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Intratumour injection of immunoglobulins labelled with
the a-particle emitter 21'At: analyses of tumour
retention, microdistribution and growth delay
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Summary To determine the effects of 21'At-labelled antibodies in solid tumour tissue, nude mice carrying OHS human osteosarcoma
xenografts received intratumour injections at dosages of 1, 2 or 4 MBq g-' tumour. The radioisotope was conjugated to either the
osteosarcoma-specific monoclonal antibody TP-3 or the non-specific polyclonal antibody higGic. Tumour retention of injected
radioimmunoconjugate (RIC), measured as the percentage of injected activity dosage per gram, was significantly higher for the [211At]TP-3
(203 ± 93 at 24.1 h post injection) compared with the [211At]hIgGic (57 ± 22 at 23.2 h post injection). The radioactive count rates in body
(measured at neck and abdomen) were significantly lower with the TP-3 than with the higGK. Microautoradiography of the tumour
radionuclide distribution was different for the two RICs, i.e. the [211At]TP-3 was to a larger extent concentrated near the injection site, whereas
the [211At]hIgGic was more evenly distributed all over the tumour. The tumour growth was significantly delayed as a function of the injected
activity dosage but without significant difference between the specific and the non-specific RIC. According to this study, it is possible to deliver
highly selective radiation doses to solid tumours using intratumour injection of a-particle-emitting RICs. Improved tumour retention caused by
antigen binding indicates that reduced normal tissue exposure can be obtained with antigen-specific antibodies. The heterogeneous tumour
dose distribution observed is, however, a major impediment to the use of a-particle emitters against solid tumours.
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New technologies are emerging in the field of radiation oncology
and are showing promise against types of cancer for which
conventional external radiotherapy fails to produce sufficient
therapeutic gains. One potential new branch of radiotherapy under
exploration is the use of internal a-particle emitters. To enhance
the specificity of radiation, to reduce dose-rate effects and to over-
come radioresistance, targeted radiotherapy with a-particle-emit-
ting radionuclides attached to molecules with tumour affinity have
been suggested as a supplement to external beam irradiation and
radioimmunotherapy with n-emitters (Brown, 1986; Kozak et al,
1986; Humm, 1987; Wheldon et al, 1990; Link et al, 1992).
Primarily because of the low availability of the a-emitting
radionuclides currently considered to be most suitable for radio-
immunotherapy, 21'At, 212Bi and 213Bi, clinical studies have yet to
be reported.

Astatine-21 1 is a particularly interesting radionuclide for
biomedical applications as its half-life is considerably longer than
those of bismuth-212 and bismuth-213 (7.2 h vs 1.0 h and 0.76 h
respectively), allowing more time for diffusion into tumour tissue.
In addition, astatine has some chemical similarities with its closest
halogen neighbour iodine, i.e. it can be covalently linked to
proteins via labelling of aromatic or vinylic carbon atoms in
protein-coupling reagents (e.g. Harrison and Royle, 1984). Using
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this method, radioimmunoconjugates (RICs) with high immuno-
reactivity and a well-retained in vivo localizing capacity have been
prepared (Zalutsky et al, 1989; Hadley et al, 1991; Larsen et al,
1994a). Experiments have verified that RICs with a radioactivity
strength predicted for clinical uses can, if prepared carefully, be
made with this method without significant radiolytic reduction in
the antigen-binding ability (Larsen and Bruland, 1995). Recently,
production methods have been developed allowing intermediate
size cyclotrons to produce potentially clinically useful amounts
of 2"'At, making clinical studies with this nuclide feasible (Larsen
et al, 1996).
The radioactive transformation of 2"At includes 42% direct

emission of an a-particle with an energy of 5.87 MeV, while 58%
of the nuclide decays with electron capture to 21IPo, which has a
half-life of only 0.52 s and decays almost completely (-99%) by
the emission of an a-particle with an energy of 7.45 MeV (Jardine,
1975). The two a-particles associated with the 21'At decay have
ranges in tissue of 55-80 gm and an average linear energy transfer
(LET) value of approximately 100 keV gm-' (Brown, 1986).
Radiation with a LET value of this magnitude is associated with
a low oxygen enhancement ratio (Hall, 1994) and insignificant
initial shoulders on dose-response curves (i.e. very low sublethal
repair) (Kassis et al, 1986; Larsen et al, 1994b). The emission of
X-rays in the energy range of 77-92 keV with a combined abun-
dance relative to 21'At of approximately 44% may be used for
quantitative detection of the radionuclide and may also, as previ-
ously shown in animal studies, be used for imaging of the distribu-
tion of 21At radiopharmaceutical in vivo (Vergote et al, 1992;
Larsen et al, 1995).
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Previously, preclinical therapeutic studies with a-emitting RICs
have been performed in cell cultures in vitro (Vaughan et al, 1981;
Kozak et al, 1986; Larsen et al, 1994c) and in animal models in
which the total number of tumour cells has been relatively low,
typically 10-107 cells (Harrison and Royle, 1987; Maclis et al,
1989; Huneke et al, 1992; Larsen et al, 1995). Larger tumours
generally have slower uptake and a more heterogeneous distribu-
tion of RICs because of diffusion barriers and cellular variability
in different segments of the tumour tissue. Conceptually, the use of
monoclonal antibodies (MAbs) labelled with a-particle emitters
is therefore considered to be best suited for adjuvant treatment
directed at residual micrometastases (Sgouros, 1995).

There are cases in which surgical removal or sterilization by
external beam irradiation cannot be accomplished because the
tumour grows adjacent to or infiltrates vital tissue (Riva et al,
1994; Bruland et al, 1996). In these cases, local treatment in the
form of brachytherapy or targeted radionuclide therapy may be
available options. Direct intralesional injections may be a way to
increase the tumour to normal tissue dose ratios for radiopharma-
ceuticals, such as radiolabelled MAbs (Rowlinson-Busza et al,
1991). The short range of a-particles may ensure that the irradia-
tion is maximized in the target tissue without delivering harmful
doses to surrounding normal tissues.
The present study was conducted to evaluate the potential of

21'At-labelled MAbs as a treatment against solid tumours (> 108
cells) using the intratumour route of injection. Subcutaneous
human osteosarcoma xenografts in athymic mice were used as a

model and the TP-3 (antigen-specific) and hIgGK (non-specific)
antibodies were used as carrier molecules for 21'At. By the use of
an X-ray-counting probe and microautoradiography, tumour clear-
ance and microdistribution of the internal a-particle-emitting
source was measured and tumour radiation doses could be esti-
mated. Based upon these results, predictions about decay intensity
and microdistribution requirements for clinical tumour treatment
with internal a-particle emitters could be made.

MATERIALS AND METHODS

Preparation of the radiolabelled compounds
The MAb TP-3 of subclass IgG2b (Bruland et al, 1986), which
recognizes an 80-kDa antigen commonly expressed in human
osteosarcomas (Bruland et al, 1988), was used as antigen-specific
antibody, while polyclonal human IgGi (Paus and Nustad, 1989)
was used as a non-specific antibody.
21At was produced at the Scanditronix MC 35 cyclotron at Oslo

University by bombarding targets consisting of natural bismuth
fused onto aluminium backings with a beam of 28 MeV a-particles.
Two hours of cyclotron irradiation using a beam current of 11 gA
resulted in approximately 250 MBq 211At in the target. Astatine was
extracted from the target using a dry distillation procedure, which
has been previously described (Larsen et al, 1993). Briefly, a still
containing the target was heated to 650°C and the volatile astatine
was carried by argon to an ice-cooled condensation trap where the
astatine was collected in 300 gl of chloroform. Using this proce-
dure, 40-70% of the target activity was recovered after 50minof
distillation. The 21'At was thereafter conjugated to the antibodies as
presented in detail (Larsen et al, 1994a) The RICs were purified by
elution through a Sephadex G-25 PD-10 column (Pharmacia,
Sweden) using 0.1 Mphosphate-buffered saline (PBS) buffer. The
labelling yield was approximately 60% for both proteins.
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The antigen binding fractions of [211At]TP-3 and non-specific
binding of [211At]hIgGic were measured after 1 h of incubation with
107 OHS osteosarcoma cells in 0.5 ml of phosphate-buffered saline
(pH 7.4). The cells were washed and counted and the specific
bound fraction was determined as described (Larsen et al, 1994a).

The antigen binding fraction of the [211At]TP-3 measured as
binding to OHS cells in suspension ranged from 66% to 81%. The
non-specific binding of [211At]hIgGic to OHS cells was less than 4%.

Tumour model

The OHS xenograft model was used as previously reported
(Bruland et al, 1987). Briefly, small pieces of OHS human
osteosarcoma xenografts were implanted subcutaneously in the
flanks of male athymic Nu/Nu mice. After approximately 2 weeks,
when the tumours had become vascularized and had reached an
average diameter of 6.6 mm (range 5.5-8.0 mm), groups of
animals with similar average tumour size and size distribution
were treated with a single intratumour injection of either saline
(the control group), [21 At]TP-3 IgG or [211At]hlgGic. The animals
were anaesthetized before injections. All animals were treated in
accordance with guidelines on the care of laboratory animals in
cancer research (e.g. UFAW, 1987; UKCCCR, 1988).

Injections of therapeutic preparations

Dilutions of the MAbs were made containing activity dosages of 4,
2 and 1 MBq g-' tumour when a solution (volume adjusted for
each tumour individually) corresponding to 10% of the total
tumour volume was injected. The control group was injected with
a similar volume of isotonic saline. The injections were performed
when the specific activity of the radioimmunoconjugates was

within 45-55 Mbq mg-' antibody. All of the injections were

performed using a 25-,l Hamilton syringe.

Measurements of 21'At-labelled antibodies in the
tumours

Tumour radioactivity was measured in living animals using a
hand-held probe (Neoprobe, Columbus, OH, USA) made for the
detection of X-rays and soft y-rays, with the control unit (RIGS
model 1000 control unit) set at 2 s counting time. This probe was
originally developed for radioguided surgery and is strongly
shielded against low-energy X-rays, except for the detection area
in the front to reduce the possibility of interference from radio-
activity in the body of animals, the probe front was kept perpendic-
ular to the body surface during acquisition of tumour counts. The
radioactivity counts in tumour was measured within 1 min after
injection and then at various time points up to 24 h. Additionally,
the animal body radioactivity count rate was measured by
directing the probe at the front of the neck (thyroidal region) and at
the abdomen at 12 h after injections. To verify the reliability of the
detection method, five animals were sacrificed 20 h after injection
and the tumour radioactivity was counted before and after removal
of the tumours from the animals. No significant deviation in the
tumour counts was observed for the two sets of measurements.
The hand-held probe was calibrated against an LKB Wallac 1260
Multigamma II counter (Bromma, Sweden), with window setting
for the 77-92 keV X-rays accompanying 21'At decay, and also
against a Capintec CRC-7 (Ramsey, NJ, USA) dose calibrator (set
for '33Xe). Calibration was performed with both solutions and with
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tumours from sacrificed animals. The overall counting efficiency
of the probe was determined by measuring activity in tumours
while still implanted in animals as well as after dissection and by
comparing these counts with the counts measured in the LKB
counter. The fraction of detected counts vs the actual number of
211At transformations in the tumours was measured to be 3.9% for
the Neoprobe system. The difference in the two numbers was due
to the abundance of the Po X-rays (44%), the geometry of the
detector vs source and the probes' efficiency for the 77-92 keV
photons.

Cumulated activity in the tumours

Based on the retention data the cumulated activity, A, in the
tumours was calculated according to the linear trapezoid method
(e.g. Yuan, 1993). It was assumed that the clearance of radio-
activity from the tumours followed two-component kinetics, i.e. a
rapidly clearing and a slowly clearing component. Cumulated
activity values were determined both for the total activity and the
activity from the rapidly clearing component on the curve.

Microautoradiography

Animals that had received injections of 4 MBq g-' tumour were
sacrificed 12 h after injection of the RICs. The tumours were
removed and thin slices of the tumour tissue were dried in air and
coated with hypercoat emulsion LM-l (Amersham, UK) for
high-resolution microautoradiography. After 3 days, the emul-
sion-coated slices were developed with Ilford Phenisol liquid and
also counterstained with haematoxylin for light microscopy.
Tissues of tumours treated both with antigen-positive and
antigen-negative RIC was studied and the different areas of the
tumour slices showing the a-particle tracks were photographed
using a Zeis Ultraphot photo microscope (Zeis, Germany) at
x 680 magnification.

Dose estimates

The radiation considered was the a-particles of 211At and 2l1Po and
their recoil nuclei. The absorbed radiation from the X-rays and
y-rays were assumed negligible because of their relative low
energy deposition (< 1% of the total energy deposition). The
average energy per transition, Ai, used for the calculations was
1.1 x 10-12 Gy kg Bq-' s as adapted from Weber et al (1989). An
absorbed fraction, 0, value of 1.0 was assumed because of the
large diameters of the tumours compared with the a-particle
ranges (about 100:1 ratio).
The radiation doses to the tumours were estimated by consid-

ering two different zones of the tumours, i.e. the zones defined by
the inner and the outer 50% of the radius. The average radiation
dose to each zone was calculated according to the uniform
isotropic model (Loevinger et al, 1991) assuming uniform distrib-
ution of the radioactivity within each of the tumour zones.
Estimates were based on the assumption that the rapidly clearing
component was uniformly distributed in the whole tumour, while
the slowly clearing component was heterogeneously distributed
according to the autoradiograph.
The total radiation dose to the tumour tissue could thereby be

expressed in the following equation: D = Di + D2, where D1 is the
dose from the the rapidly clearing component and D2 is the dose
from the slowly clearing component.

The average number of a-particle tracks in the tumours was
determined from 20 measurements in the inner half-radius zone
and likewise 20 measurements in the outer half-radius zone of
each tumour. Each measurement was performed by counting the
number of a-particle tracks in an area of approximately 104 jim2
using a phase-contrast microscope (Olympus CH-2, Japan) with a
x 400 magnification. The outer half-radius was weighted by a
factor of 8 according to the difference in total volume of the two
zones. Hence, the average number of a-particle tracks in the whole
tumour was estimated according to the following equation: n =
(8nou + nin)/9, where nou and nin is the average number determined
in the outer and the inner half-radii of the tumours. The n value
was considered to be proportional to the cumulated activity, A, of
the slowly clearing RIC component.

Measurement of the therapeutic response

The long and short tumour diameters were determined using calliper
measurements and the average diameter was calculated. As the
tumours were in general close to spherical in shape, the tumour
volume was determined using the equation: V = [(D + d)/2]3 x t/6
(D, long diameter; d, short diameter). The tumour diameters were
measured immediately before the injections and at intervals of 2-3
days after the treatment. Animals were followed to day 40 or were
sacrificed earlier if the tumour volume increased beyond 2500 mm3.

Statistical analyses

The tumour growth in the two different groups was compared
using the Wilcoxon rank-sum test (e.g. Remington and Schork,
1985) while the student's t-test function in the computer program
Sigma Plot (Jandel Scientific, CA, USA) was used to compare
retention data.

RESULTS

Tumour retention of the RICs

In Figure 1A, the relative radioactivity contents in the tumours as
followed to approximately 24 h post injection are presented. No
significant dependency of injected activity dosage was observed,
and the data were therefore pooled for the three dosages of each
preparation. The reduction in radioactivity counts is attributed to
both the decay of the radionuclide and the clearance of radio-
immunoconjugate from the tumour tissue. For comparison, the
curve illustrating the physical decay of 211At was plotted.
Approximately 50% of the injected activity left the tumours within
0.5 h after injection for both the specific and non-specific
compound. At the earlier time points, the tumour retention was
similar for both the specific and the non-specific antibody but,
at the 11.0 h point, hIgGK showed significantly lower relative
radioactive counts than TP-3 at the 12.0-h point (Student's inde-
pendent t-test, P < 0.05). This was also observed for the compar-
ison of the 23.2-h hIgG point vs 24.1-h TP-3 point. Expressed as
per cent of injected activity dosage per gram of tumour the
retained activity was 203 ± 93 ([2'1At]TP-3, 24.1 h) and 57 ± 22
([211At]hIgGic, 23.2 h) at the last time point. Figure lB presents the
decay-corrected retention of the radioimmunoconjugates. The
curves show that about 50% of both preparations cleared from the
tumours in approximately 0.5 h and after that the clearance was on
average 0.81% h- for [21'At]TP-3 and 1.9%h-' for [211At]hIgGic.
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Figure 1 Retention of [21At]TP-3 (0) and [2''At]higGic (C
osteosarcoma xenografts in mice. A shows the radioactivi'
various time points. The dotted line represents the physica
21'At. B shows the decay-corrected tumour retention of the
radioimmunoconjugates

In Table 1, the standardized count rates (i.e. F
counts vs tumour counts) at 12 h after injection ar
probe was directed at upper abdomen (in front (

neck (in front of thyroid), which were the lo1
maximum normal tissue counts, probably becau
show strong accumulation of even minor amo
genated nuclide (for unblocked animals) as well <
rich tissues in close vicinity. Significantly higher
values were observed with the non-specific cor
specific antibody, with on average a 46% higher
the abdomen (P = 0.045) and 79% higher relative n
(P = 0.032) for all dose groups combined for each

a-Particle autoradiographs

The a-particle tracks observed with microautoradiography indi-
cate significant differences in the distribution pattern within the
tumour tissue between specific and non-specific RICs. The auto-
radiographs of [21 IAt]TP-3 show a pronounced heterogeneity in the
distribution of a-particle tracks (Figure 2A and B), which may be
related to the trapping of the antibody by cells near the injection
sites. The autoradiographs of the non-specific [21'At]hlgGk show
ca-particle tracks distributed more homogeneously in the tumour
tissue (Figure 2C and D), although areas with low a-particle track
density also occurred for this compound (not shown in the figure).
Figure 3 shows the a-particle tracks of [21'At]TP-3 in a larger

20 25 region of the tumour at a lower magnification. A distinct border
indicating antigen excess is observed.

Cumulated activity and tumour dose

The cumulated activity, A, in the tumours as calculated for an
injected activity dosage of 4 MBq/ g-' tumour was for [211At]TP-3
(62.0 ± 22.8) x l09Bq s with (17.2 ± 5.6) x 108Bq s due to the
rapidly clearing component and for [211At]hlgGk (39.2 ± 12.0) x
109 Bq s with (17.3 ± 5.2) x 108 Bq s from the rapidly clearing
component. The estimated radiation doses to the inner and the
outer segments of the tumours are presented in Table 2. A major
variation in the calculated doses, which was particularly large for
[211At]TP-3, is indicated.

20 25 Tumour growth delay

) in OHS The average tumour growth delay for each treatment group deter-
ty counts at the mined as a function of time is presented for [21 'At]TP-3, in Figure
aI decay curve of 4A and for [211At]hlgGk in Figure 4B. The plots indicate a growth
tVJo delay according to the injected activity dosage. The tumour

volume-doubling and -quadrupling times are presented in Figure 5.
The volume-doubling and -quadrupling times increased by a factor
of 2.1 and 2.3 for [211At]TP-3 and 2.1 and 2.0 for [211At]hIgGK,

?er cent of body respectively, for the highest activity dosage compared with the
e presented. The control. The 4 MBq g-1 [21'At]TP-3 and both 2 and 4 MBq g-'
of stomach) and [211At]hIgGK groups had significantly (Wilcoxon rank-sum;
cations showing P < 0.05) longer volume-doubling times compared with the
se these regions control group. Except for the 1 MBq g-' activity dosage group of
iunts of dehalo- [211At]-TP-3, the groups treated with 211At preparations had a
as having blood- significantly (P < 0.05) increased volume-quadrupling time when
relative activity each group was compared individually with the control group.
npared with the Isodosage group comparisons of [211At]TP-3 and [211At]hIgGK
relative value at indicated no significant differences in volume-doubling
value at the neck or -quadrupling times. Combined for all three activity dose levels,
antibody. 5 of 23 tumours were strongly growth inhibited (sizes less than

Table 1 Radioactive counts measured at the abdomen and the neck 12 h after intratumour injectiona

Injected dosage (MBq g-1) [21lAt]TP-3 [21'At]hlgGK
Abdomen Neck Abdomen Neck

1.0 30.9±26.2 14.0±8.8 46.2±21.3 28.5+21.1
2.0 21.6±8.1 8.4+4.1 36.4±13.8 19.3±9.5
4.0 30.0±13.5 17.6±7.0 37.3±13.8 19.4±10.1

All dosages combined 27.7±17.7 13.4±7.6 40.4±16.6 22.6±14.6

aRelative percentage compared with tumour counts.
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Figure 2 Microautoradiography of tumour slices showing a-particle tracks made by the decay of 21 At bound to TP-3 (A and B) and hIgGlc (C and D). The
photographs show areas of approximately 130 x 170 gm of the tumour centre (A and C) and the tumour rim (B and D) and were taken using a photomicroscope
at x680 magnification

1000 mm' within 40 days) by the [211At]TP-3 and 3 of 24 tumours be matched carefully for each type of cancer. Local application as
were strongly growthinhibitedby the [21 At]hIgGx, whilenoneinthe opposed to intravenous injection may be a way to improve the
control group (O out of 14) showed a similar reduced growth rate. pharmacokinetics in targeting of locally confined cancers.

Intracavitary or intratumour injections of RICs using nuclides of

DISCUSSION relatively short half-life (in the range of hours) can ensure a high
concentration of the radioactive compound in the target area

To improve radioimmunotherapy as an anti-cancer strategy, the compared with tissues distant from the injection site (Roeske and
physical half-life of the radionuclide and radiation quality have to Chen, 1993). The use of oc-particle emitters can reduce dose-rate

British Journal of Cancer (1998) 77(7), 1115-11220 Cancer Research Campaign 1998
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A

Days after treatment

B

Figure 3 Microautoradiography showing the border region between high
and low density of a-particle tracks for [2l'At]TP-3. The photograph was taken
using a photomicroscope at x100 magnification

Table 2 Estimated dosesa (Gy) to tumours after intratumour injection of
211At-radioimmunoconjugates

Tumour segment [211At]TP-3 [2"At]hIgGK

Inner half-radius 276.9 (32.8-747.3) 44.8 (7.0-90.7)
Outer half-radius 45.2 (2.8-92.4) 45.6 (7.0-124.3)

aThe average dose (range) for an injected activity dosage of 4.0 MBq g-1
tumour.

dependency of the radiation treatment and strongly reduce the
radioresistance caused by hypoxic tumour cell subpopulations
(Hall, 1994). The relatively slow release of radiolabelled
immunoglobulins into the blood pool after intratumour injections
have been demonstrated previously (Rowlinson-Buza et al, 1991),
and it was confirmed in the current study. This route of administra-
tion may therefore be particularly interesting with a-particle emit-
ters of short half-life - the short half-life ensuring that a large
fraction of the injected radioactivity decays in the tumour before
release into the blood stream and the strongly limited radiation
range confining the radiation to the tumour tissue cells, sparing
surrounding normal tissue.
The main advantage using an antigen-specific antibody, as

demonstrated in this study, was that a substantially higher fraction
of the injected dose decayed within the tumours with the specific
RIC than with the non-specific RIC, as illustrated by, on average, a

58% higher cumulated activity with TP-3 than with hIgGK.
Although the normal tissue distributions for the two RICs were not
measured in detail, the difference in radioactivity level as

measured at abdomen and neck as well as the difference in tumour
retention indicate that reduced normal tissue radiation exposure

can be achieved with the antigen-specific compared with the non-

specific RIC. As seen in Figure 1, the leakage of the RIC from
tumour followed a two-component kinetic, with in excess of 40%
of injected activity clearing the tumours within the first 2 h.
Possible causes for this leakage may be draining as a result of a

combination of high intratumour pressure and capillary damage

U)

E

0
0

E

a)

-a

Days after treatment

Figure 4 Growth of OHS osteosarcoma xenografts after treatment with a
single injection of [211At]TP-3 (A) and [211At]hlgGK (B). Group symbols: *,
control; V, 1.0 MBq g-'; O, 2.0 MBq g-1; 0, 4.0 MBq g-1

caused by the injection procedure. Although some dehalogenation
has been observed with [211At]RIC injected intravenously, this is
an unlikely cause for the fraction of rapidly clearing radioactivity
from the tumour. Generally, if dehalogenation occurs, it is a rela-
tively slow process for these types of RICs. Previously, we have
demonstrated that intravenously injected [211At]TP-3 localized
stably for up to 48 h in OHS tumour (Larsen et al, 1994a), which
suggests that intratumour dehalogenation is not a significant
problem for the OHS model within this time frame.
The microautoradiographic images used in the radiation dose

estimates showed large variations in density of a-particle tracks
within each tumour zone studied. The difference in average

a-particle track density was relatively large in the two zones

compared for [21 'At]TP-3 but not for [211At]hIgGK. As indicated in
Table 1, there were large radiation dose ranges within each zone,

implying variability in the microdistribution not acknowledged by
the uniform isotropic two-zone model. Significant variability in
a-particle track density was observed both in the centre and at the
edges of the tumours. The average doses to the outer tumour zone

were found to be similar for both antibodies, signifying that some
diffusion of [211At]TP-3 also occurred. This is not likely to be due
to saturation, as approximately 3.2 x 10'4 antibody molecules were

injected per gram of tumour at the highest dose level. OHS cells

British Journal of Cancer (1998) 77(7), 1115-1122
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Figure 5 Growth delay presented as time for OHS tumours to reach two and four times the initial volume (mean ± s.d.) after treatment with [21'At]TP-3 (A) and
[211At]hlgGic (B)

have been shown to contain on average 7.4 x 105 antigens per cell
in vitro (Larsen et al, 1994b), while the OHS tumour line has been
found to have up to six times higher antigen expression compared
with the cell line (Hjelstuen et al, manuscript in preparation).
Assuming 109 cells per gram, the tumour contained in excess of
7 x 1014 antigens. The approximate 25% of the TP-3 that was not
immunoreactive, an unknown fraction of more loosely bound low-
affinic TP-3 with monovalent binding capability and also binding
of immunoreactive TP-3 to interstitially shedded antigen may
account for the [211At]TP-3 observed in the outer tumour zone.

For intratumour and regional injections of a a-particle-emitting
radiopharmaceutical to be a therapeutically useful strategy, high
tumour retention as well as a relatively uniform microdistribution
of radiation source among the tumour cells are vital. As demon-
strated in this study, a high affinity of the antibody to the tumour
cell antigens may not in every sense be advantageous. If the
number of available antigens in the tumour tissue is high compared
with the number of injected antibody molecules, most binding
occurs at the cells near the site of injection. Tumour tissue areas
distant to the injection site are thereby only exposed to low
concentrations of RIC causing 'hot' and 'cold' spots in the tumour.
These problems may be dealt with either by using antibodies with
lower antigen affinity or by using competitive inhibition of antigen
binding by diluting the RIC with cold antibody (i.e. reduce specific
activity of the preparations). Another possible approach previously
shown to increase residence time in tumour and decrease the
antigen affinity (Delgado et al, 1996) would be to use a poly-
ethylene glycol modification of the antibody used as radionuclide
carrier. Alternatively, carrier molecules of lower size causing
increased diffusion of the radionuclide within the tumour tissue
may secure a more uniform distribution of a-particles. Examples
of such molecules are antibody fragments for tumours expressing
antigens; for rapidly proliferating tumours, the DNA-incorporated
compound [21'At]astatodeoxyuridine (Vaidyanathan et al, 1996)
may be an alternative. As tumour retention is likely to be reduced
with smaller molecules, it would be mandatory that the body

clearance for these types of molecules would be rapid to keep
normal tissue exposure low.

Despite the heterogeneous radiation dose distribution demon-
strated in this investigation, the tumour growth delay was depen-
dent on the radioactivity level injected in a dose-response trend.
Complete tumour inactivation may therefore be obtained by
increasing the injected activity dosage further. The tumour to body
weight ratio of approximately 1:130 was high in this study and
would correspond to a 0.56-kg tumour in a human with a weight of
75 kg. If intratumour infusions were to be used in humans, it
would more likely be in cystic tumours below 100 g. According to
an estimate based on (1) a tolerable intravenously injected activity
dosage of 10 Mbq kg-' bodyweight in humans, corresponding to
approximately 20% of the weight-adjusted maximum-tolerable
dosage of [211At]astatide in mice (Cobb et al, 1988), and (2) a
similar retention of RIC in clinical tumours as observed in our
model, a 50-g tumour receiving 1.5 GBq of [211At]RIC that retains
50% of the activity (i.e. 750 MBq to the body) would receive an
average radiation dose of 600 Gy. Assuming the least exposed
areas of the tumour could be exposed to 15% of the average radia-
tion dose (i.e. 90 Gy) or more, the probability for complete tumour
inactivation would be high.

In conclusion, in spite of the heterogeneous distribution of the
source within the tissue, a significant growth inhibition of human
tumour xenografts implanted in mice was observed after intra-
tumour injections of radioimmunoconjugates emitting a-particle
radiation. The use of radionuclides with relatively short half-lives
ensures high tumour radiation doses with limited normal tissue
exposure from the radioactivity cleared from the tumour. A
successful treatment using this method depends upon both tumour
retention and microdistribution of the radiation. Heterogeneous
radiation dose distribution is likely to occur in larger tumours, and
this may be one of the main disadvantages of a-particle emitters in
molecular-targeted radiotherapy. Non-uniformity in the deposition
of radiation can be acceptable only if all tumour cells are exposed
to a threshold radiation dose sufficient for clonogenic inactivation.
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