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CTLA-4	� Cytotoxic T-lymphocyte-associated protein 4
FcɣR	� Fc gamma receptor
ICOS	� Inducible T cell co-stimulator
irAE	� Immune-related adverse events
LAG-3	� Lymphocyte-activation gene 3
PD-1	� Programmed cell death protein 1
PD-L1	� Programmed death-ligand 1
TIM-3	� T cell immunoglobulin and mucin-domain 

containing-3
Treg	� Regulatory T cells
VISTA	� V-domain immunoglobulin (Ig)-containing 

suppressor of T cell activation

Introduction

The groundbreaking results with CTLA-4 and PD-1/PD-L1 
checkpoint blocking antibodies provide a solid foundation 
for the field of cancer immunotherapy to build on. The field 
is now geared toward identifying drug candidates that act 
complementary or synergistically with checkpoint inhibi-
tors to enhance the response rates [1]. At the same time, 
treatments need to be safer in order to allow a broader use 
of cancer immunotherapy.

Tumor-directed immunotherapy is an approach to focus 
the immune activation to the most relevant part of the 
immune system (Fig. 1). This concept has also been termed 
in situ vaccination [2, 3]. The aim of tumor-directed immu-
notherapy is to activate immune cells that have already 
homed to the tumor/local lymph node where tumor anti-
gens are present, while minimizing irrelevant activation 
of the rest of the immune system. Preclinical data suggest 
that this can reduce immune-related adverse events (irAE). 
A critical aspect of tumor-directed immunotherapy is that 
it must be able to generate a systemic anti-tumor response 
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that eradicates distant metastases and induces long-term 
tumor immunity.

Tumor-directed immunotherapy would allow the use of 
highly potent immune modulating therapies and combina-
tions without increasing the risk for the patients. In addition 
to decreasing the risk for inducing toxicity, tumor-directed 
immunotherapy may reduce secondary systemic anti-
inflammatory feedback responses that dampen the anti-
tumor immune response. In the case of monoclonal anti-
bodies, tumor-directed immune activation can be achieved 
by local injection into the tumor area or by targeting the 
tumor using bispecific antibodies.

In this review, we focus on therapies targeting check-
point inhibitors and co-stimulatory receptors that facilitate 
tumor-specific T cell responses through localized immune 
activation. Cancer vaccines, oncolytic viruses, local 

injections of cytokines, and Toll-like receptor (TLR) ago-
nists are covered elsewhere [3, 4].

Cancer immunotherapy results in activation or 
reactivation of tumor‑specific T cells

The ultimate goal of cancer immunotherapy is to generate 
a strong tumor-specific T cell response enabling effector T 
cells to find and kill tumor cells, irrespective of localization 
or number of tumor lesions. Immune checkpoint therapy 
based on either anti-CTLA-4 or anti-PD-1/PD-L1 block-
ing antibodies inactivates the brakes on T cells, allowing 
broad activation of T cells, including tumor-specific T cells. 
In addition, experimental model systems have revealed that 
antibodies targeting CTLA-4 deplete Treg in the tumor 
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Fig. 1   Illustration of tumor-directed immunotherapy (also termed 
in  situ vaccination) compared to systemic immunotherapy. Intrave-
nous administration of agonistic or checkpoint blocking antibodies 
activates tumor-directed T cells generating an anti-tumor response. 
However, these treatments can also induce cytokine release, cause 
liver problems, and activate autoreactive T cells, resulting in immune-
related adverse events. Tumor-directed immunotherapy aims to direct 
immune activation to the tumor and tumor-draining lymph node 
axis. Activated tumor-directed T cells have the potential to migrate 
to distant tumors, eradicating also metastatic lesions. In contrast 
to systemic immunotherapy, the impact on immune cells irrelevant 
for the anti-tumor response is reduced. There are two approaches to 
tumor-directed immunotherapy: tumor-directed immunotherapy by 

administration route and tumor-directed immunotherapy by design. 
Tumor-directed immunotherapy by administration route is achieved 
by administering the immunomodulatory antibody directly into the 
tumor, into tumor-draining lymph nodes, or by a slow-release com-
bination close to the tumor site. The immune stimulation is thereby 
focusing on the tumor area, minimizing systemic exposure and thus 
reducing systemic side effects. Tumor-directed immunotherapy by 
design can be achieved using bispecific cross-linking-dependent 
agonistic TNFR antibodies where a tumor-binding part mediates the 
cross-linking, replacing the need for FcγR-mediated cross-linking. In 
the absence of tumor cells, these types of bispecific antibodies will 
not be active, minimizing systemic immune activation and reducing 
systemic side effects
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microenvironment [5]. Although there are currently no 
clinical data confirming this, ex  vivo studies support this 
proposed mode of action of ipilimumab [6].

CTLA-4 or PD-1/PD-L1 blockade is associated with 
increased survival in melanoma, renal cell cancer, non-
small cell lung cancer, bladder cancer, and Hodgkins lym-
phoma [7]. In fact, the combination of anti-CTLA-4 and 
anti-PD-1 therapy appears to be even more effective, albeit 
at the cost of a higher frequency of irAE. Nevertheless, this 
has sparked considerable optimism in the cancer immuno-
therapy field. Antibodies blocking additional checkpoint 
inhibitors such as LAG-3, TIM-3, and VISTA are currently 
in early clinical trials.

Strategies targeting checkpoint inhibitors have proven 
particularly successful in T-cell-infiltrated immunogenic 
tumors. However, turning non-immunogenic tumors into 
immunogenic tumors remains a challenge. Co-stimulatory 
agonistic antibodies may prove to be valuable to this end. 
Currently, agonist antibodies targeting the co-stimulatory 
receptors CD40, OX40, ICOS, CD27, GITR, and CD137 
are evaluated in the clinic [8–10]. Most of these co-stimula-
tory receptors are expressed on T cells. In contrast, CD40 is 
mainly expressed on antigen-presenting cells, such as den-
dritic cells (DC). Activation of CD40 on DC improves their 
cross-presentation of tumor antigens and release of IL-12, 
thereby boosting the number of activated tumor-directed T 
effector cells.

Tumor‑directed immunotherapy can be achieved 
by local administration of immune modulating 
drugs

Use of T cell co-stimulators is often associated with 
cytokine release. When these agents are combined with 
checkpoint inhibitors, there is a risk for aggregated toxicity. 
Tumor-directed immunotherapy may be a way to allow for 
such combinations while avoiding an increase in frequency 
and severity of irAE. There are two conceptually different 
ways to generate a tumor-specific T cell response through 
localized co-stimulation, i.e., either by local administration 
of the co-stimulator in the tumor area, or by developing co-
stimulators designed to exert their effect predominantly in 
the tumor microenvironment (Fig. 1).

In the clinical setting, local administration of antibod-
ies targeting checkpoint inhibitors and co-stimulatory 
receptors in the tumor area has been proposed primar-
ily for the treatment of unresectable tumors or as pre- or 
postsurgical adjuvant therapy to prevent local recurrence. 
However, a growing number of studies have suggested that 
intratumoral injections of antibodies targeting checkpoint 
inhibitors and co-stimulatory receptors can generate a sys-
temic anti-tumor response and immunity, eradicating also 

metastases distant to the injection site. Compared to intra-
venous administration, the intratumoral route may reduce 
acute as well as overall systemic exposure, and hence 
reduce the risk of acute reactions such as cytokine release 
syndrome and late-onset irAE.

Preclinical studies using tumor‑directed 
immunotherapy

Several studies in animal models have shown that local co-
stimulation using agonistic antibodies can drive systemic 
anti-tumor effects and induce T-cell-dependent anti-tumor 
immunological memory [11–15]. The most widely stud-
ied co-stimulatory target using local drug administration is 
CD40 where the concept has been demonstrated in multi-
ple models. Such models include virally transduced tumors 
[12, 13], multiple myeloma, lung cancer [12] as well as 
bladder tumors [11, 15]. Injection in or near the tumor is 
critical for generating the systemic tumor effect. This was 
demonstrated using experimental tumor models with mul-
tiple tumors, where the anti-tumor effect was severely 
impaired when CD40 activating therapy was administered 
at a site distant from the tumor [11, 13].

One of the critical issues when using local administra-
tion is the distribution of the antibody following injection. 
It has been demonstrated that injection in or near the tumor 
results in increased accumulation in the tumor-draining 
lymph nodes and that the systemic Cmax is reduced com-
pared to systemic administration [11]. It has also been 
shown that increased affinity of the CD40 agonistic anti-
body results in increased accumulation of the antibody in 
the tumor area [15].

Moreover, a replication-deficient adenoviral vector 
expressing CD40 ligand (AdCD40L) has been studied in 
murine bladder cancer models. Weekly intra-/peritumoral 
injections of AdCD40L cured subcutaneous and orthotopic 
bladder tumors as well as distant tumors [16]. This was 
associated with increased T cell infiltration and generation 
of cytotoxic T cells [17].

Locally administered CTLA-4 blocking antibodies have 
also been assessed in several experimental tumor models, 
including transduced epithelial tumors [18], colon cancer 
[19], pancreatic cancer [20], and bladder cancer (unpub-
lished data). CTLA-4 is of particular interest in this regard 
because of the high incidence of irAE associated with sys-
temic CTLA-4 blockade [21].

Agonistic OX40 antibodies in combination with 
CTLA-4 antibodies and CpG have shown promising activ-
ity in experimental lymphoma and breast tumors upon local 
administration [22]. Further, Palazón et al. [23] showed that 
local stimulation of 4-1BB using agonistic antibodies may 
be a promising approach to treat colon tumors and avoid 
systemic side effects.
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Clinical studies using tumor‑directed immunotherapy

Preliminary data from studies of intratumoral ipilimumab 
in combination with IL-2 (NCT01672450) indicate good 
tolerability. Intratumoral administration of ipilimumab in 
combination with TLR9 agonists is also under investigation 
(NCT02254772), and local administration of TLR agonists 
has been studied in several clinical trials [24, 25], demon-
strating both tolerability and clinical response. Further, a 
phase I/II study investigating intratumoral administration of 
tremelimumab in combination with TLR agonist (poly I:C) 
and systemic PD-L1 blockade has recently been initiated 
(NCT02643303). In addition, a first-in-man trial of intra-
tumoral CD40 agonistic monoclonal antibody ADC-1013 
was initiated in early 2015 (NCT02379741).

Several clinical studies have also been performed using 
adenoviral vectors expressing CD40 ligand (AdCD40L). 
A first-in-man phase I/IIa study was conducted with local 
instillation of AdCD40L in high-grade bladder cancer 
patients scheduled for cystectomy [26]. Patients received 
3 weekly local instillations of the vector, followed by cys-
tectomy. The treatments were well tolerated. Treated blad-
der tissue expressed CD40L as well as IFNγ and resulted 
in T cell infiltration and total or partial disappearance of 
malignant cells in 5/8 treated patients, thereby providing 
proof of concept [26]. This trial was followed by studies 
in dogs with spontaneous high-grade malignant melanoma 
[27]. In total, 19 dogs were treated, resulting in 5 complete 
and 8 partial responses, 4 stable disease and 2 progressive 
disease, including effects on distant metastases [28]. More 
recently, a phase I/IIa study of intratumor AdCD40L in 
patients with therapy-resistant metastatic malignant mela-
noma was initiated. Side effects were mild, and local and 
distant anti-tumor effects were observed in MR-PET imag-
ing. Addition of low-dose i.v. cyclophosphamide resulted in 
prolonged survival compared to AdCD40L alone [29]. Fur-
ther, replication-competent adenoviruses can be engineered 
to exhibit oncolytic, i.e., tumor cell selective killing and 
immunostimulatory, properties [30].

Technical aspects of intratumoral administration

Several challenges need to be addressed to bring this con-
cept to the patients. Methods to prevent systemic leakage 
of the injected antibody using micro- or nanoparticles or 
emulsions have been described [31, 32]. Further, it is likely 
that immune cells both in the tumor and in tumor-draining 
lymph nodes are important, which may affect the require-
ment of appropriate exposure. The relative importance of 
the immune cell locations may vary depending on target 
and tumor type.

Intratumoral administration may be associated with 
adverse events such as local inflammation, pain, and 

bleeding. Local inflammation and associated pain could 
also be a sign of successful immune activation in the 
tumor area. The risk of bleeding after intratumoral 
injection is small (probably <1  % of injected tumors). 
Monitoring of patients for a few hours post-injection 
into deep tumors is however recommended. Another 
potential risk is that the immune activator may be mis-
takenly injected in a blood vessel during intratumoral 
administration, thus leading to rapid and complete 
uptake in the circulation with risk of acute cytokine 
release as a result. This risk is however considered 
small and can be further reduced by avoiding injections 
in well-vascularized tumors and by using an intratu-
moral injection guidance including aspiration prior to 
injection.

From a practical point a view, it is also important to 
consider factors such as injection volume, injection speed, 
diameter of needles, and size of tumors. When administrat-
ing intratumorally, the injection volume should be kept low 
(preferably below 500  µL) to minimize systemic leakage. 
For tumors larger than 3 cm in diameter, the dose may be 
administered close to the tumor margin in order to maxi-
mize the chance of exposing relevant immune cells. The 
size of the injected tumors may also affect the response. 
One hypothesis is that injection into larger tumors, e.g., 
larger than 5 cm in diameter, may lead to reduced efficacy 
due to large regions of central necrosis, while injection into 
tumors smaller than 1 cm may lead to increased leakage of 
the immune activator from the tumor. Further, the speed of 
injection may depend upon the density of the tumor tissue 
and the ease of distributing the study drug solution through 
the tumor while still allowing the retention of the study 
drug within the tumor.

Selection of the tumor(s) to inject is primarily driven by 
feasibility. It could be argued that the primary tumor would 
offer the best opportunities to direct the response to “trunk” 
mutations, i.e., mutations that arise early in the tumorigen-
esis and are shared by the majority of the tumors in the 
patient, and may be associated with a better response than 
branch mutations that arise at later stages [33]. However, 
the quality and quantity of the immune infiltrate in differ-
ent tumors in the same patient may also affect the choice of 
tumor to inject.

Tumor‑directed immunotherapy can be achieved 
by designing drugs to act locally

Another approach to perform tumor-directed immunother-
apy is to use immune-activating bispecific antibodies that 
incorporate tumor-targeting entities or monospecific anti-
bodies that are preferentially active in the tumor milieu. 
Bispecific antibodies with a tumor-specific binding entity 
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can be administered systemically, localize to the tumor area 
and thereby mediate tumor-directed immunotherapy.

Immunocytokines

Immunocytokines consist of a cytokine moiety fused to a 
monoclonal antibody or antibody fragment [34–39]. The 
antibody fragment binds to tumor-associated proteins, 
tumor vascular targets, or targets in the tumor stroma and 
can redirect the cytokine to the tumor area. The main pur-
pose is to limit the systemic toxicity that is associated with 
cytokine treatments. Several studies have demonstrated that 
cytokines indeed can be redirected to the tumor area using 
this approach. Preclinical studies with immunocytokines 
using several different cytokines, e.g., TNFα, GM-CSF, 
IL-2, IL-12, IL-7, IL-15, IL-17, IL-18, IL-10, IFNγ, and 
IFNα, have generated impressive results with improved 
anti-tumor effects [34, 35]. However, most of the immu-
nocytokines can be found outside the tumor area, and the 
increased half-life conferred by fusing an antibody to the 
cytokine can result in prolonged systemic exposure, which 
limits the therapeutic window. Intratumoral administration 
of immunocytokines may be an approach to address this 
[34, 35]. There are currently a number of ongoing clinical 
trials using immunocytokines using IL-2, IL-12, and TNF 
as the cytokine moiety [35]. However, the clinical progress 
has so far been modest.

Engineered monoclonal antibodies

Monoclonal antibodies can also be designed to preferen-
tially accumulate in the tumor tissue by increasing the iso-
electric point. The pH in tumors is significantly more acidic 
(6.6–7.0) than that of normal tissues (7.2–7.4). This acidity 
is primarily due to anaerobic glycolysis in tumor regions 
subjected to short-term or long-term hypoxia as a result of 
poorly organized neovasculature with diminished chaotic 
blood flow, and aerobic glycolysis (the Warburg effect) [36, 
38]. Antibodies with higher isoelectric point may be retained 
in the acidic environment. Another promising approach 
would be to generate antibodies that preferentially bind their 
target at lower pH, designing the antibody binding site to 
depend on the protonated form of histidine residues [37, 39]. 
Further, a class of proteolytically triggered antibodies engi-
neered to remain inert until enzymatically activated in the 
tumor microenvironment has been described [40].

Redirection of T cells using CD3‑targeting bispecific 
antibodies

CD3-targeting bispecific antibodies can be utilized to redi-
rect T cells toward tumor cells. This approach has proven 
successful, and blinatumomab, a bispecific T-cell-engaging 

antibody that binds CD19 on B cells and CD3 on T cells, 
was approved in 2014 for the treatment of relapsed/refrac-
tory B cell precursor acute lymphoblastic leukemia [41]. 
Several T cell redirecting therapies are currently in clinical 
development against solid tumors [42]. While CD3-target-
ing bispecific antibodies effectively kill tumor cells, they 
depend on polyclonal T cells for tumor killing, and they do 
not directly promote activation of T cells that specifically 
recognize tumor-associated antigens. This approach may 
therefore be less effective in inducing a long-term tumor 
immunity compared to immunotherapies targeting check-
point molecules.

Bispecific antibodies selectively activated in the tumor 
microenvironment targeting TNFR‑SF members

Another approach to achieve tumor-directed immune acti-
vation is to utilize bispecific antibodies that are activated 
upon binding to the tumor cell. To this end, cross-linking-
dependent agonistic antibodies targeting the TNFR-super 
family may prove advantageous. Agonistic IgG1 antibod-
ies targeting, e.g., CD137, CD40, or OX40, have limited 
agonistic effect without cross-linking provided by FcγR 
on adjacent cells [43–45]. Cross-linking may however be 
mediated by entities other than FcγR, such as a tumor-
associated antigen. It is thus possible to generate bispecific 
anti-TNFR superfamily antibodies, where FcγR binding 
has been removed and replaced by tumor-associated anti-
gen binding. Such compounds would only be active when 
cross-linked by the tumor-associated antigen in the tumor 
area. Stimulation of TNFR superfamily members is known 
to induce tumor-specific memory T cell responses [46, 47], 
and accordingly, this class of bispecific antibodies may 
have the potential to induce long-lasting tumor immunity.

Tumor-directed immunotherapy based on the above 
concept was first demonstrated using the natural ligand to 
CD137 (CD137L) fused to a tumor-targeting scFv [48, 49]. 
This concept may however be extended to any antibody 
activated after cross-linking, such as agonistic antibodies 
targeting TNFR superfamily members.

Concluding remarks

Tumor-directed immunotherapy, or in  situ vaccination, is 
currently being evaluated in both preclinical studies and 
clinical trials. This approach has the potential to improve 
the response rate and increase the number of tumor indi-
cations that respond to immunotherapy, while limiting 
adverse side effects. Efforts are ongoing to generate next-
generation immunotherapeutic drugs specifically designed 
for tumor-directed immunotherapy, and we predict that this 
field will grow substantially during the coming decades.
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