binding and dissociation of the
complex has been achieved, (konLCR ¼ koffP). This equilib-
rium assumption is plausible because these two rates are
often of several magnitudes faster than the other processes.
The model simplifies the full TMDD model by introducing the
equilibrium constant (KD ¼ koff

kon
¼ LC R

P ), the total concentration
of drug in the central compartment (Ltot ¼ LC1P), and the
total concentration of receptor (Rtot ¼ R1P) into the model.

dLT

dt
¼ kptLC2ktpLT (IV.6)

dLtot

dt
¼ 2ðkeðLÞ1kptÞLC2

Rtot keðPÞLC

KD1LC
1ktpLT (IV.7)

dRtot

dt
¼ kin2koutRtot 2ðkeðPÞ2koutÞ

Rtot LC

KD1LC
(IV.8)

LC ¼
1
2
ðLtot 2Rtot 2KDÞ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLtot 2Rtot 2KDÞ214KD Ltot

q� �
(IV.9)

Ltotð0Þ ¼ LC0; Rtotð0Þ ¼ R0 ¼
kin

kout
; LT ð0Þ ¼ 0: (IV.10)

An outline of the Berkeley Madonna code for the QE model
is provided in the Supplementary Materials (Model 3).

This model is very useful as it accurately predicts the lin-
ear terminal phase of the drug concentration–time graph.18

Thus, if the researcher wanted to accurately find the termi-
nal half-life of the drug, this model could be used instead of
fitting the more complicated full TMDD model. The QE
model also accurately predicts the clearance of the drug at
high doses.19 However, the QE model may not predict the
initial rapid decline in receptor concentrations or the initial
increase in the amount of the complex. Therefore, the
model may not be suitable to fit to an experiment that takes
place over a short time interval. Also, if this reduction in the
receptor is not as rapid then the QE model would not be
appropriate to use.

From ref. 17 it can also be concluded that the accuracy
of the QE model is dependent on the rate of elimination of
the complex. If this rate is much larger than the rate of dis-
sociation of the complex, i.e., keðPÞ � koff, then the QE
model is inaccurate and should not be used. However, if
the rate of elimination of the complex is small, then this
assumption can be used to get accurate PK results. Finally,
while this model can be used to adequately describe total
drug concentrations and total receptor concentrations, it
has been found to overpredict the concentration of recep-
tor.20 Since these concentrations cannot typically be meas-
ured experimentally and are an important indication of the
potency of a drug, clinicians need to be confident that they
can be predicted accurately and, as such, should not rely
on results obtained from fitting a QE model only.

Quasi-steady-state (QSS) model. The QSS model
assumes that the binding rate is balanced by the sum of the
dissociation and internalization rates
(konLCR ¼ ðkoff1keðPÞÞP). The only difference between this
model and the QE model is that now the equilibrium con-
stant is KSS ¼ KD1

keðPÞ
kon

. This model produces a more accu-
rate result than the QE model when keðPÞ � koff. Unlike the
QE model, the QSS model accurately predicts the phase
when the amount of receptor is approximately zero.18 For a
potent drug this phase may represent the majority of the
experiment, since in theory the aim of the drug is to bind to
the receptor and keep it bound for as long as possible.
Thus, the QSS model may fit the majority of data points in
this case and give a good approximation. An outline of the

Figure 3 Two-compartment TMDD model, with binding in the central compartment.
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Berkeley Madonna code for the QSS model is provided in
the Supplementary Materials (Model 4). Also provided in
the Supplementary Materials is a full example of imple-
menting the QSS model using the parameter values for
denosumab, Gibiansky et al.63 (Model 8).

In ref. 21, the QSS model was mathematically analyzed for
the particular case where Rtot was assumed to be constant
and there was no flow of drug to the tissue. The analysis con-
cluded that the QSS model was a good predictor when

maxðkeðLÞ; keðPÞ2keðLÞÞ
koff1keðPÞ1konðLC01RtotÞ

� 1 (IV.11)

Thus, the QSS model provides a good approximation to
the parameters when kon is large. Large kon results in
Rmin � 0,11 which further proves that the QSS model is
accurate during the phase when the amount of receptor is
approximately zero.

However, the QSS model does not accurately predict the
initial fast phase or terminal phase,18 so should not be
used to calculate terminal half-life of the drug. If an accu-
rate terminal half-life needs to be calculated, the QE model
should be used.

Michaelis–Menten (MM) model. The MM model is derived
from the Michaelis–Menten equation for enzyme kinetics,
which relates reaction rate to concentration. This equation
states that reaction rate ¼ VmaxConc

Km1Conc. For Vmax ¼ RtotkeðPÞ;
Km ¼ KSS and Conc ¼ LC. For the MM model to hold
either a QE or QSS assumption is necessary, so the MM
model is a special case of the QE and QSS models. The
MM and QE models are equivalent when KM 5 KD and
when the inequality Rtot KD

ðKD1LC0Þ2
� 1 holds.22 Also, in this

model it is assumed that the target concentration is small
relative to the free drug concentration. Finally, unless the
condition Rtot ¼ R0 constant is applied, this model is
mathematically equivalent to the QSS model. Thus, Vmax

is a model parameter to be determined by data fitting.
The model is defined by the following equations:

dLT

dt
¼ kptLC2ktpLT (IV.12)

dLC

dt
¼ 2ðkeðLÞ1kptÞLC2

VmaxLC

Km1LC
1ktpLT (IV.13)

LCð0Þ ¼ LC0; Rtot ¼ R0 ¼
kin

kout
; LT ð0Þ ¼ 0: (IV.14)

An outline of the Berkeley Madonna code for the MM model
is provided in the Supplementary Materials (Model 5).

In this model, the target is assumed to be fully saturated,
thus it follows that it would be a good approximation to the
full model when there is a large initial concentration of the
drug (i.e., when a high dose is given). This was mathemati-
cally proven21 for the case where the amount of receptor is
assumed to be constant (sometimes referred to as the
Wagner assumption) and when there is no movement of
drug into the tissue. However, it may take some time for
the target to become fully saturated, especially if the drug

is given subcutaneously and has to travel to the plasma. It
was also proven in ref. 21 that the MM model provides an
accurate approximation when

keðLÞ1Rtot kon

ðKM 1LC0Þkon
� 1.

The MM model is also accurate at predicting the phase
when the amount of receptor is approximately zero and the
next phase where it increases before the terminal phase is
reached.17 Thus, it seems to provide a wider range of good
approximations than the QE model. Also, it is recom-
mended that the MM model be used when the data pro-
vided by the experiment are incomplete (i.e., when not all
concentrations to the variables can be found or insufficient
timepoints were taken).22

However, for the MM model to be accurate for all doses,
the rate of elimination of the complex needs to be high.17 If
this rate is low, then only concentrations for high-dose lev-
els can be found using this model.

Effect of administration: route and scheme
In the models described above, a single bolus injection has
been assumed to have been injected straight into the cen-
tral compartment. If, however, a subcutaneous (or other
extra vascular) dose (D1) is administered, this is not the
case. Instead, another compartment, a depot, is added to
the full model to represent the time taken for the drug to
reach the central compartment with a constant absorption
rate constant (ka). Therefore, LCð0Þ ¼ 0 as at time t 5 0 all
the drug would be in the depot. The concentration of drug
in the depot is represented by the variable LD. The addi-
tions to the two-compartment model are given below and
all other equations and initial conditions remain the same.

dLD

dt
¼ 2kaLD ; LDð0Þ ¼ D1 (IV.15)

dLC

dt
¼ kaLD2ðkeðLÞ1kptÞLC2konLCR1koffP1ktpLT (IV.16)

Also, the drug could be administered via a constant rate
intravenous infusion. In this case an infusion rate (kf) is
then added into the equation for dLC

dt to represent the contin-
uous supply of the drug intravenously.

Correction to the initial conditions for MM model. In all
the above models, even though the equations have been
simplified and equilibriums have assumed to have been
reached, the initial conditions of the models remain the
same as they were for the full TMDD model. However, Yan
et al.24 showed that this may not be the case. In the time
taken for the system to reach equilibrium some of the
injected drug would bind to the target and so this should be
taken into account. In the study, a corrected initial condition
for the MM model was given:

LCcorrð0Þ ¼
1
2

��
Dose

V
2

Vmax

keðPÞV
2Km

�

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dose

V
2

Vmax

keðPÞV
2Km

� �2

14
KmDose

V

s � (IV.17)

This dose correction introduced one more parameter,
keðPÞ, into the model structure, thus allowing it to be identified.

A Tutorial on Target-Mediated Drug Disposition (TMDD) Models
Dua et al.

329

www.wileyonlinelibrary/psp4



The study in ref. 24, which tested the dose correction using
parameters obtained from the TMDD PK model for romiplos-
tim in humans, found that the corrected initial condition
improved the model. The corrected model was able to accu-
rately estimate all the parameters except Km, whereas in the
original MM model all the estimated parameters were sub-
stantially biased. In particular, the new model provided a bet-
ter estimate to keðLÞ and provided a more accurate estimate
for the volume of distribution and for the clearance.

Further investigation needs to be done to see if this particu-
lar dose correction would improve the other models that are
based on equilibrium approximations and whether this correc-
tion would work for different routes of administration or for dif-
ferent administration schemes. A dose correction was
successfully used by Olsson-Gisleskog et al. to model lower
doses of rHuEPO in human subjects, but in this case a differ-
ent correction to Eq. IV.17 was used.25 Also, the correction
assumed that only a single dose was administered and addi-
tional studies need to be done to see what the correction
would be for multiple doses and whether this correction would
be a necessary improvement to a multiple dosing model.

Another initial condition that can be improved is that of the
baseline concentration of a receptor. In some cases the initial
concentrations of the target receptor vary throughout the day
and as such should be modeled using an initial condition that
varies with time. For example, endogenous erythropoietin
was found to vary diurnally and as such in this case the MM
model was improved by modeling its baseline concentration
using the sum of two cosine functions.25

EXTENSIONS TO TWO-COMPARTMENT MODEL

Many research articles have built upon the two-
compartment model to incorporate different phenomena
that may affect the PK properties of a specific drug. In this
section an overview of these more complicated models
based on the two-compartment model will be given, outlin-
ing the benefits and drawbacks of each.

Adding additional nonbinding compartments
The simplest way to extend the two-compartment model is to
add another compartment to the model which the compound,
typically the drug, can flow into and out of with time-invariant
constants. These compartments can either be added into the
model to represent processes that occur before or after bind-
ing takes place in the central compartment.

An example of adding another compartment before the
binding process is adding a depot to the model. This exten-
sion to the model has already been analyzed in this article
in Effect of Administration: Route and Scheme. Unlike other
compartments, the drug can only flow out of the depot. In
addition to the depot, a lymph compartment can be added
to the model. The drug flows into the lymph compartment
from the depot and then out of the lymph compartment into
the central compartment. The drug cannot flow in the oppo-
site direction. This additional compartment needs to be
incorporated into the model if a large time delay between
the dose being administered and the drug reaching the
central compartment is observed, and if this time delay

cannot completely be explained by incorporating a depot.
For examples of the types of drugs modeled using a lymph
compartment, see Table 1.

Additional compartments can also be added to represent
processes that occur after the binding process in the central
compartment. For example, an endogenous compartment
can be added in which either the receptor and the complex
can flow into, or the drug and complex can. This
compartment is used to represent the additional process
where the receptor and complex are recycled inside the
cell,26 or to represent the process where the drug and com-
plex are recycled by binding to FcRn receptor.27 Both of
these models will be considered in more depth in the sec-
tions about receptor-mediated endocytosis and FcRn-
mediated recycling.

Multiple targets
Some drugs have the ability to bind to multiple targets in one
cell; for example, they could bind to both cell membrane (M)
and soluble (S) targets. This was investigated28 and a full
TMDD model for a drug binding to N different targets was
developed. In an attempt to address issues related to overpar-
ameterization, the article further developed and tested an
approximated model for the two targets (S and M) case. This
model was based on the QSS model but a MM term was used
to estimate the M-target parameters. This MM term, V M

max, is a
model parameter that needs to be found by data fitting but can
be interpreted by using V M

max ¼ RM
0 kM

eðPÞ. The model used the
assumption that enough free drug was present to ensure that
the targets did not compete with each other. Since the M-
target and the drug-M-target complex are located on the cell
surface, they can rarely be measured, and the model also
assumes that the total concentration of M-target was constant
(RM

tot ¼ RM
0 ). Thus, RM

0 could be considered a parameter of
the system. Finally, it was assumed that the total concentra-
tion of the M target, RM

tot , was small relative to the free drug
concentrations, LC and LT. The final model is given below:

dLD

dt
¼ 2kaLD ; LDð0Þ ¼ D1 (V.1)

dLT

dt
¼ kptLC2ktpLT (V.2)

dLtot

dt
¼ kf LD1ktpLT 2ðkeðLÞ1kptÞLC2

RS
tot k

S
eðPÞLC

K S
SS1LC

2
V M

maxLC

K M
SS1LC

(V.3)

dRS
tot

dt
¼ kS

in 2kS
outR

S
tot 2ðkS

eðPÞ2kS
outÞ

RS
tot LC

KSSS1LC
(V.4)

LC ¼
1
2
ðLtot 2RS

tot 2K S
SSÞ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLtot 2RS

tot 2K S
SSÞ

2
14K S

SSLtot

q� �
(V.5)

Ltotð0Þ ¼
D2

V
; RS

totð0Þ ¼ RS
0 ¼

kS
in

kS
out

; LT ð0Þ ¼ 0 (V.6)

An outline of the Berkeley Madonna code for this multiple
targets model is provided in the Supplementary Materials
(Model 6). When fitted to the data, the model provided
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unbiased estimates of all the parameters except for K S
SS,

which was underestimated by 29%.28 It was also able to
accurately predict the reduction in the amount of the unbound
M-target. However, the model was only tested on high doses
of the drug, since it was assumed in the model that both tar-
gets were saturated. Also, the model assumes that the drug
binds to only one target at a time, which may not be the case.
This is certainly not the case when a chimeric ligand binds to
two targets at once. However, a full TMDD model would need
to be developed to describe chimeric ligands.

Two drugs competing for the same target
In ref. 29, the situation where two drugs (drug A and drug
B) bind to the same target to get two different complexes
was investigated, see Figure 4. This model can also be
applied to a drug competing with an endogenous species
for the same target.

The model consists of a system of ODEs that are used
to find total receptor (Rtot ¼ R1PA1PB) and total free drug
concentrations (LAtot ¼ LCA1PA; LBtot ¼ LCB1PB). The ini-
tial conditions used were defined by the steady states of
the equations and by IV bolus doses of drug A, DoseA, and
of drug B; DoseB. LAtot ð0Þ; LBtot ð0Þ, and Rtot ð0Þ are the
baseline plasma concentrations. The rapid binding assump-
tion was used to create the system.

dLAtot

dt
¼ InAðtÞ2ðkeðLAÞ1kptAÞLCA1ktpALTA2keðPAÞðLAtot 2LCAÞ (V.7)

dLTA

dt
¼ kptALCA2ktpALTA (V.8)

dLBtot

dt
¼ InBðtÞ2ðkeðLBÞ1kptBÞLCB1ktpBLTB2keðPBÞðLBtot 2LCBÞ (V.9)

dLTB

dt
¼ kptBLCB2ktpBLTB (V.10)

dRtot

dt
¼kin2koutRtot 2ðkeðPAÞ2koutÞðLAtot 2LCAÞ

2ðkeðPBÞ2koutÞðLBtot 2LCBÞ
(V.11)

LAtotð0Þ ¼
DoseA

VC
2LAtot0 LTAð0Þ ¼

kptALA0

ktpA

LBtotð0Þ ¼
DoseB

VC
2LBtot0

(V.12)

LTBð0Þ ¼
kptBLB0

ktpB
Rtotð0Þ ¼ Rtot0 (V.13)

To get drug concentrations in the plasma (LCA and LCB)
the equilibrium equations below are required to be numeri-
cally solved. These are known in pharmacology as the
Gaddum equations.

ðRtot 2LAtot 2LBtot 1LCA1LCBÞLCA ¼ KDAðLAtot 2LCAÞ (V.14)

ðRtot 2LAtot 2LBtot 1LCA1LCBÞLCB ¼ KDBðLBtot 2LCBÞ (V.15)

The model was used in ref. 29 to simulate the
concentration–time profiles of immunoglobulin, IgG, using pub-
lished parameter values. However, since the equilibrium equa-
tions could not be solved analytically, the model was not fitted
to any data due to the limitations of the software available.

Receptor-mediated endocytosis
Receptor-mediated endocytosis (RME) describes the pro-
cess whereby the receptor and complex are internalized

Figure 4 Model with two drugs binding to the same target.
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into the cell from the cell surface where they are either
degraded or recycled back to the cell surface. A TMDD
model incorporating this process was developed by Krip-
pendorff et al.26 An RME model based on the full two-
compartment model was developed as well as simplified
models based on the QSS model. The model was then
used to successfully model the behavior of therapeutic pro-
tein drugs binding to the epidermal growth factor receptor
(EGFR). The article also concluded that the impact of RME
varied for drugs with the same KD value but different koff

values.

Cell-level kinetic and PK model
The cell-level kinetic and PK model is another example of
an extension to the two-compartment TMDD model. This
model, developed by Krippendorff et al.,30 incorporates
aspects of the RME model and the two drugs competing
for the same receptor model. This model represents a drug
binding to a receptor at the cell level to prevent receptor–
ligand complexes being formed that initiate signaling down-
stream. Thus, either the drug or ligand already present can
bind by TMDD to the same receptor. This receptor can
undergo the process of RME. This model is useful when a
drug inhibits the actions of another ligand already present
at the cell level. Since it is used predominantly to model
cancer drugs, two models have been developed for model-
ing the behavior of normal and tumor cells.

This model was also analyzed mathematically, and an
integral of inhibition was used to investigate which parame-
ters influenced the extent of receptor inhibition. Using linear
analysis, it was found that there was a “plateau” of effect
independent of parameter values, indicating that the recep-
tor can only be inhibited by a finite amount.

The cell-level kinetic model can also be applied to a one-
compartment TMDD model. In this model only the central
and cell-level compartments are considered. This model,
developed by Jager et al.,31 was successfully used to
model the monoclonal antibody GO, which binds to a
receptor called CD33. This drug is used to treat acute mye-
loid leukemia (AML) and as such a cell-level kinetic model
was used to show how much of the drug entered the cells
and how this affected the number of leukemia blast cells.
The model successfully did so, fitting both PK blood data
and the data on the amount of free and bound CD33 follow-
ing drug administration. Finally, the data fitting reproduced
published values for the initial number of leukemia blast
cells. No mathematical analysis of this model was done,
however.

FcRn recycling
Xiao et al.32 extended the QE two-compartment model with
a depot to include the process of FcRn-mediated endoso-
mal recycling. This improvement to the model was needed
to account for the increased elimination of the drug and
complex at higher concentrations (in this case 300 mg/kg).
In this process the drug and complex distribute from the
central compartment into the endosomal space where they
bind to the FcRn receptor to form two FcRn-complexes.
These FcRn-complexes are then broken down into the drug
and original complex in a recycling process that feeds back
into the central compartment. This process inherently leads

to an increased rate of elimination of the drug and complex.
To simplify the model the number of FcRn receptors was
considered to be constant and the same binding and disso-
ciation rate constants were used for both the FcRn receptor
binding to the drug and for the FcRn receptor binding to
the complex. Also, keðLCÞ ¼ keðPCÞ and both FcRn complexes
were recycled with the same rates. An outline of the Berke-
ley Madonna code for this model is provided in the Supple-
mentary Materials (Model 7).

Immune response
An extension of the one-compartment TMDD model was
created by Perez-Ruixo et al.33 to incorporate adaptive
immune response (cellular and humoral). When a drug is
injected, in certain cases antidrug antibodies are produced
as an immune response. This response alters the pharma-
cokinetics of the drug and may lead to a loss of therapeutic
effect. However, this response is complicated to model, as
it differs from patient to patient depending on the drug
administered, the dosing regime, and genetic factors. In the
model, two stages of immune response are taken into
account. In the first stage the drug stimulates B cells to
produce IgM, which does not directly bind to the drug but
affects its clearance. In the second stage, after a period of
time, IgG is produced, which binds to the drug to form an
additional complex, which is an additional elimination path-
way for the drug. This model is in its early development
stages; the authors only carried out simulations of the
model and did not fit the model to actual data.

MODEL WITH BINDING IN OTHER COMPARTMENTS
THAN THE CENTRAL COMPARTMENT

All the models that have been described in this article so
far have assumed that the binding of the drug to the target
to form a drug target complex and its dissociation only
occurs in the central compartment. However, this may not
be the case, especially if both the drug and its target are
able to distribute into the tissue, if the target naturally
occurs in multiple compartments, or if the target can be
absorbed into the lymphatic system following subcutaneous
injection. Thus, binding can occur in the tissue compart-
ment and can occur in the absorption compartment. These
two cases will be considered in turn.

Binding in the tissue compartment
In the first case binding can occur in both the tissue and
central compartments, see Figure 5.

While this phenomenon has not been explored in detail
mathematically (Figure 6), Lowe et al.,34 Retlich et al.,35

and Landersdorfer et al.36 developed TMDD models to rep-
resent binding occurring in both the tissue and central
compartments.

The model exhibiting binding in two compartments was
developed by Lowe et al.34 and based on a QE assumption
to model the behavior of any antisoluble ligand antibody.
Equations for the total drug amounts and the total target
amounts in each compartment were given, since experi-
mentally the amount of the free target on its own cannot be
measured. This model made the assumption that the
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elimination rate of the complex was the same for both com-
partments, but further assumed that this was also the case
for the elimination rate of the drug and free target.

The model was tested 34 using data from two studies giv-
ing doses of an antisoluble ligand antibody to cynomolgus
monkeys. The antibody was not disclosed in the article.

Figure 5 Two-compartment TMDD model with binding in both tissue and central compartments.

Figure 6 Flow chart showing the mathematical investigations completed on TMDD models in the current literature.
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The model was found to fit the data, giving relatively pre-
cise estimates to the parameters. The highest residual
standard error (RSE) was associated with KD (79%).

Retlich et al. developed a similar model to predict the
behavior of the drug linagliptin. Although no reference was
made to the earlier general model developed by Lowe
et al.,62 their later model was a simplified version of the
earlier model. When developing the model, Retlich et al.35

only considered differential equations for the amounts of
the drug in the two compartments and the depot. The
receptor concentrations were found using a pharmacody-
namic Emax model and then these values were substituted
into the differential equations for the drug concentrations.
The rationale for utilizing a hybrid of two different models is
unclear.

Landersdorfer et al.36 produced a model predicting the
behavior of the drug vildagliptin, based on the MM approxi-
mation. Vildagliptin is a novel antidiabetic agent that acts
by binding to and therefore inhibiting dipeptidyl peptidase
IV (DPP-4). The majority of DPP-4 naturally resides in the
tissue, not in the central compartment. It was decided to
base the model for vildagliptin on Retlich et al.’s model,
since that model explained the nonlinearity of vildagliptin
PK and the two-compartment TMDD model did not.

The model was fitted to one case study of 13 subjects, in
which three doses and a placebo were investigated. The
model adequately predicted the drug concentrations and
effects of vildagliptin on DPP-4. The proposed mechanism
was also compared with the findings of an in vitro microso-
mal and an in vivo metabolism study in rats, and it was
found that these findings supported the model.

From these three models a more general model for any
ligand can be developed, giving all the equations for the
concentrations of the drug, target, and complex in both
compartments. Once mathematically analyzed, this will give
a greater understanding of the behavior of each of the vari-
ables. Also, this more general model will need to be fitted
to other case studies of drugs potentially exhibiting this
behavior, to see if this model is more effective than the pre-
vious TMDD model.

Binding in the absorption compartment
Following subcutaneous (SC) injection, where the drug is
injected into the hypodermis, the drug reaches systematic
circulation through both the blood and the lymphatic sys-
tem, thus creating two absorption pathways. The mecha-
nisms of this absorption are not fully understood.
Previously, these two absorption pathways have been taken
into account by adding a depot compartment which could
represent the lymph (see Adding Additional Nonbinding
Compartments, above). However, this does not directly
assess the lymphatic compartment and does not allow for
the fact that the drug may bind to its receptor while in the
lymphatic system. Recently Kagan37 developed a TMDD
model that has incorporated this binding into the absorption
compartment. In this absorption compartment the drug can
transfer into the central compartment as before, but is also
eliminated in the compartment and can bind to its receptor
in the compartment. The full TMDD model has yet to be
developed; a QE model of the absorption compartment was

developed considering only total levels of bound and
unbound drug at the absorption site and concentration of
free drug in the central compartment. However, this model
was used to successfully capture the observed dose-
dependent bioavailability of rituximab. More research needs
to be carried out to create and analyze a full model to see
what additional insights this model creates compared to
using a standard model with a depot compartment.

USES FOR TMDD MODELS

Once the chosen TMDD model has been fitted to the data
for a specific drug, the estimated parameters can be used
to calculate a PK profile and parameters for the drug at dif-
ferent doses including clearance, AUC, terminal slope, etc.
This process has been applied to a variety of drugs includ-
ing mAbs and proteins. Table 1 outlines what models have
been fitted to different drugs and their receptors in the cur-
rent literature.

Grimm38 calculated general formulas for the maximum
target-mediated clearance for the three different models.
The first was a one-compartment QSS model assuming
that the target molecule was recycled (i.e., R is constant).
The second model was the one-compartment model in
equilibrium and the third was the two-compartment model
with binding occurring in one compartment (the target site).
For the third model, Grimm introduced a new parameter,
“hermeticity,” to measure the importance of the accessibility
of the target site. This new parameter models the drug’s
ability to reach an inaccessible tumor. These formulas for
clearance suggest a method for identifying a minimal dose
required for efficacy.38

TMDD models can also be used to infer and predict
human PK characteristics of a drug from animal studies.
This allows for greater understanding of factors such as
dose selection before a first-in-human (FIH) clinical trial.39

A suitable TMDD model is fitted to the data from the animal
trial. Then we use the following power law equation to cal-
culate the human parameters:40

P ¼ a
BWh

BWa

� �b

Here P is the human parameter, a is the animal param-
eter, BWh is the human bodyweight, BWa is the animal
bodyweight, and b is the power coefficient. If the animal
parameters are expressed per unit weight, then we can
set BWa 5 1. Kagan et al.41 successfully used this method
to predict the PK of interferon in rodents from human and
monkey studies. The experimental data were for rodents,
so the article worked backwards from human PK data to
investigate whether the scaling worked. Luu et al.42 pre-
dicted the human PK of a monoclonal antibody from a
clinical trial in monkeys. When compared to experimental
data from a human clinical trial, the model was found to
correctly predict clearance, Cmax, and AUC but underpre-
dicted half-life and VD for lower doses. Also, all the experi-
mental PK profiles fell within the predicted PK population
spread.
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More complex models have also been used to find the
starting dose for an FIH study from animal data. The model
for binding in two compartments was used on data from
cynomolgus monkeys to calculate the suppression in the
concentration of the free target that could not be measured
experimentally for each dose.34

Traditionally Emax was calculated by fitting an indirect
response model but Gibiansky et al. showed that this model
can be directly derived from the QSS model. It gives the
equation for total target concentration only, which can be fit-
ted to data only if the total target concentration is known.
This equation is interesting because all the parameters of
the full TMDD model can be calculated from it.

dRtot

dt
¼ kin2koutRtot 11Emax

LC

KSS1LC

� �
; Emax ¼

keðPÞ
kout

21

This shows that the Emax of a drug can be found directly
from fitting any two-compartment TMDD model to the
drug’s data and finding keðPÞ and kout.

As far as we know, Abraham et al.7 provided the first
experimental evidence of TMDD for biologics using inter-
feron receptor knockout mice. The combined model was
used to investigate interspecies scaling of PK and PD prop-
erties of type 1 interferon,41 and was found to provide a
reasonable description of the experimental data for humans
and monkeys. The integrated PK/PD model was also used
to successfully assess the receptor-mediated disposition
and dynamics of interferon-b in mice.7

TYPICAL ISSUES ARISING FROM USING TMDD
MODELS

Working with TMDD models can sometimes be complex
and issues arise when using them to model actual data.
One of these is that it may not be possible to measure all
the concentrations needed in the model. For example, in
reality it may not be possible to separate the bound and
unbound receptor or drug. Thus, the total concentration
equations (Ltot ¼ L1P or Rtot ¼ R1P) may need to be
used in conjunction with other equations in the model to
arrive at values for the parameters. Another issue that may
arise is that only the ligand data are available. Then these
data can be used in conjunction with a QE or QSS model
to estimate the values of KD, KSS, and Rtot by fitting the
ligand equation to the data. From these values, the potency
of the drug can be inferred. Also, these values can be com-
pared with existing literature values (if available). However,
using the TMDD models, estimated KD values can differ
from in vitro KD values. This can occur for various reasons,
which we will not discuss here but which can be found in
the literature. Also, the estimated KD is typically greater
than the EC50 calculated from downstream biomarkers.
Another, seemingly trivial, practical issue, that in our experi-
ence can easily lead to erroneous results, is the appropri-
ate conversion between amounts and concentrations for
drugs and system species and associated rate constants.
An elegant example of how to implement this in model
code is provided in ref. 43. Finally, the TMDD concept does

not imply that the drug has nonlinear pharmacokinetics. In
some cases the nonlinearity can be removed from the
TMDD model if the total drug concentration is found to be
equal to the free drug concentration in the central compart-
ment. This removes the second-order term from the total
drug concentration differential equation. Chen et al.44 found
this to be the case when modeling an antibody binding to
the interferon-gamma (IFN-c) receptor, since the free recep-
tor concentration was negligible compared with the free
drug concentration. In this case the antibody exhibited lin-
ear PK.

CONCLUSION

A variety of mathematical models have been developed to
represent the TMDD of several drugs. This review has given
a general description of the most-used models. The one-
compartment model has started to be mathematically ana-
lyzed by Aston et al.,11 but further analysis can still be done,
especially in the area of relating various measures of in vivo
potency and efficacy to drug and system properties. The
two-compartment model with binding in the central compart-
ment has been developed and analyzed. This model has
been approximated and the occasions where each approxi-
mation should be used have been evaluated. Extensions to
the model have been fully developed to include modeling
multiple targets for the same drug, modeling multiple drugs
competing for the same target, and modeling the inclusion of
a PD model. Wang et al.68 presented a particular case of the
TMDD model, the pharmacodynamics-mediated drug dispo-
sition model (PDMDD), in which time dependency is added
to the concentration-dependent clearance of the TMDD
model. This may be important, for example, for growth fac-
tors such as erythropoietins. Finally, models have started to
be developed to include binding between the drug and recep-
tor in both the central and tissue compartments, and binding
in the absorption compartment. These models are in their
early developmental stages; a general model for any ligand
still needs to be developed that includes all relevant rate con-
stants. One area that has not been considered at all yet is
the area of dimerization. Dimerization refers to the process
whereby a drug–target complex can bind with another mole-
cule to produce a dimer. This may be a relevant step to
include in the TMDD model to fully predict the PK of a drug
that can produce a dimer, for example in the area of neuro-
trophins. Another area that has not been fully developed is to
apply TMDD to a minimal physiologically based pharmacoki-
netic model (MPBPK), thus incorporating physiological ele-
ments into a TMDD model. While this has not been
attempted yet, Cao and Jusko45 have concluded that the
MPBPK model can be extended to handle TMDD and its
dynamics.

To conclude, this tutorial has provided an overview of the
development and application of TMDD models since the
original framework was proposed by Mager and Jusko.8 It
is expected that over the coming years more insights will
be obtained into the behavior of these complex nonlinear
models through systematic mathematical analysis of the
important emerging properties and that extended TMDD
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models will be developed that incorporate new biological
processes to account for new emerging experimental data.
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